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Linear Ordinary Differential Equations

Higher order ODEs

@ Linear equations are of paramount importance in the description of
physical processes

@ When put into mathematical form, many natural processes appear as
higher-order linear ODEs

© most often as second-order equations
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Linear Ordinary Differential Equations

Linear ODEs

o A linear ODE of general order n has the form:
n n-1

a,,(x)d Y 1(x)‘2 - +..-+31(X)%+30(x)y: F(x)
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Linear Ordinary Differential Equations

Linear ODEs

o A linear ODE of general order n has the form:

n n-1

a,,(x)d Y 1(x)‘2 - +..-+31(X)%+30(x)y: F(x)

e If f(x) =0, the equation is called homogeneous

e Otherwise, it is inhomogeneous
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Linear Ordinary Differential Equations

Linear ODEs

o A linear ODE of general order n has the form:

n n-1

a,,(x)d Y 1(x)‘; - +...+31(X)%+ao(x)y: F(x)

e If f(x) =0, the equation is called homogeneous

e Otherwise, it is inhomogeneous

@ The general solution will contain n arbitrary constants

e May be determined if n boundary conditions are provided
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Linear Ordinary Differential Equations

Linear ODEs

@ A linear ODE of general order n has the form:

n-1

(x }1/+---+a1(X)%+ao(X)y=f(X) (1)

@ To solve any equation of the form (1), we must:

@ Find the general solution of the complementary equation, i.e. equation
formed by setting f(x) =0:

d" dnt d
a,,(x) y+a,, 1(X)7n}1/+~~~+31(X)—dy+ao(x)y:0
X

o Find n linearly independent functions y1(x), ..., y.(x) that satisfy this
equation

o The general solution is given by their linear superposition:
Ye(x) = cyi(x) + cya(x) + -+ + cpya(x)
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Linear Ordinary Differential Equations

Linear ODEs

@ To solve any equation of the form (1), we must:

@ Find the general solution of the complementary equation, i.e. equation
formed by setting f(x) = 0:
n-1

d" d d
an(X)K};+3n—1(X)Tn,}1/+"'+31(X)?§+30(X)y:0 (2)

o Find n linearly independent functions y;(x), ..., y,(x) that satisfy (2)
e The general solution is given by their linear superposition:
Ye(x) = cry1(x) + coya(x) + -+ + Cayn(x)

where ¢, are arbitrary constants = determined from n boundary
conditions

o y.(x) is called the complementary function of (1)
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Linear Ordinary Differential Equations

Linear ODEs

@ For n functions to be linearly independent over an interval, there must
NOT exist any set of constants cy, ..., cn, such that:

cy1(x) + coya(x) + -+ cayn(x) =0

over the interval in question, except for the trivial case ¢; =---=¢, =0
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Linear Ordinary Differential Equations

Linear ODEs

@ The n functions y1(x), y2(x), ..., ya(x) are linearly independent over
an interval if

1 Yo o Yn
4 ! .
Y Y :
W(Yla)@a"-ayn): :1 2 : #0
-1 -1
DL D)

over that interval

e W(y1,y2,...,¥n) is called the Wronskian of the set of functions
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Linear Ordinary Differential Equations

Linear ODEs

@ A linear ODE of general order n has the form:

NS a0 L v a0y =F6) ()

o If the original equation (1) has f(x) =0 (i.e. it is homogeneous)

J

@ The complementary function y.(x) is already the general solution
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Linear Ordinary Differential Equations

Linear ODEs

@ A linear ODE of general order n has the form:

NS a0 L v a0y =F6) ()

o If the original equation (1) has f(x) =0 (i.e. it is homogeneous)
U
@ The complementary function y.(x) is already the general solution

e If f(x) # 0, the general solution is given by:

y(x) = ye(x) +yp(x),
where y,(x) is the particular solution

o can be any function that satisfies (1) directly, provided it is linearly
independent of y.(x)
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Linear Ordinary Differential Equations

Second-order linear differential equation

@ The general second-order linear differential equation is given by:

X+ p(t)x+q(t)x = g(t) (3)
where x = dx/dt and X = d°x/dt?

@ A unique solution of (3) requires initial values x(tp) = xp and
x(to) = uo
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Linear Ordinary Differential Equations

Second-order linear differential equation

@ The general second-order linear differential equation is given by:

X+ p(t)x+q(t)x = g(t) (3)
where x = dx/dt and X = d°x/dt?

