
Verifying programs and proofs

part III. prove program properties

Yves Bertot

October 2020

1 Motivating introduction

To prove that programs do what is intended, we need to cover all possible cases
in their execution. Most of the time, the programs take their input in types
with an infinite numbers of elements. It is thus impossible to check all possible
inputs one by one. Instead, we reason on subsets of the types that correspond to
different behaviors of the considered programs. This is usually done by following
the structure of the program. Thus we reason logically on the various cases that
may arise during the execution of programs.

When functions are recursive, this approach relies on a complex logical tool,
called proof by induction. In this lecture, we want to understand the various
aspects of reasoning about program behavior, including the idea of proofs by
recursion. We shall restrict this study to programs that compute on numbers
and lists.

There are many ways to describe what is the expected behavior of a pro-
gram. In this course, we will study only a simple approach, where the expected
behavior is described with the help of secondary programs that are used either
to produce specific inputs or to perform tests on on the output of a program.

For instance, if we wrote a function evenb that computes a boolean value
that is true whenever the input is an even number (a multiple of 2), we want to
write a function that computes all even numbers.

Definition mult2 (n : nat) := 2 * n.

Then we just want to prove that evenb returns the correct value for every result
of mult2:

Lemma evenb_complete :

forall n : nat, evenb (mult2 n) = true.

This is not enough, because the trivial boolean predicate that always returns
true would also satisfy this lemma. We may also want to make sure that the
function evenb accepts only numbers that should be accepted. One way to
express this is with the following statement:

1

Lemma evenb_sound :

forall n : nat, evenb n -> exists y : nat, n = mult2 y.

Again, lemma evenb sound is not enough, because the trivial boolean predicate
that always returns false would also satisfy this lemma.

In the end, every lemma that we write is like a symbolic test that we run
on the input program, but the proof shows that this test is satisfied for all
possible inputs instead of a random sample. In this sense, the coverage brought
by formal proofs is more complete than the coverage brought by random tests
and people like to say that we provide 100% correctness, but we should keep in
mind that the lemmas may describe only partially the intended behavior of the
program (like the predicate evenb complete and evenb sound taken separately)
and that the way we consider the inputs (like the function mult2) may also be
faulty.

2 Reasoning on pattern-matching constructs

A pattern matching construct describes several possible cases of execution.
When proving that a program is correct, we need to cover all possibilities.
There are commands to decompose the problem and to observe separately each
of the cases. Then, it may occur that some cases are inconsistent, because they
exhibit assumptions like 0 = 1 or true = false. In some other cases, one may
have equalities of the form a::l = b::l’, from which one should be able to
deduce at least a = b and l = l’. We shall see different approaches for this.

2.1 The destruct tactic and the eqn: variant

Let us consider the following goal:

x : nat

======================

match x with 0 => true | S p => negb (even p) end = false

-> x <> 0

The conclusion of this goal contains a pattern matching construct. We don’t
know the value of x, but we know that x is a natural number, and by conse-
quences x may follow one of 2 cases: x is 0 or x is S y for some y. When x

is 0, the whole pattern-matching construct will compute to true, so the goal’s
conclusion will become

true = false -> 0 <> 0

In the other case, we know that the pattern-matching construct will be reduced
to negb (even y), so the goal’s conclusion will become

negb(even p) -> S y <> 0

2

The destruct tactic is designed to implement this form of reasoning. It
produces as many goals as the number of cases in the argument’s type. Here we
use destruct x and x has type nat. Because the type nat has two constructors,
there are two cases: either x is 0 or x is S n for some other natural number n.

destruct x.

2 subgoals

=====================

true = false -> 0 <> 0

Subgoal 2 is

negb(even n) -> S n <> 0

So the tactic simply produced two instances of the goal where x is replaced with
cases taken from the type. In the first goal, all occurrences of x are replaced by
0, then the pattern matching construct is computed to take this new information
into account.

In this example, the two goals can be proved because they mention equalities
that cannot hold. This is taken care of by the tactic described in the next section.

