
Executing Semantic specifications

Yves Bertot

October 25, 2004

1 Prolog execution of Natural Semantics

Semantics specifications can be executed with the help of a prolog interpreter by trans-
lating expressions and instructions into Prolog terms, judgements into Prolog predi-
cates, and inference rules into Prolog clauses.

1.1 Representing terms

Prolog provides notations for lists, which we are going to use directly for environments.
However, we need to view pairs as terms constructed with a function symbols. We
choosep as the function symbol.

The rules we have described in our previous course assume that we can distinguish
integers from other values. To make it easier, we will simply assume that integers in
expressions are always given as term of the formint(N) . In the same spirit, we shall
assume that variables are always given as terms of the formvar(X) .

For the addition of two arithmetical expressions, we will use the binary function
symbolplus(E1,E2) , for true andfalse we will use the same function symbols,
and for the comparisonlt(E1,E2) .

For instructions, we use the binary function symbolsassign , sequence , while ,
and the constantskip . Thus,

while(lt(var(x), int(10)),
sequence(assign(x, plus(var(x), int(1))),

assign(y, plus(var(x),var(y)))))

represents the program:

while x < 10 do
{ x := x+1; y:=x+y }

1.2 evaluating expressions

We construct one Prolog clause for each inference rule. The clause head is a direct
translation of the rule conclusion, while the clause body is the conjunction of the trans-
lations of the rule premises. Variables that appear only once in an inference rule are

1

replaced with the anonymous variable “”. We use Prolog predefined predicates to rep-
resent the test checking that two symbols are different, arithmetic operations, and the
comparison of two integer values.

We choose the names eval to represent the judgementsρ ` e → v andρ ` b →
v.

s_eval([p(X,V)|_], var(X), V).
s_eval([p(Y,_)|R], var(X), V) :-

X \== Y, s_eval(R,var(X),V).
s_eval(_, int(V), V).
s_eval(R, plus(E1, E2), V) :-

s_eval(R,E1,V1), s_eval(R,E2,V2), V is V1+V2.
s_eval(R, lt(E1,E2),true) :- s_eval(R,E1,V1),

s_eval(R,E2,V2), V1 < V2.
s_eval(R, lt(E1,E2),false) :-

s_eval(R,E1,V1), s_eval(R,E2,V2), V2 =< V1.

In Prolog, all variables are represented by a symbol starting with a capital letter. This
tranlation does not yield a very efficient execution of expressions, because the sub-
expressions of a comparison are computed twice if this expression evaluates tofalse .

We can test our encoding with a query like the following one:

s_eval([p(x,1),p(y,2)],
plus(var(x),plus(var(y),int(1))),
V).

1.3 Execution of instructions

We can now add thes update ands exec predicates for the other two judgements
used in the natural semantics for IMP.

s_update([p(X,_)|T],X,V,[p(X,V)|T]).
s_update([p(Y,Vy)|T],X,V,[p(Y,Vy)|T1])

:- X \== Y, s_update(T,X,V,T1).

s_exec(R,skip,R).
s_exec(R,assign(X,E),R1) :-

s_eval(R,E,V),s_update(R,X,V,R1).
s_exec(R,sequence(I1,I2),R2) :-

s_exec(R,I1,R1), s_exec(R1, I2,R2).
s_exec(R, while(B,_),R) :-

s_eval(R,B,false).
s_exec(R, while(B,I),R2) :-

s_eval(R,B,true), s_exec(R,I,R1),
s_exec(R1, while(B,I), R2).

We can now test our specification by making it execute our sample program in the
initial context wherex andy have the value 0. Here is the query.

2

s_exec([p(x,0),p(y,0)],
while(lt(var(x), int(10)),

sequence(assign(x, plus(var(x), int(1))),
assign(y, plus(var(x), var(y))))), R).

When executing this query, the Prolog interpreter replies that there is only one answer,
for Rbeing the value

R = [p(x,10),p(y,55)]

All these examples can be run on a linux machine using gnu-prolog. I used Gnu-
prolog version 1.1.2.

1.4 Constructing derivations

The prolog engine actually search for the existence of a proof using the inference rules,
but it does not construct a derivation that can be inspected by the user. It is possible
to make it produce both the final result and the derivation structure, by adding an extra
argument to predicates. In the clause head, the extra argument is a term indicating the
name of the rule being used and its as arguments the various terms representing the
sub-derivations. Here is an example, where we instrumented only the semantics rules
for instruction execution.

s_exec(R,skip,R,sn1).
s_exec(R,assign(X,E),R1,sn2) :-

s_eval(R,E,V),s_update(R,X,V,R1).
s_exec(R,sequence(I1,I2),R2,sn3(D1,D2)) :-

s_exec(R,I1,R1,D1), s_exec(R1, I2,R2,D2).
s_exec(R, while(B,_),R,sn4) :- s_eval(R,B,false).
s_exec(R, while(B,I),R2,sn5(D1,D2)) :-

s_eval(R,B,true), s_exec(R,I,R1,D1),
s_exec(R1, while(B,I), R2,D2).

Queries must now be adapted to take into account the extra parameter of the execution
predicate.

s_exec([p(x,0),p(y,0)],
while(lt(var(x), int(10)),

sequence(assign(x, plus(var(x), int(1))),
assign(y, plus(var(x), var(y))))), R,P).

The answer to this query is the following one:

P = sn5(sn3(sn2,sn2),sn5(sn3(sn2,sn2),sn5(sn3(sn2,sn2),
sn5(sn3(sn2,sn2),sn5(sn3(sn2,sn2),sn5(sn3(sn2,sn2),

sn5(sn3(sn2,sn2),sn5(sn3(sn2,sn2),sn5(sn3(sn2,sn2),
sn5(sn3(sn2,sn2),sn4))))))))))

R = [p(x,10),p(y,55)] ?

3

The variableP contains the squeleton of the derivation that proves the judgement cor-
responding to the query. However, information about the exact judgement appearing
as conclusion of each sub-derivation is missing. Extra arguments to the derivations
can be added to make sure this information is also recorded in the derivation structure.
However, such a instrumentation is even more costly and we will not spend more time
on this.

