
Proving properties of programs

Yves Bertot

January 2015

1 / 10

Objectives

I Usual approach to removing bugs in programs: testing

I Write testing context, construct sample inputs, run

I This course: perform test with symbolic values

I Use quantification to introduce symbolic values

2 / 10

Examples of programs

Require Import Arith List.

Fixpoint evenb (n : nat) : bool :=

match n with

| 0 => true | S p => negb (evenb p)

end.

Fixpoint max_list (l : list nat) : nat :=

match l with

| nil => 0

| a::tl => max a (max_list tl)

end.

Definition swap_first_two (l:list nat) : list nat :=

match l with

| a::b::tl => b::a::tl

| _ => l

end.

3 / 10

Reasoning on case expressions

I When a match appears in the goal

I Use case, case eq, destruct to look separately at the
various cases of execution

I demo time!

4 / 10

Impossible cases

I Impossibility can be expressed in several ways:

1. premise or hypothesis true = false, 0 = 1, or nil = a::tl

2. premise or hypothesis A <> A or A <> B when A actually
equals B

3. premise or hypothesis False

I Impossibility 1: discriminate

I Impossibility 2: case H

5 / 10

Reasoning by induction : natural numbers

I Mathematicians prove properties of natural numbers by
induction

I For any predicate P on natural numbers
I If P 0 holds
I If one can deduce P (1 + n) from P n for any n

I Then the properties holds for every natural number

I Only two cases, but infinity of results!

I Like proof by cases, but with an induction hypothesis

6 / 10

Using induction to prove properties on evenb

Demo time!

7 / 10

Non confusion of data-type constructors

I Constructors of data-types are manipulated as functions
I These functions have specific properties

I Different constructors always yield different values
I Each constructor is injective

I These properties are consequences of match ... with ...

end behavior
I In proofs two tactics are provided to use these characteristics

I discriminate to prove O <> S p and goals of the same
shape

I injection to prove S p = S q -> p = q

8 / 10

Guiding computation

I Sometimes we want to replace sub-expressions with others
that are equal

I If the system should be able to recognize it, use change

I If the system can’t recognize it, but you are sure you can
prove it, use replace

I If you don’t want to write the result, use unfold or simpl

9 / 10