The tactic destruct operates by replacing all occurrences of the expression
that it analyzes by the possible cases. Sometimes this is not sufficient and one
needs to add the information that links the expression with the corresponding
case in an equality. This is done by adding an eqn: directive.

As an illustration consider the following context and goal:

Fixpoint mul3 (x : nat) : nat :=

match x with 0 => 0 | S x => S (S (S (mul3 x))) end.

Lemma example_destruct x :

match mul3 x with

| O => true

| S _ => false

end = true -> x = 0.

Proof.

If we just do destruct (mul3 x), we will obtain two goals of the following form

true = true -> x = 0

false = true -> x = 0

The second goal is easily provable using discriminate (see section 2.3), but
the first one is not: we lost the information that mul3 x must be 0 for this case
to arise.

The Coq system provides a way out of this problem by giving the possi-
bility to perform the analysis while keeping the relation between the analyzed
expression and the case as an equality. Here is the full script for a complete
proof.

3

destruct (mul3 x) eqn:mul3xval.

2 subgoals

x : nat

mul3xval : mul3 x = 0

============================

true = true -> x = 0

subgoal 2 is:

false = true -> x = 0

destruct x as [| y].

intros; reflexivity.

discriminate mul3xval.

intros truefalse; discriminate truefalse.

Qed.

2.2 the induction tactic

Reasoning by cases is not adapted for recursive functions, because we often need
hypotheses on the values returned by recursive calls. These hypotheses often
have the same form as the statement that one attempts to prove. This follows
the a well-known pattern seen in proofs about natural number, known as proof
by induction.

induction on natural numbers If a predicate on natural numbers P is such
that P 0 holds and for every n one can deduce P (S n) from P n, then
this predicate holds for every natural number.

induction on lists If a predicate on lists of natural numbers P is such that P

nil holds and for every list l and every natural number a, if P l holds
then we can deduce P (a::l), then this predicate holds for every list of
natural numbers. This can be generalized to list of any type of elements.

When performing a proof by induction on natural numbers, we also have two
cases to study, the first case for the situation where the value is 0 and the
second for the situation where the value has the form S n for some n. In this
respect, the induction tactic is very close to the destruct tactic. However, when
considering the second case, we have more information: we can use an induction
hypothesis stating that n already satisfies the expected predicate. Let’s observe
such a proof by induction concerning the addition of a number with 0. We first
observe the definition of addition:

Locate "_ + _".

Notation Scope

"n + m" := Nat.add n m : nat_scope

(default interpretation)

"x + y" := sum x y : type_scope

4

Print Nat.add.

Nat.add =

fix add (n m : nat) struct n : nat :=

match n with

| 0 => m

| S p => S (add p m)

end

: nat -> nat -> nat

We see that addition is given as a recursive function where the first argument
decreases at each recursive call. By definition 0 + n computes to n in a single
step; on the other hand, computing n + 0 does not do anything directly, but
we can prove that it computes to n. Here is the proof in Coq:

Lemma example_induction_plus : forall n, n + 0 = n.

induction n.

2 subgoals

============================

0 + 0 = 0

subgoal 2 is:

S n + 0 = S n

As expected, we have two cases where n is replaced either by 0 or by S n. For
the first case, immediate computation yields the result.

reflexivity.

1 subgoal

n : nat

IHn : n + 0 = n

============================

S n + 0 = S n

In this goal, the context contains the hypothesis IHn, which states exactly that
the property we want to prove already holds for n. So the induction principle
is being used, and the predicate P is instantiated with the function

fun x => x + 0 = x

2.3 the discriminate tactic

The datatypes of boolean values, natural numbers, and lists are all described in
the Coq system as inductive types, where the data may each time correspond to
two patterns. We can see this by calling the command Print.

5

Print bool.

Inductive bool : Set := true : bool | false : bool

Print nat.

Inductive nat : Set := O : nat | S : nat -> nat

Print list.