This approach to executing semantic specifications can also be adapted to structural
operational semantics (little step). This would be a good exercise.

1.5 How to use Prolog

One should put all the clauses in a file. For instance, the filesn.pl should contain the
following text.

s_eval([p(X,V)|_], var(X), V).
s_eval([p(Y,_)|R], var(X), V) :-

X \== Y, s_eval(R,var(X),V).
s_eval(_, int(V), V).
s_eval(R, plus(E1, E2), V) :-

s_eval(R,E1,V1), s_eval(R,E2,V2), V is V1+V2.
s_eval(R, lt(E1,E2),true) :-

s_eval(R,E1,V1), s_eval(R,E2,V2), V1 < V2.
s_eval(R, lt(E1,E2),false) :-

s_eval(R,E1,V1), s_eval(R,E2,V2), V2 =< V1.

s_update([p(X,_)|T],X,V,[p(X,V)|T]).
s_update([p(Y,Vy)|T],X,V,[p(Y,Vy)|T1])

:- X \== Y, s_update(T,X,V,T1).

s_exec(R,skip,R).
s_exec(R,assign(X,E),R1) :-

s_eval(R,E,V),s_update(R,X,V,R1).
s_exec(R,sequence(I1,I2),R2) :-

s_exec(R,I1,R1), s_exec(R1, I2,R2).
s_exec(R, while(B,_),R) :-

s_eval(R,B,false).
s_exec(R, while(B,I),R2) :-

s_eval(R,B,true), s_exec(R,I,R1),
s_exec(R1, while(B,I), R2).

One can then run prolog and require that it loads the file in the following manner (the
text in italics corresponds to answers from the computer).

[bertot@localhost gprolog-1.1.2]$ bin/gprolog
GNU Prolog 1.1.2
By Daniel Diaz
Copyright (C) 1999 Daniel Diaz

4

| ?- consult(’sn.pl’).
compiling sn.pl for byte code...
/home/bertot/gprolog-1.1.2/sn.pl compiled,

20 lines read - 5401 bytes written, 23 ms

yes
| ?- s_exec([p(x,0),p(y,0)],

while(lt(var(x), int(10)),
sequence(assign(x, plus(var(x), int(1))),

assign(y, plus(var(x), var(y))))), R).
R = [p(x,10),p(y,55)] ?

When the system give an answer, there may be several, one can request the next one by
typing a semi-column “; ”.

Executing specifications in a Prolog interpreter gives the possibility to construct
derivations, but it does not make it possible to have computer support when reasoning
about specifications.

2 Executing inside a proof system

To reason about derivations we will use a proof system. The system I propose is the
Coq system, but any proof system containing inductive types is well suited for this
purpose:Isabelle , HOL, PVSare well-suited, but obviously with a different syntax
each time.

2.1 Representing expressions

The Coq system provides many pre-defined data-structures, but you must state ex-
plicitely that you are going to use them. In our case, we will rely on the built-in notions
of integers and lists. For this reason, our session needs to start with the following two
commands:

Require Export ZArith.
Require Export List.
Open Scope Z_scope.

In the Coq system, everything expression must have a type and every type must be
defined. Parametric types are allowed, so that there exist only one type definition for
all kinds of pairs: a pair of an integer and an integer, a pair of a list of integers and
an boolean value, for instance. To know the type of a well-formed expression, and to
know whether an expression is well-formed we can use a command calledCheck .

Check (1,2).
(1,2) : (Z*Z)%type

Check ((1,2)::nil).
(1,2)::nil : list(Z*Z)

5

We asked two questions and received two answers. The first answer, is that(1,2) has
type(Z*Z) , but this answer is would be ambiguous, because* can be used to denote
both the multiplication of two integers and the cartesian product of two types.

In the second answer there is no ambiguity, becauselist expects a type and
(Z*Z), in this context can only be a type, actually a cartesian product type. Thelist
type is a parametric type, in fact it is a function that takes a type and returns a new type.
We can use theCheck function to verify this:

Check list.
list : Set -> Set

We will now define a new type for the arithmetic expression of our language. There
are three kind of expressions. An expression can be a variable, an integer, or an ad-
dition, but an addition can have an expression as a sub-term. The type of expressions
is the type of terms obtained in this manner. This kind of definition is known as an
inductive type, because it is defined as the smallest set that is stable for a collection of
operations. The way to define an inductive type inCoq is to use the following kind of
command:

Inductive aexpr : Set :=
avar : Z -> aexpr

| aint : Z -> aexpr
| aplus : aexpr -> aexpr -> aexpr.

This definition actually defines three functions that return values inaexpr at the same
time as it defines the typeaexpr . We useavar to represent the fact that variables are
taken from a denumerable set. The functionaint is used to express that an integer
value of typeZ can also be viewed as an expression. The functionaplus is a binary
function that takes two arithmetic expressions and returns an arithmetic expression.
The type expressionaexpr -> aexpr -> aexpr actually is the typeaexpr ->
(aexpr -> aexpr) , in other words the type of a function that takes an arithmetic
expression as input and returns and a function taking an arithmetic expression as input
and returning an arithmetic expression.

We define a second type to describe boolean expressions.

Inductive bexpr : Set :=
blt : aexpr -> aexpr -> bexpr.

We define a third type to describe instructions.

Inductive instr : Set :=
skip : instr

| assign : Z -> aexpr -> instr
| sequence : instr -> instr -> instr
| while : bexpr -> instr -> instr.

All these definitions introduce a collection of functions,avar , aint , aplus ,
blt , skip , assign , sequence , andwhile , with which we can construct terms of

6

type instr to represent programs. The convention inCoq is to represent the applica-
tion of functions by simple juxtaposition, adding parentheses around the function and
its arguments when necessary to disambiguate. For instance, if we take the convention
that the variablex corresponds to the index 1 and the variabley corresponds to the
indexy , we can represent the program

while x < 10 do { x := x+1; y := x+y }

using the following expression:

while (blt (avar 1)(aint 10))
(sequence (assign 1 (aplus (avar 1)(aint 1)))

(assign 2 (aplus (avar 1)(avar 2)))).