@ A unique solution of (3) requires initial values x(tp) = xp and
x(to) = uo

@ The equation with constant coefficients assumes that p(t) and q(t)
are constants
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Linear Ordinary Differential Equations

Second-order linear differential equation

@ The general second-order linear differential equation is given by:

X+ p(t)x+q(t)x = g(t) (3)
where x = dx/dt and X = d°x/dt?

@ A unique solution of (3) requires initial values x(tp) = xp and
x(to) = uo

@ The equation with constant coefficients assumes that p(t) and q(t)
are constants

@ The equation is said to be homogeneous if g(t) =0
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Linear Ordinary Differential Equations

The Euler method

@ We first derive an algorithm for numerical solution

@ Consider the general second-order ODE:
X =f(t,x,x)
@ We can write this ODE as the first-order system by introducing u = x:

X=u (4)
u="~f(t,x,u) (5)
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Linear Ordinary Differential Equations

The Euler method

We first derive an algorithm for numerical solution

Consider the general second-order ODE:
X =f(t,x,x)
@ We can write this ODE as the first-order system by introducing u = x:

X=u (4)
u=f(t,x,u) (5)

o (4) gives the slope of the tangent line to the curve x = x(t)

o (5) gives the slope of the tangent line to the curve u = u(t)
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Linear Ordinary Differential Equations

The Euler method

@ We first derive an algorithm for numerical solution

@ Consider the general second-order ODE:
X =f(t,x,x)
@ We can write this ODE as the first-order system by introducing u = x:

X=u (4)
u=f(t,x,u) (5)

@ Beginning at the initial values (x, u) = (xo, ug) at time t = tg, we
move along the tangent lines to determine x; = x(tp + At) and
uy = u(to + At):

X1 = xg + Atug
ui = ug + Atf(to,Xo, Uo)
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Linear Ordinary Differential Equations

The Euler method

o Consider the general second-order ODE:
X =1f(t,x,x)
@ We can write this ODE as the first-order system by introducing u = x:
x=u, u=f(t,x,u)
@ Beginning at the initial values (x, u) = (x0, up) at time t = ty, we
move along the tangent lines to determine x; = x(tp + At) and

uy = u(ty + At):
x1 = Xxg + Atug

uy = ug + Atf(to,Xo, UO)
@ The values t; = tg + At,x; and up are then used as new initial values

to get the solution for t;
o ...

@ As At — 0, the numerical solution converges to the unique solution
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Linear Ordinary Differential Equations

The Euler method

X1 = Xg + Atug

up = ug + Al’f(to,Xo, Uo)
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Linear Ordinary Differential Equations

The principle of superposition

o Consider the general second-order linear homogeneous ODE:
X+ p(t)x+q(t)x=0 (6)
and suppose that x = X1(t) and x = Xp(t) are its solutions
@ A linear combination of Xi(t) and Xy(t):
X(t) = aXi(t) + Xa(t), ci1,c = const

@ The principle of superposition states that x = X(t) is also a
solution of (6), i.e.:

Any linear combination of solutions to (6) is also a solution J
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Linear Ordinary Differential Equations

The Wronskian

@ Suppose we determined two solutions x = Xi(t) and x = X»(t)

@ We then attempt to write the general solution as
X(t) = C1X1(t) + C2X2(t)

@ This general solution should be able to satisfy two initial conditions:

x(to) =xo0, x(to) = ug
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Linear Ordinary Differential Equations

The Wronskian

@ Suppose we determined two solutions x = Xi(t) and x = X»(t)

@ We then attempt to write the general solution as
X(t) = C1X1(t) + C2X2(t)

@ This general solution should be able to satisfy two initial conditions:

x(to) =xo0, x(to) = ug

@ Applying these initial conditions, we get:
C1X1(t0) + C2X2(t0) = Xp

chl(to) + C2X2(to) = U
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Linear Ordinary Differential Equations

The Wronskian

@ Applying the initial conditions, we get:
C1X1(t0) + C2X2(t0) =Xp
c1X1(to) + C2X2(t0) = U

@ Solution of this system for unknowns ¢ and ¢, results in

_ x0Xa(to) — uoXa(to) o - upX1(to) — x0X1(to)
w r = w

a
o W is called the Wronskian and is given by

W = Xl(to)Xz(to) — Xl(to)Xg(to)
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Linear Ordinary Differential Equations