Inductive list (A : Type) : Type :=

nil : list A | cons : A -> list A -> list A

The description of natural numbers means that numbers are either of the form
O or of the form S n. Moreover, it also means that the number 0 is not of the
form S n1. As a result, any goal whose conclusion has the form 0 <> S n should
be easily provable. The Coq system provides a specific tactic for that, called
discriminate. This tactic also takes care of cases where a goal has an arbitrary
conclusion but one of its hypotheses is an hypothesis of the form O = S n.

Continuing the example given in the previous section, we had two goals that
we repeat again here:

2 subgoals

=====================

true = false -> 0 <> 0

Subgoal 2 is

negb(even n) -> S n <> 0

For the first goal, we use the intros tactic and we get a new hypothesis:

intros Htf.

...

Htf : true = false

=====================

0 <> 0

In this goal, the conclusion would be unprovable in an empty context, but the
hypothesis Htf assumes an equality between two values that are different by
definition. This goal can be solved using the discriminate tactic or more
precisely the discriminate Htf.

The second goal has the form

negb(even n) = true -> S n <> 0

Here the ultimate conclusion is the negation of an equality between two cases
that are forced to be different. So it falls in the same area of reasoning. Here,
the discriminate tactics also solves the problem.

1This is also simply a consequence from the fact that we can define expressions by pattern-
matching on natural numbers! In some documents, this is also referred to as a non-confusion
property.

6

2.4 the injection tactic

We often have to express that the constructors of types like nat and list are
injective. In other words, if they give equal outputs for two sets of inputs, then
the inputs must be pairwise equal. for lists this is easily expressed with the
following example:

Lemma example_injection_list :

forall (a b : nat) (l1 l2 : list nat), a::l1 = b::l2 ->

a = b /\ l1 = l2.

intros a b l1 l2 Hq.

...

Hq : a::l1 = b::l2

=========================

a = b /\ l1 = l2

In this goal, the hypothesis Hq describes an equality between two composed lists.
The conclusion expresses that the list components correspond to each other. To
go from Hq to the conclusion, we call the tactic injection with the name of the
hypothesis.

injection Hq.

...

=========================

l1 = l2 -> a = b -> a = b /\ l1 = l2

intros ql qa; rewrite ql qa; split; reflexivity.

Qed.

In the generated goal, two new implications are created, with the equalities
between components appearing as left-hand sides of these implications. The
last two lines of the example show how to use these hypotheses.

Similarly, if we know two equal numbers that respect the S pattern, we can
deduce that the sub-components are equal.

Lemma example_injection_nat :

forall (a b : nat), Sa = S b -> a = b.

intros a b Hq.

...

Hq : S a = S b

=========================

a = b

injection Hq.

...

=========================

a = b -> a = b

intros q1; exact q1.

Qed.

7

3 Manipulating function computation

In goals and logical statements, the Coq system manipulates functions without
executing them. We sometimes need to force at least a few steps of computation.

3.1 The unfold tactic

The first approach is to simply require that the system expands the definition.
The word used in Coq tactics is unfold.

Definition add3 (n : nat) := n + 3.

Lemma example_add3 : forall n, add3 n = 3 + n.

intros n.

...

=====================

add3 n = 3 + n.

At this point, we would like to replace add3 n with the expression it computes.
We use the unfold tactic.

unfold add3.

======================

n + 3 = 3 + n

3.2 The simpl tactic

When dealing with a recursive function, the unfold tactic often makes goals
unreadable, because it expands the value of the recursive function into something
that repeats the text of the recursive function several times. To avoid this, there
are tactics specifically tuned to handle recursive functions. These tactics are
called simpl and cbn.

The example we have already seen about reasoning on the addition function
provides an illustration for this. Let start again with this proof.

Lemma example_induction_plus : forall n, n + 0 = n.

induction n.

reflexivity.