2.2 Semantic specification for evaluation

We are going to write logical formulas inCoq. We need to learn a bit more about
writing logical formulas. here is a simple introduction.

• The expressionA -> B can be read as “A impliesB”,

• The expressionforall a, B is the logical formula that states that the expres-
sionB is always true, forall possible value ofa, which may occur inB.

• The expressionA \/ B can be read as “A or B”.

• The expressionA /\ B can be read as “A andB”.

• The expressionV1 = V2 is the proposition stating thatV1 andV2 are equal.

• The expressionV1 <> V2 is the proposition stating thatV1 and V2 are not
equal.

• The expressionV1 <= V2 can be read as “the integer valueV1 is smaller than
or equal toV2” and a similar notation exists for strict comparison.

It is important to understand that the same notation with an arrow is used both to
represent the type of functions and the implication between two propositions. In fact,
every logical proposition is understood as a type and the proofs of propositions actually
are elements of a type. This confusion is possible because well-typed expressions do
represent reasoning steps correctly. For instance, if we have an element of the typeA
and a function of typeA -> B , then we can construct an element of typeBby applying
this function to that element. Now, if we rephrase it in logical terms, this gives : if we
have a proof ofA and a proof thatA impliesB, then we can deduce a proof ofB. This
makes sense. TheCoq system is based on this analogy, known in the proof theory
community as theCurry-Howard isomorphism.

Because we have implication and universal quantification, we can represent the in-
ference rules of semantic specifications as theorems: the conclusion of an inference

7

rule is the conclusion of an implication, and the premises are are premisses of an im-
plication. One extra point is that the variables occurring in an inference rule are always
quantified universally.

When we described the types of functions, we showed that a type with two arrows
corresponded to the type of a function with two arguments. Rephrased in logical terms,
this means that two nested implications correspond to an implication with two premises
(when the nesting occurs on the right). Rephrased again, the two following formulas
are always equivalent:

(A /\ B) -> C

A -> B -> C

Because of this equivalence, we will almost never use conjunctions but describe infer-
ence rules with several premises using nested implications.

We use an inductive definition to describe the judgement of evaluation of arithmetic
expressions. We define simultaneously the predicatea eval and the four theorems
that state when this predicate is true. These theorems are calledconstructors.

Inductive a_eval : list(Z*Z) -> aexpr -> Z -> Prop :=
ae_int : forall r n, a_eval r (aint n) n

| ae_var1 : forall r x v, a_eval ((x,v)::r) (avar x) v
| ae_var2 : forall r x y v v’ ,

x <> y -> a_eval r (avar x) v’ ->
a_eval ((y,v)::r) (avar x) v’

| ae_plus : forall r e1 e2 v1 v2,
a_eval r e1 v1 -> a_eval r e2 v2 ->
a_eval r (aplus e1 e2) (v1 + v2).

This definition states thata eval is a three place predicate, and it imposes the type
of the three arguments. It also introduces three theorems that can be used to prove
instances of this predicate. Theorem can be used by applying to arguments of the right
type and to proofs of the right proposition. For instance, the following commands show
that a few well-formed expressions are proofs of logical statements that usea eval :

Check (ae_int ((1,2)::nil) 4).
ae_int ((1,2)::nil) 4 : a_eval ((1,2)::nil) (aint 4) 4

Check (ae_var1 nil 1 2).
ae_var1 nil 1 2 : a_eval ((1,2)::nil) (avar 1) 2

Check (ae_plus ((1,2)::nil) (avar 1) (aint 4) 2 4
(ae_var1 nil 1 2) (ae_int ((1,2)::nil) 4)).

ae_plus ((1,2)::nil) (aplus (avar 1) (aint 4)) 2 4
(ae_var1 nil 1 2) (ae_int ((1,2)::nil) 4)

: a_eval ((1,2)::nil) (aplus (avar 1)(aint 4)) (2+4)

8

2.3 Performing and recording proofs.

TheCoq system actually makes it possible to define new values, by attaching a name to
the terms we are able to construct. For instance, the experiments above can be re-used
to establish an example theorem:

Theorem ex1 :
a_eval ((1,2)::nil)(aplus (avar 1)(aint 4)) 6.

Proof (ae_plus ((1,2)::nil) (avar 1) (aint 4) 2 4
(ae_var1 nil 1 2) (ae_int ((1,2)::nil) 4)).

Please note that the theorem statement is not exactly the same as the type of the value,
because the theorems contains a6 where the type of the value contains an expression
(2+4) . However, TheCoq system recognizes these two expressions as representing
the same thing.

Constructing theorems by full application of theorems is a long and tedious task.
The Coq system actually provides another execution mode, where people just give
the statement they want to prove and then apply special commands, calledtactics to
decompose these facts into simpler facts, until they are eventually trivial to prove. Here
is an example:

Reset ex1.
Theorem ex1 :

a_eval ((1,2)::nil)(aplus (avar 1)(aint 4)) 6.
Proof.

replace 6 with (2+4).
2 subgoals

============================
a_eval ((1, 2) :: nil) (aplus (avar 1) (aint 4)) (2+4)

subgoal 2 is:
2 + 4 = 6

ex1 < apply ae_plus.
3 subgoals

============================
a_eval ((1, 2) :: nil) (avar 1) 2

subgoal 2 is:
a_eval ((1, 2) :: nil) (aint 4) 4

subgoal 3 is:
2 + 4 = 6

ex1 < apply ae_var1.
2 subgoals

9

============================
a_eval ((1, 2) :: nil) (aint 4) 4

subgoal 2 is:
2 + 4 = 6

ex1 < apply ae_int.
1 subgoal

============================
2 + 4 = 6

ex1 < trivial.
Proof completed.

ex1 < Qed.