The Wronskian

@ Applying the initial conditions, we get:
C1X1(t0) + C2X2(t0) =Xp
c1X1(t0) + C2X2(t0) = U

@ Solution of this system for unknowns ¢ and ¢, results in

_ x0Xa(to) — uoXa(to) o - upX1(to) — x0X1(to)

W » 2 W

a
o W is called the Wronskian and is given by
W = Xl(to)Xz(to) — Xl(to)Xg(to)

@ The Wronskian must satisfy W # 0 for a solution to exist
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Linear Ordinary Differential Equations

The Wronskian

@ Applying the initial conditions, we get:
C1X1(t0) + C2X2(t0) =Xp
c1X1(t0) + C2X2(t0) = U

@ Solution of this system for unknowns ¢ and ¢, results in

_ x0Xa(to) — uoXa(to) o - upX1(to) — x0X1(to)

W » 2 W

a
o W is called the Wronskian and is given by
W = Xl(to)Xz(to) — Xl(to)Xg(to)

@ The Wronskian must satisfy W # 0 for a solution to exist

@ When W # 0 = the two solutions are linearly independent!
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Linear Ordinary Differential Equations

2nd-order linear homogeneous ODE with const coefficients

@ Let's solve a linear homogeneous, constant coefficient ODE:

ax+bx+cx=0, a,b,c=const

@ Applications: position of a freely-oscillating frictional mass on a
spring, damped pendulum, ...
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Linear Ordinary Differential Equations

2nd-order linear homogeneous ODE with const coefficients

@ Let's solve a linear homogeneous, constant coefficient ODE:
ax+bx+cx=0, a,b,c=const

@ Applications: position of a freely-oscillating frictional mass on a
spring, damped pendulum, ...

@ Possible solution:

@ Find 2 linearly independent solutions
@ Construct a linear combination of solutions

© The two constants are used to satisfy two initial conditions
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Linear Ordinary Differential Equations

2nd-order linear homogeneous ODE with const coefficients

@ Let's solve a linear homogeneous, constant coefficient ODE:

ax+bx+cx=0, a,b,c=const

@ Which form of the solution could we guess?

Yuliya Tarabalka (yuliya.tarabalka@inria.fr) Differential Equations 18 / 36



Linear Ordinary Differential Equations

2nd-order linear homogeneous ODE with const coefficients

@ Let's solve a linear homogeneous, constant coefficient ODE:

ax+bx+cx=0, a,b,c=const

@ Which form of the solution could we guess?
@ Our ansatz, or educated guess:
rt

X=e = x=re, x=r’e"

where r is a constant to be determined
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Linear Ordinary Differential Equations

2nd-order linear homogeneous ODE with const coefficients

@ Let's solve a linear homogeneous, constant coefficient ODE:

ax+bx+cx=0, a,b,c=const

@ Which form of the solution could we guess?

@ Our ansatz, or educated guess:
x=eb = x=re" x=r’e"
where r is a constant to be determined
@ This yields:

ar’e +bre +ce®=0 = ar’+br+c=0,

which is a quadratic equation for the unknown constant r
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Linear Ordinary Differential Equations

2nd-order linear homogeneous ODE with const coefficients

@ We solve ax+ bx+cx =0

@ ar? + br+c =0 is called the characteristic equation of our ODE
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Linear Ordinary Differential Equations

2nd-order linear homogeneous ODE with const coefficients

o We solve ax + bx+cx =0
@ ar? + br+c =0 is called the characteristic equation of our ODE

@ The two solutions of this characteristic equation are:

r+ = i(—bﬂ:\/b2—4ac)
2a
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Linear Ordinary Differential Equations

2nd-order linear homogeneous ODE with const coefficients

@ We solve ax + bx+cx =0
@ ar’+ br+ c =0 is called the characteristic equation of our ODE

@ The two solutions of this characteristic equation are:

r+ = i(—bﬂ:\/b2—4ac)
2a

Three cases are possible:

@ hH>-4ac>0 = two roots are distinct and real

@ b%?-4ac<0 = two roots are distinct and complex conjugate of each
other

© b%2-4ac=0 = thereis one real root
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: real distinct roots

@ We solve ax+ bx+cx =0

@ When r, # r_ are real roots, the general solution:

x(t) = e+ et

@ The unknown constants ¢; and ¢ can be determined by the initial
conditions:

x(tg) = x0, X(to) = o
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: real distinct roots