1 subgoal

n : nat

IHn : n + 0 = n

============================

S n + 0 = S n

Here, we can request that Coq performs a little computation with S n + 0. We
simply need to call the simpl tactic:

8

simpl.

...

IHn : n + 0 = n

============================

S (n + 0) = S n

The left hand side of the equality in this goal’s conclusion is an occurrence of
the left hand side of the hypothesis H. We can rewrite and conclude the proof.

rewrite IHn; reflexivity.

Qed.

Often, cbn is practical to use, because it makes it possible to control what func-
tions will be unfolded. Interested readers should look at the Coq documentation
concerning this tactic.

3.3 Manual computation: the change tactic

Sometimes the simpl tactic performs too much computation. In this case, it is
a good idea to state explicitely the result that we want to see after computation,
as long as this result really corresponds to a computation. Here is an example.

Lemma example_change_plus :

forall n m p, (1 + n) * m = p -> (1 + (1 + n)) * m = m + p.

intros n m p H.

1 subgoal

H : (1 + n) * m = p

============================

(1 + (1 + n)) * m = m + p

change ((1 + (1 + n)) * m) with (m + (1 + n) * m).

...

============================

m + (1 + n) * m = m + p

rewrite H; reflexivity.

Qed.

3.4 Manual computation with the replace tactic

The tactic change performs replacements only if the two expressions are the
same modulo computation. Sometimes, we want to relax the condition, perform
replacement, and keep the obligation to prove the equality between the two
expressions for later. For this we use the replace tactic. This tactic produces
a second goal, because the equality between the two expressions still needs to
be proved.

9

3.5 Generating one-step recusion lemma

Using the change tactic gives the user complete control on what is executed,
but it is very cumbersome to use, as it requires that one writes a lot of text.
One efficient approach is to provide an unfolding lemma for the function that
one produces. This can easily be done by copying the body of the function
in an equality and encapsulating it the universal quantifications that fit. The
proof can usually be done by a simple case analysis on the first argument of the
function to be analysed. Here is an example for a function of multiplication by
3:

Fixpoint mult3 (n : nat) : nat :=

match n with 0 => 0 | S p => 3 + mult3 p) end.

Lemma mult3_step (n : nat) :

mult3 n =

match n with 0 => 0 | S p => 3 + mult3 p) end.

Proof.

intros n; case n; reflexivity.

Qed.

4 A complete proof

We first define a function that as input a number n and a list l, and returns a
list containing elements of l multiplied by successors of n. The first element of
the result is the first element of l multiplied by n+ 1, the second element of the
result is the second element of l multiplied by n + 2, and so on. This can be
described easily as a recursive function on lists:

Require Import List Arith.

Fixpoint mulsl (n : nat) (l : list nat) :=

match l with

| a :: l1 => a * (n + 1) :: mulsl (n + 1) l1

| nil => nil

end.

We know wish to show that this function is actually injective in its second
argument. Here is the statement

Lemma mulsl_injective n l1 l2 : mulsl n l1 = mulsl n l2 -> l1 = l2.

Proof.

We wish to perform this proof by induction on one of the lists l1 and l2. When
observing the function mulsl carefully, we see that the list that must be shown
to be equal to l1 as it varies cannot be the same. So l2 should not be fixed in
the context of the goal, but rather a universally quantified variable. Similarly,
we see that in recursive calls the variable n changes, so again n should not be

10

fixed in the context. To make this change of shape of the goal, we use the
revert tactic.

revert n l2.

induction l1 as [| a l1 IH].

The proof by induction makes use of a predicate on lists of natural numbers
that has the following shape.

fun l => forall (n : nat)(l : list nat),

mulsl n l = mulsl l2 -> l = l2

We now have two goals, where the first one corresponds to the case where this
predicate is applied to the empty list nil, and the second one is applied to a
non-empty list a :: l1. Thus, the first goal has the following text

============================

forall (n : nat) (l2 : list nat),

mulsl n nil = mulsl n l2 -> nil = l2

intros n [| b l2].

intros; reflexivity.

simpl.

discriminate.