In this proof, we only had to replace6 with (2+4) by hand, and then indicate which
theorems should be applied. We could have been even faster by indicating that the
theorems from the definition should be used in automatic proofs and then relying on
automatic proofs. Here is an example:

Reset ex1.
Hint Resolve ae_int ae_var1 ae_var2 ae_plus.
Theorem ex1 :

a_eval ((1,2)::nil)(aplus(avar 1)(aint 4)) 6.
Proof.

replace 6 with (2+4).
auto.
trivial.

Qed.

2.4 Completing the semantic specification

We can now give the definitions for the predicateb eval (to evaluate boolean ex-
pressions),s update (to update the environment), ands exec (to execute an in-
struction). The encoding is straight forward and we add all the new theorems in the
database.

Inductive b_eval : list(Z*Z) -> bexpr -> bool -> Prop :=
| be_lt1 : forall r e1 e2 v1 v2,

a_eval r e1 v1 -> a_eval r e2 v2 ->
v1 < v2 -> b_eval r (blt e1 e2) true

| be_lt2 : forall r e1 e2 v1 v2,
a_eval r e1 v1 -> a_eval r e2 v2 ->
v2 <= v1 -> b_eval r (blt e1 e2) false.

10

Inductive s_update : list(Z*Z)->Z->Z->list(Z*Z)->Prop :=
| s_up1 :

forall r x v v’, s_update ((x,v)::r) x v’ ((x,v’)::r)
| s_up2 :

forall r r’ x y v v’, s_update r x v’ r’ -> x <> y ->
s_update ((y,v)::r) x v’ ((y,v)::r’).

Inductive s_exec : list(Z*Z)->instr->list(Z*Z)->Prop :=
| SN1 : forall r, s_exec r skip r
| SN2 : forall r r’ x e v,

a_eval r e v -> s_update r x v r’ ->
s_exec r (assign x e) r’

| SN3 : forall r r’ r’’ i1 i2,
s_exec r i1 r’ -> s_exec r’ i2 r’’ ->
s_exec r (sequence i1 i2) r’’

| SN4 : forall r r’ r’’ b i,
b_eval r b true -> s_exec r i r’ ->
s_exec r’ (while b i) r’’ ->
s_exec r (while b i) r’’

| SN5 : forall r b i,
b_eval r b false -> s_exec r (while b i) r

Hint Resolve
be_lt1 be_lt2 s_up1 s_up2 SN1 SN2 SN3 SN4 SN5.

We can also describe the structural operational semantics for the same language.
Here are the definitions:

Inductive sos_step :
list(Z*Z)->instr->instr->list(Z*Z)->Prop :=

SOS1 : forall r r’ x e v,
a_eval r e v -> s_update r x v r’ ->
sos_step r (assign x e) skip r’

| SOS2 : forall r i2, sos_step r (sequence skip i2) i2 r
| SOS3 : forall r r’ i1 i1’ i2,

sos_step r i1 i1’ r’ ->
sos_step r (sequence i1 i2)(sequence i1’ i2) r’

| SOS4 :
forall r b i, b_eval r b true ->

sos_step r (while b i) (sequence i (while b i)) r.
| SOS5 :

forall r b i, b_eval r b false ->
sos_step r (while b i) skip r.

Inductive sos_star :
list(Z*Z)->instr->instr->list(Z*Z)->Prop :=

11

SOS6 : forall r i, sos_star r i i r
| SOS7 : forall r r’ r’’ i i’ i’’,

sos_step r i i’ r’ -> sos_star r’ i’ i’’ r’’ ->
sos_star r i i’’ r’’.

3 Proofs on inductive properties

In our study of programming language semantics, we performs proofs by induction
on the size of derivations. When using this technique, we actually assume that some
judgement, for instanceρ ` i ρ′ holds and is proved by some derivationD and
that we want to prove a propertyP (ρ, i, ρ′), and we assume an induction hypothesis
stating that the propertyP (ρ0, i0, ρ

′
0) already holds when the judgementρ0 ` i0 ρ′

0

already holds and is proved by a derivationD0 whose size is smaller that the size of
the derivationD. In fact, we only use this induction hypothesis for the direct sub-
derivations ofD. When we define a predicate as an inductive predicate, as we did for
a eval , b eval , s exec , sos step , andsos star , The coq system actually
makes it possible to do the same reasoning, by using a tactic calledelim . This tactic
actually observes the possible derivations of a proof for an inductive predicate and
expresses the assumptions that can be made in each case. Among the assumptions that
can be made, it provides induction hypotheses for all the premises of the rule being
used that have the right shape.

3.1 First lemma

Let us start with the proof of our first lemma concerning structural semantics execution.

Theorem lemma1 :
forall r r’ r’’ i i’ i’’,

sos_star r i i’ r’ -> sos_star r’ i’ i’’ r’’ ->
sos_star r i i’’ r’’.

Proof.

When we perform a proof in theCoq system, it displays goals that contain a formula to
prove and a local context of assumptions that can be used. When proving formulas that
are implications or universal quantifications, it is customary to introduce assumptions
or constant in the context. Here for example, we will prove our goal by assuming that
r , r’ , etcetera, are fixed constants and we will assume that the first premise holds,
so that we only have an implication with one premise. We can direct the system to
perform this step with theintro command.

lemma1 < intros r r’ r’’ i i’ i’’ H1.
1 subgoal

r : list (Z * Z)
r’ : list (Z * Z)
r’’ : list (Z * Z)

12

i : instr
i’ : instr
i’’ : instr
H1 : sos_star r i i’ r’
============================

sos_star r’ i’ i’’ r’’ -> sos_star r i i’’ r’’

We are now going to say that we want to do a proof by induction on the size of the
derivation forH1, using theelim tactic.

lemma1 < elim H1.
2 subgoals

r : list (Z * Z)
r’ : list (Z * Z)
r’’ : list (Z * Z)
i : instr
i’ : instr
i’’ : instr
H1 : sos_star r i i’ r’
============================

forall (r0 : list (Z * Z)) (i0 : instr),
sos_star r0 i0 i’’ r’’ -> sos_star r0 i0 i’’ r’’

subgoal 2 is:
forall (r0 r’0 r’’0 : list(Z*Z))(i0 i’0 i’’0 : instr),
sos_step r0 i0 i’0 r’0 ->
sos_star r’0 i’0 i’’0 r’’0 ->
(sos_star r’’0 i’’0 i’’ r’’ ->

sos_star r’0 i’0 i’’ r’’) ->
sos_star r’’0 i’’0 i’’ r’’ -> sos_star r0 i0 i’’ r’’

The command generated two goals, corresponding to the fact that the judgement can
only be proved. In the first goal, bothr andr’ have been replaced by a new variabler0
that is universally quantified, and the same happens fori andi’ with a new variable
i0 . This corresponds to the fact that ifρ ` i ∗ i′, ρ′ was proved by the rule SOS6,
thenρ = ρ′ andi = i′. This goal is trivial to prove, because it contains an implication
where the premise and conclusion are the same proposition. This goal is solved easily
and theCoq system proposes the second goal.

lemma1 < trivial.
1 subgoal

r : list (Z * Z)
r’ : list (Z * Z)
r’’ : list (Z * Z)
i : instr

13

i’ : instr
i’’ : instr
H1 : sos_star r i i’ r’
============================

forall (r0 r’0 r’’0 : list(Z*Z))(i0 i’0 i’’0 : instr),
sos_step r0 i0 i’0 r’0 ->
sos_star r’0 i’0 i’’0 r’’0 ->
(sos_star r’’0 i’’0 i’’ r’’ ->

sos_star r’0 i’0 i’’ r’’) ->
sos_star r’’0 i’’0 i’’ r’’ -> sos_star r0 i0 i’’ r’’

This goal consider the case where the derivation is constructed using the rule SOS7.
In this case, the judgement mut be of the formr0 ` i0 ∗ i′′0 , r′′0 , there must be a
derivation provingr0 ` i0 i′0, r

′
0, a derivationr′0 ` i′0

∗ i′′0 , r′′0 , and for this
derivation, there is an induction hypothesis stating thatr′′0 ` i′′0

∗ i′′, r′′ implies
r′0 ` i′0

∗ i′′, r′′. Under these assumptions, we must prove thatr′′0 ` i′′0
∗ i′′, r′′

impliesr0 ` i0 ∗ i′′, r′′. The first step we perform is to assume all the premises and
place them in the context:

lemma1 < intros r0 r’0 r’’0 i0 i’0 i’’0 Hp1 Hp2 Hr H.
subgoal

r : list (Z * Z)
r’ : list (Z * Z)
r’’ : list (Z * Z)
i : instr
i’ : instr
i’’ : instr
H1 : sos_star r i i’ r’
r0 : list (Z * Z)
r’0 : list (Z * Z)
r’’0 : list (Z * Z)
i0 : instr
i’0 : instr
i’’0 : instr
Hp1 : sos_step r0 i0 i’0 r’0
Hp2 : sos_star r’0 i’0 i’’0 r’’0
Hr : sos_star r’’0 i’’0 i’’ r’’ ->

sos_star r’0 i’0 i’’ r’’
H : sos_star r’’0 i’’0 i’’ r’’
============================

sos_star r0 i0 i’’ r’’

We obtainsos star r’0 i’0 i’’ r’’ by combiningHr andH.

lemma 1 < assert (Hp3 : sos_star r’0 i’0 i’’ r’’).
...

14

lemma 1 < apply Hr; exact H.
1 subgoal

r : list (Z * Z)
r’ : list (Z * Z)
r’’ : list (Z * Z)
i : instr
i’ : instr
i’’ : instr
H1 : sos_star r i i’ r’
r0 : list (Z * Z)
r’0 : list (Z * Z)
r’’0 : list (Z * Z)
i0 : instr
i’0 : instr
i’’0 : instr
Hp1 : sos_step r0 i0 i’0 r’0
Hp2 : sos_star r’0 i’0 i’’0 r’’0
Hr : sos_star r’’0 i’’0 i’’ r’’ ->

sos_star r’0 i’0 i’’ r’’
H : sos_star r’’0 i’’0 i’’ r’’
Hp3 : sos_star r’0 i’0 i’’ r’’
============================

sos_star r0 i0 i’’ r’’

We can now apply the rule SOS7, usingHp1 andHp3 as hypotheses. When applying
SOS7, we need to specify the two intermediate values, which do not appear in the
conclusion:

lemma1 < apply SOS7 with r’0 i’0.
...
lemma1 < exact Hp1.
...
lemma1 < exact Hp3.
Proof completed
Qed.

Let’s discuss again on the behavior of theelim tactic. We had a statement

sos star r i i’ r’

and the tactic looked at the statement to be proved and made it appear as a statementP
r i i’ r’ whereP is the function defined by:

P = fun a b c d => sos star a b i’’ r’’ -> sos star c d
i’’ r’’

Then it constructed two goals corresponding to the two theorems of the inductive def-
inition with fresh variables, where we had to prove the propertyP instantiated for the

15

variables appearing in the conclusion of these theorems. Also, we could use an hypoth-
esisP x y z t for each premise of the rule that was constructed withsos star .
All this behavior is described by a theorem calledsos star ind , which is actually
used by theelim tactic.

Coq < Check sos_star_ind.
sos_star_ind

: forall P : list(Z*Z)->instr->instr->list(Z*Z)->Prop,
(forall (r:list(Z*Z)) (i:instr), P r i i r) ->
(forall (r r’ r’’:list(Z*Z))(i i’ i’’:instr),

sos_step r i i’ r’ ->
sos_star r’ i’ i’’ r’’ -> P r’ i’ i’’ r’’ ->

P r i i’’ r’’)->
forall (l : list (Z*Z)) (i i0:instr) (l0:list(Z*Z)),
sos_star l i i0 l0 -> P l i i0 l0

When performing proofs by induction like here, we always have to be careful about
the statement that needs to be proved. For instance, our proof would have been im-
possible to finish if we had started withintros r r’ r’’ i i’ i’’ H1 H2 .
When performing this kind of proof directly on the computer, we often have to perform
several tries and correct our errors in proof planning.