The line intros n [| b l2] is equivalent to intros n tmp; destruct tmp

as [| b l2]. Because of this line, there are two goals. The first one requires
that we prove nil = nil, done by reflexivity. The second goal contains an
implication of the form mulsl n nil = mulsl n (b :: l2) -> ... After
applying the computation rules of mulsl this boils down to an equality between
different constructors of a datatype. Such a premise is self-contradictory and
discriminate recognizes it. We wrote simpl to make the computation hap-
pen so that a human observer of the proof can see the result, but this step is
not mandatory and using discriminate without the simpl step would already
work.

The second goal generated by the induction step concerns a :: l1 (the cons
form), but since it is an induction proof, we can already use the fact we wish to
prove for the sublist l1. Thus the goal has the following form:

a : nat

l1 : list nat

IH : forall (n : nat) (l2 : list nat),

mulsl n l1 = mulsl n l2 -> l1 = l2

============================

forall (n : nat) (l2 : list nat),

mulsl n (a :: l1) = mulsl n l2 -> a :: l1 = l2

11

So in this goal, the fact that we already know about l1 is embodied in the
hypothesis IH (as we prescribed in the induction call).

We can now fix a value n for the universal quantification, and reason on the
possible cases for the list. In this case we know that l1 is of the cons form,
after computation mulsl will return a result of the cons form. If the second list
if of the nil form, the computation of mulsl returns nil and we the equality
between mulsl results is again an inconsistent one, and the goal is easily solved
using discriminate.

intros n [| b l2]; simpl.

discriminate.

It remains to study the case where both lists are in cons form. The goal then
has the following shape:

a : nat

l1 : list nat

IH : forall (n : nat) (l2 : list nat),

mulsl n l1 = mulsl n l2 -> l1 = l2

n, b : nat

l2 : list nat

============================

a * (n + 1) :: mulsl (n + 1) l1 =

b * (n + 1) :: mulsl (n + 1) l2 ->

a :: l1 = b :: l2

Because of the simpl step after introducing b and l2, both computations of
mulsl have produced results that are both in cons form. We know need to use
the injection tactic to make this equality between two lists transform into two
equalities, the first concerning the first elements of these lists, and the second
concerning the results of these lists.

intros Heq; injection Heq as heads tails.

The new hypothesis tails, in combination with the induction hypothesis, will
make it possible to prove that l1 and l2 are equal. We use this fact directly,
knowing that the proof will be kept for later.

replace l2 with l1.

Similarly, the fact a = b should be deductible from the hypothesis heads. To
make this step, we look in the database for a theorem that mentions equalities
between results of multiplications. The command for this database inquiry is
as follows:

Search (_ * ?x = _ * ?x).

By using two instances of the named place-holder ?x, we are able to pinpoint
exactly a theorem where the same expression appears at the corresponding place
on both side of the equality. The result of the Search command is as follows:

12

heads: a * (n + 1) = b * (n + 1)

Nat.mul_cancel_r: forall n m p : nat,

p <> 0 -> n * p = m * p <-> n = m

The hypothesis tails is listed, but also a theorem about an equivalence between
equalities, under the condition that the common factor p is non-zero. We first
modify the hypothesis heads using this theorem, and we then use the modified
hypothesis to modify the goal. What we obtain is a trivial equality, and the
easy tactic can get rid of this goal.

rewrite Nat.mul_cancel_r in heads.

rewrite heads; easy.

At this point, we still have to prove that the common factor is non-zero, and
this can be done by modifying the statement to make it appear that the equality
is between two different constructor forms of type nat.

rewrite Nat.add_1_r; easy.

We still have to prove that the replacement of l2 by l1 is justified. For this
we use the induction hypothesis. However, in this induction hypothesis, the
universally quantified variable does not appear in the hypothesis’ conclusion,
so we need to guide the proof system by showing how the instantiation will
happen. Here is one possibility.

apply IH with (n := n + 1).

exact tails.