3.2 Second lemma

When addressing the second lemma, we need to be careful, because we have an hy-
pothesis of the form

sos_star r (sequence i1 (sequence i2 i3)) skip r’

and we want to prove an hypothesis of the form

sos_star r (sequence (sequence i1 i2) i3) skip r’

The expression(sequence i1 (sequence i2 i3)) does not appear simply
in the conclusion. To work around this difficulty, we actually prove an auxiliary lemma
with a more complex form, but where the expressions that appear in the hypothesis are
plain variables.

Theorem lemma2_aux : forall r r’ i i’,
sos_star r i i’ r’ ->
i’ = skip ->
forall i1 i2 i3, i = (sequence i1 (sequence i2 i3))
sos_star r (sequence (sequence i1 i2) i3) skip r’.

Proof.
intros r r’ i i’ H; elim H.
2 subgoals

r : list (Z * Z)

16

r’ : list (Z * Z)
i : instr
i’ : instr
H : sos_star r i i’ r’
============================

forall (r0 : list (Z * Z)) (i0 : instr),
i0 = skip ->
forall i1 i2 i3 : instr,
i0 = sequence i1 (sequence i2 i3) ->
sos_star r0 (sequence (sequence i1 i2) i3) skip r0

...

We recognize that if the rule SOS6 was used, then the instructionsi andi’ must be the
same: in the goal they are replaced by the same variablei0 . We obtain two equalities
that cannot be true at the same time. The way to get rid of these equalities is to write
with one equality in the other and to use a tactic calleddiscriminate , which can be
used everytime there is an equality between two different constructors of an inductive
set.

lemma2_aux < intros r0 i0 Heq1 i1 i2 i3 Heq2.
2 subgoals

r : list (Z * Z)
r’ : list (Z * Z)
i : instr
i’ : instr
H : sos_star r i i’ r’
r0 : list (Z * Z)
i0 : instr
Heq1 : i0 = skip
i1 : instr
i2 : instr
i3 : instr
Heq2 : i0 = sequence i1 (sequence i2 i3)
============================

sos_star r0 (sequence (sequence i1 i2) i3) skip r0

...
lemma2_aux < rewrite Heq1 in Heq2.
...
Heq2 : skip = sequence i1 (sequence i2 i3)
...

lemma2_aux < discriminate Heq2.
1 subgoal

17

r : list (Z * Z)
r’ : list (Z * Z)
i : instr
i’ : instr
H : sos_star r i i’ r’
============================

forall (r0 r’0 r’’ : list(Z * Z))(i0 i’0 i’’ : instr),
sos_step r0 i0 i’0 r’0 ->
sos_star r’0 i’0 i’’ r’’ ->
(i’’ = skip ->

forall i1 i2 i3 : instr,
i’0 = sequence i1 (sequence i2 i3) ->
sos_star r’0 (sequence (sequence i1 i2) i3)

skip r’’) ->
i’’ = skip ->
forall i1 i2 i3 : instr,
i0 = sequence i1 (sequence i2 i3) ->
sos_star r0 (sequence (sequence i1 i2) i3) skip r’’

After this step, we get to the case corresponding to the rules SOS7. To make it clearer,
we put all the implication premises in the context.

lemma2_aux < intros r0 r’0 r’’ i0 i’0 i’’ Hstep Hstar Hrec
Heq1 i1 i2 i3 Heq2.

...
Hstep : sos_step r0 i0 i’0 r’0
Hstar : sos_star r’0 i’0 i’’ r’’
Hrec : i’’ = skip ->

forall i1 i2 i3 : instr,
i’0 = sequence i1 (sequence i2 i3) ->
sos_star r’0 (sequence (sequence i1 i2) i3)

skip r’’
Heq1 : i’’ = skip
i1 : instr
i2 : instr
i3 : instr
Heq2 : i0 = sequence i1 (sequence i2 i3)
============================

sos_star r0 (sequence (sequence i1 i2) i3) skip r’’

Becausei0 is a sequence, the hypothesis can only be proved with the rule SOS2 or
SOS3. We can Force theCoq system to consider only these two cases by rewriting first
with Heq2 in Hstep and then applying a specific tactic for this need.

lemma2_aux < rewrite Heq2 in Hstep; inversion Hstep.
subgoals

18

...
Hstar : sos_star r’0 i’0 i’’ r’’
Hrec : i’’ = skip ->

forall i1 i2 i3 : instr,
i’0 = sequence i1 (sequence i2 i3) ->
sos_star r’0 (sequence (sequence i1 i2) i3)

skip r’’
Heq1 : i’’ = skip
i1 : instr
i2 : instr
i3 : instr
Heq2 : i0 = sequence i1 (sequence i2 i3)
Hstep : sos_step r0 (sequence i1 (sequence i2 i3))

i’0 r’0
r1 : list (Z * Z)
i4 : instr
H0 : r1 = r0
H2 : skip = i1
H3 : i4 = sequence i2 i3
H1 : sequence i2 i3 = i’0
H4 : r0 = r’0
============================

sos_star r’0 (sequence (sequence skip i2) i3) skip r’’

subgoal 2 is:
sos_star r0 (sequence (sequence i1 i2) i3) skip r’’

The first goal expresses that the rule SOS6 was used. In this case,i1 is skip (as-
sumptionH2) andi’0 is sequence i2 i3 . We can use the rulesSOS7, SOS3and
SOS2to conclude.

lemma2_aux < apply SOS7 with r’0 (sequence i2 i3).
lemma2_aux < apply SOS3.
lemma2_aux < apply SOS2.
lemma2_aux < rewrite <- H1 in Hstar;
lemma2_aux < rewrite Heq1 in Hstar;
lemma2_aux < exact Hstar.

We are left with the other case. In this case,i1 reduce in one step to another instruction
i1’ (hypothesisH5. We can now use SOS7 to start a derivation.

lemma2_aux < apply SOS7 with r’0
lemma2_aux < (sequence (sequence i1’ i2) i3)..
...

H5 : sos_step r0 i1 i1’ r’0
H1 : r1 = r0
H0 : i4 = i1

19

H3 : i5 = sequence i2 i3
H2 : sequence i1’ (sequence i2 i3) = i’0
H4 : r’1 = r’0
============================

sos_step r0 (sequence (sequence i1 i2) i3)
(sequence (sequence i1’ i2) i3)
r’0

subgoal 2 is:
sos_star r’0 (sequence (sequence i1’ i2) i3) skip r’’

For the first premise to the SOS7 rule, it is quite easy, we can use the rule SOS3 twice
and conclude. Actually, this can also be done automatically.

lemma2_aux < auto.
1 subgoal

...
Hstar : sos_star r’0 i’0 i’’ r’’
Hrec : i’’ = skip ->

forall i1 i2 i3 : instr,
i’0 = sequence i1 (sequence i2 i3) ->
sos_star r’0 (sequence (sequence i1 i2) i3)

skip r’’
Heq1 : i’’ = skip

...
Heq2 : i0 = sequence i1 (sequence i2 i3)
Hstep : sos_step r0

(sequence i1 (sequence i2 i3)) i’0 r’0
...

H5 : sos_step r0 i1 i1’ r’0
H1 : r1 = r0
H0 : i4 = i1
H3 : i5 = sequence i2 i3
H2 : sequence i1’ (sequence i2 i3) = i’0
H4 : r’1 = r’0
============================

sos_star r’0 (sequence (sequence i1’ i2) i3) skip r’’

To prove this case, we need to use the induction hypothesisHrec .

lemma2_aux < apply Hrec; auto.
Proof completed.
lemma2_aux < Qed.

The statement of this theorem is more complex than the statement oflemma2 in the
course notes. We can actually obtain a simpler lemma with the following encapsulating
theorem, with the following script.

20

Theorem lemma2_1 : forall r r’ i1 i2 i3,
sos_star r (sequence i1 (sequence i2 i3)) skip r’ ->
sos_star r (sequence (sequence i1 i2) i3) skip r’.

Proof.
intros r r’ i1 i2 i3 Hstar.
apply lemma2_aux with

(sequence i1 (sequence i2 i3)) skip; trivial.
Qed.

We prove the other direction in a similar fashion. We give only the scripts, but we invite
the reader to simulate the behavior of each tactic by hand or to run these tactics on the
computer.

Theorem lemma2_aux2 : forall r r’ i i’,
sos_star r i i’ r’ ->
i’ = skip ->
forall i1 i2 i3, i = (sequence (sequence i1 i2) i3) ->
sos_star r (sequence i1 (sequence i2 i3)) skip r’.

Proof.
intros r r’ i i’ H; elim H.
intros r0 i0 Heq1 i1 i2 i3 Heq2.
rewrite Heq1 in Heq2; discriminate Heq2.
intros r0 r’0 r’’ i0 i’0 i’’ Hstep Hstar Hrec

Heq1 i1 i2 i3 Heq2.
rewrite Heq2 in Hstep.
inversion Hstep.

1 subgoal
...

H5 : sos_step r0 (sequence i1 i2) i1’ r’0
...
lemma2_aux2 < inversion H5.

apply SOS7 with r’0 (sequence i1’ i3).
apply SOS2.
rewrite H2; rewrite <- Heq1; trivial.
apply SOS7 with r’0 (sequence i1’0 (sequence i2 i3));
auto.
apply Hrec.
trivial.
rewrite H8; rewrite H2;trivial.

Qed.

3.3 Summary of proof tactics

In the previous proofs, we only used the tacticsintro , apply , elim , exact ,
trivial , auto , rewrite , replace , inversion , anddiscriminate . We
summarize the behavior of each tactic here.

21

3.3.1 The tacticintro

The tacticintro works on goals that are universal quantifications or implications.
On implications, the tacticintro H replaces a goal of the form

...
=================
A -> B

into a goal with an extra assumptionH whose statement isA, and leaves a goal where
only B needs to be proved.

....
H : A
=================
B

On universally quantified formulasintro x replaces a goal of the form

...
=================
forall y:T, B

with a goal where a new local constantx is declared and where the statement to prove
is B’ , the same asB, but where all occurrences ofy have been replaced withx

...
x : T
=================
B’

3.3.2 The tacticapply

The tacticapply take as argument a theorem or an hypothesis from the local context
of the form

forall x 1 ... x n, P 1 -> ... P m -> F x 1 ... x n

When the goal is an instance of this theorem,F a1 ... an, it createsm goals cor-
responding to the theorem premisesP1 Pm where the variablesx1 . . .xn have been
replaced with the variablesa1 . . .am.

If the some of the variablesx1 xn do not occur in the theorem’s conclusion, they
have to be provided by the user using thewith directive.

3.3.3 The tacticelim

The tacticElim H can be used only ifH is an hypothesis whose statement has an
inductive predicate as conclusion. Its behavior is too complex to describe completely
in these course notes, but we can give the following indications:

22

1. The number of generated goals is the number of constructors given for the in-
ductive predicate,

2. Each goal has a shape similar to the shape of one of the constructors. In partic-
ular, all the premises of the constructor are present. In practice, we can read the
goal astry to prove the initial goal under the assumption that this constructor
was used to prove the assumptionH.

3. For those premises that use the same inductive predicate, induction hypotheses
are given.

3.4 The tacticsexact , trivial , auto

The tacticexact H can be used if the statement to prove is exactly the statement of
the hypothesisH.

The tacticstrivial and auto are automatic tactics that use the assumptions
from the local context and the theorems that have been recorded using theHint
Resolve command. The tactictrivial performs only very simple proof search.

3.4.1 The tacticsrewrite and replace

The tacticrewrite H works if H is an equality and replace all occurrences of the
left-hand-side of this equality by the right-hand-side. If the tactic isrewrite <- H ,
then the rewriting works the other way around. Ifrewrite H in H1 is used, then
the rewriting does not occur in the goal conclusion but in the presecribed assumption.

The tacticreplace is like rewrite but the equality that is used to rewrite is left
as an extra goal.