Qed.

5 Exercises

1. Define a function lo that takes a natural number n as input and returns
the list containing the first n odd natural numbers. For instance lo 3 =

5::3::1.

2. Prove that length (lo n) = n.

3. Define a function sl that takes a list of natural numbers as input and
returns the sum of all the elements in the list.

4. Prove that sl (lo n) = n * n.

5. We define a function add with the following code:

Fixpoint add x y := match x with 0 => y | S p => add p (S y) end.

Prove the following lemmas:

(a) forall x y, add x (S y) = S (add x y)

13

(b) forall x, add x 0 = x

(c) forall x y, add (S x) y = S (add x y)

(d) forall x y z, add x (add y z) = add (add x y) z

(e) forall x y, add x y = x + y

6. In the exercises part of the first chapter of these course notes, you are
required to define a function that describes when a list of numbers is a
licit representation of a natural number (it verifies that all digits are less
than 10) and a function that computes the successor of a number when
represented as a list of digits. Add the function to nat that maps any list
of digits to the natural number it represents and show that the successor
function is correct in this context.

6 More information

You can use the book [1] (available in French on internet, otherwise you should
find English versions at the library) and the reference manual [4]. There is also
a tutorial in French [7]. There are also tutorials on the web [5, 3].

References

[1] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development, Coq’Art:the Calculus of Inductive Constructions. Springer-
Verlag, 2004. Version française http://www-sop.inria.fr/members/

Yves.Bertot/coqartF.pdf

[2] B. Pierce et al. Software Foundations http://www.cis.upenn.edu/

~bcpierce/sf/

[3] Y. Bertot Coq in a Hurry Archive ouverte “cours en ligne”, 2008. http:

//cel.archives-ouvertes.fr/inria-00001173

[4] The Coq development team. The Coq proof Assistant Reference Manual,
Ecole Polytechnique, INRIA, Université de Paris-Sud, 2004. http://coq.

inria.fr/doc/main.html

[5] G. Huet, G. Kahn, C. Paulin-Mohring, The Coq proof Assistant, A Tutorial,
Ecole Polytechnique, INRIA, Université de Paris-Sud, 2004. http://coq.

inria.fr/V8.1/tutorial.html

[6] E. Giménez, P. Castéran, A Tutorial on Recursive Types in Coq, INRIA,
Université de Bordeaux, 2006. http://www.labri.fr/Perso/~casteran/
RecTutorial.pdf.gz

[7] A. Miquel, Petit guide de survie en Coq, Université de Paris VII. http:

//www.pps.jussieu.fr/~miquel/enseignement/mpri/guide.html

14

http://www-sop.inria.fr/members/Yves.Bertot/coqartF.pdf
http://www-sop.inria.fr/members/Yves.Bertot/coqartF.pdf
http://www.cis.upenn.edu/~bcpierce/sf/
http://www.cis.upenn.edu/~bcpierce/sf/
http://cel.archives-ouvertes.fr/inria-00001173
http://cel.archives-ouvertes.fr/inria-00001173
http://coq.inria.fr/doc/main.html
http://coq.inria.fr/doc/main.html
http://coq.inria.fr/V8.1/tutorial.html
http://coq.inria.fr/V8.1/tutorial.html
http://www.labri.fr/Perso/~casteran/RecTutorial.pdf.gz
http://www.labri.fr/Perso/~casteran/RecTutorial.pdf.gz
http://www.pps.jussieu.fr/~miquel/enseignement/mpri/guide.html
http://www.pps.jussieu.fr/~miquel/enseignement/mpri/guide.html

	Motivating introduction
	Reasoning on pattern-matching constructs
	The destruct tactic and the eqn: variant
	the induction tactic
	the discriminate tactic
	the injection tactic

	Manipulating function computation
	The unfold tactic
	The simpl tactic
	Manual computation: the change tactic
	Manual computation with the replace tactic
	Generating one-step recusion lemma

	A complete proof
	Exercises
	More information