3.4.2 The tacticinversion

Like the tacticelim H , the tacticinversion H only works if the assumptionHhas
an inductive predicate as statement. It then analyzes which constructor could have been
applied to prove this assumption and generates as many goals as constructors that could
apply, with all the information about this constructor as added assumptions. However,
no induction hypothesis is created. This tactic is used every time we want toobserve a
derivationand we do not need to produce a new induction hypothesis.

3.4.3 The tacticdiscriminate

This tactic can be used every time previously used tactics generated an assumption
where two different constructors from an inductive set appear to be equal. In this case
the assumption is contradictory and the goal is directly solved.

4 Proving the equivalence

Now, that we have described the main tools, we will only list the various proof scripts
for the lemmas. The proof explanation have already been given in the previous lemma.

23

Theorem lemma3 :
forall r r’ i, s_exec r i r’ ->

forall r’’ i’, sos_star r’ i’ skip r’’
-> sos_star r (sequence i i’) skip r’’.

Proof.
intros r r’ i H; elim H.
(* First case: rule SN1 *)
intros r0 r’’ i’ H1.
apply SOS7 with r0 i’.
apply SOS2.
exact H1.

(* rule SN2 *)
intros r0 r’0 x e v Hev Hup r’’ i’ Hsos.
apply SOS7 with r’0 (sequence skip i’).
apply SOS3.
apply SOS1 with v;trivial.
apply SOS7 with r’0 i’;auto.

(* rule SN3 *)
intros

r0 r’0 r’’0 i1 i2 Hex1 Hrec1 Hex2 Hrec2 r’’ i’ Hsos.
apply lemma2_1.
apply Hrec1.
apply Hrec2.
trivial.

(* rule SN4 *)
intros

r0 r’0 r’’0 b i1 Hev Hex1 Hrec1 Hex2 Hrec2 r’’ i’ Hsos.
apply SOS7 with

r0 (sequence (sequence i1 (while b i1)) i’).
apply SOS3.
apply SOS5.
trivial.
apply lemma2_1.
apply Hrec1.
apply Hrec2.
trivial.

(* rule SN5 *)
intros r0 b i1 Hev r’’ i’ Hsos.
apply SOS7 with r0 (sequence skip i’).
apply SOS3.
apply SOS4.
trivial.

24

apply SOS7 with r0 i’.
apply SOS2.
trivial.
Qed.

Theorem lemma4_aux : forall r r’ i0 i1,
sos_star r i0 i1 r’ ->
forall i’, i0 = (sequence i’ skip) -> i1 = skip ->
sos_star r i’ skip r’.

Proof.
intros r r’ i0 i1 H; elim H.

(* rule SOS6 *)
intros r2 i2 i’ He1 He2; rewrite He1 in He2;
discriminate.

(* rule SOS7 *)
intros r2 r3 r4 i2 i3 i4 Hstep Hsos Hrec i’ He1 He2.
rewrite He1 in Hstep.

inversion Hstep.
(* rule SOS2 *)

rewrite <- H1 in Hsos; rewrite He2 in Hsos;trivial.

(* rule SOS3 *)
apply SOS7 with r3 i1’;auto.

Qed.

Theorem lemma4_1 : forall r r’ i,
sos_star r (sequence i skip) skip r’ ->
sos_star r i skip r’.

Proof.
intros r r’ i H.
apply lemma4_aux with (sequence i skip) skip;auto.

Qed.

Theorem lemma4_aux2 : forall r r’ i is,
sos_star r i is r’ -> is = skip ->
sos_star r (sequence i skip) skip r’.

Proof.
intros r r’ i is H; elim H.

(* rule SOS6, auto uses SOS2 and SOS6 *)
intros r1 i1 Heq.
apply SOS7 with r1 skip.
rewrite Heq; auto.
auto.

25

(* rule SOS7 *)
intros r1 r2 r3 i1 i2 i3 Hstep Hstar Hrec Heq.
apply SOS7 with r2 (sequence i2 skip).
auto.
auto.

Qed.

Theorem lemma4_2 : forall r r’ i,
sos_star r i skip r’ ->
sos_star r (sequence i skip) skip r’.

Proof.
intros r r’ i H; apply lemma4_aux2 with skip;auto.

Qed.

Theorem sn_imp_sos :
forall r r’ i, s_exec r i r’ -> sos_star r i skip r’.

Proof.
intros r r’ i Hsn.
apply lemma4_1.
apply lemma3 with r’; auto.

Qed.

Theorem lemma5 : forall r r’ i i’,
sos_step r i i’ r’ ->
forall r’’, s_exec r’ i’ r’’ -> s_exec r i r’’.

Proof.
intros r r’ i i’ H; elim H.

(* rule SOS1 *)
intros r0 r’0 x e v Hev Hup r’’ Hexec.
inversion Hexec.
rewrite <- H2; apply SN2 with v; auto.

(* rule SOS2 *)
intros r0 i2 r’’ Hexec.
apply SN3 with r0;auto.

(* rule SOS3 *)
intros r0 r’0 i1 i1’ i2 Hstep1 Hrec1 r’’ Hexec.
inversion Hexec.

(* auto uses Hrec1 and assumptions from the inversion *)
apply SN3 with r’1;auto.

(* rule SOS4 *)
intros r0 b i0 Hev r’’ Hexec.

26

inversion Hexec.
apply SN4 with r’0;auto.

(* rule SOS5 *)
intros r0 b i0 Hev r’’ Hexec; inversion Hexec.

(* the inversion gives an equality r0 = r’’ *)
rewrite <- H2; apply SN5;auto.

Qed.

Theorem sos_imp_sn_aux : forall r i is r’,
sos_star r i is r’ -> is = skip -> s_exec r i r’.

Proof.
intros r i is r’ H; elim H.

(* rule SOS6 *)
intros r0 i0 Heq; rewrite Heq; apply SN1.

(* rule SOS7 *)
intros r0 r’0 r’’0 i0 i’0 i’’0 Hstep Hstar Hrec Heq.
apply lemma5 with r’0 i’0;auto.

Qed.

27