Example: Solve X + 5x + 6x = 0 with x(0) =2, x(0) =3

o We take as our ansatz x = e and obtain the characteristic equation:
r’+5r+6=0
e It factors to (r+3)(r+2)=0

@ The general solution to the ODE is:

2 3t

x(t) = et + pe”

@ The solution for x:

2t 3t

x(t) =-2ce " -3ce”

Yuliya Tarabalka (yuliya.tarabalka@inria.fr) Differential Equations 21 /36



Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: real distinct roots

Example: Solve X + 5x + 6x = 0 with x(0) =2, x(0) =3

@ Using the initial conditions:

C1+Cz=2
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: real distinct roots

Example: Solve X + 5x + 6x = 0 with x(0) =2, x(0) =3

@ Using the initial conditions:

C1+Cz=2

—2C1 - 3C2 =3
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: real distinct roots
Example: Solve X + 5x + 6x = 0 with x(0) =2, x(0) =3
@ Using the initial conditions:
Cl +C = 2

—2C1 - 3C2 =3

Il
©o

e
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: real distinct roots
Example: Solve X + 5x + 6x = 0 with x(0) =2, x(0) =3
@ Using the initial conditions:
Cl +C = 2

—2C1 - 3C2 =3

Il
©o

e

o C2=2—C1=—7
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: real distinct roots

Example: Solve X + 5x + 6x = 0 with x(0) =2, x(0) =3

@ Using the initial conditions:

C1+Cz=2

—2C1 - 3C2 =3

e =9
@ O = 2 — C1 = -7
@ The unique solution satisfying both ODE and the initial conditions:

x(t) =9e 2t — 773
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

@ We solve ax+ bx+cx =0

e If b> —4ac <0, the roots occur as complex conjugate pairs
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

@ We solve ax+ bx+cx =0

e If b> —4ac <0, the roots occur as complex conjugate pairs

e With

b 1
A=—-—, u=—Vdac- b2,
2a 2a

the two roots are A+ iy and A —iu
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

@ We solve ax+ bx+cx =0

e If b> —4ac <0, the roots occur as complex conjugate pairs

e With

b 1
A=—-—, u=—Vdac- b2,
2a 2a

the two roots are A+ iy and \ —
@ Two complex exponential solutions to our ODE:

Zi(t) = eMett, Zy(t) = eMe Mt
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

@ We solve ax+ bx+cx =0

e If b> —4ac <0, the roots occur as complex conjugate pairs

e With
b

1
A=—-—, u=—Vdac- b2,
2a 2a
the two roots are A+ iy and \ —
@ Two complex exponential solutions to our ODE:

Zi(t) = eMett, Zy(t) = eMe Mt

@ Any linear combination of Z; and Z; is also a solution to our ODE
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Linear Ordinary Differential Equations
2-ord linear homog ODE w/const coef: complex conj roots

@ Two complex exponential solutions to our ODE:

Zi(t) = eMeltt Zy(t) = eMteint

@ We can form two different linear combinations that are real:

71+ 7 ipt —ipt
Xi(x) = ! 5 2 - M (%) = eMcos ut,

7 — 7. int _ —ipt
Xo(x) = 12/ 2:e)‘t(e 2/_6 ):eAtsin,ut

Yuliya Tarabalka (yuliya.tarabalka@inria.fr) Differential Equations

24 / 36



Linear Ordinary Differential Equations
2-ord linear homog ODE w/const coef: complex conj roots

@ Two complex exponential solutions to our ODE:

Zi(t) = eMeltt Zy(t) = eMteint

@ We can form two different linear combinations that are real:

71+ 7 ipt —ipt
Xi(x) = ! 5 2 - M (%) = eMcos ut,

7 — 7. int _ —ipt
Xo(x) = 12/ 2:e)‘t(e 2/_6 ):eAtsin,ut

@ Apply again the principle of superposition to get the general
solution:

x(t) = eM(Acos ut + Bsin pit)
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

Example: Solve X + x = 0 with x(0) = xp and x(0) = up
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

Example: Solve X + x = 0 with x(0) = xp and x(0) = up
@ The characteristic equation is:

r?+1=0
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

Example: Solve X + x = 0 with x(0) = xp and x(0) = up
@ The characteristic equation is:

r?+1=0

with roots ry = £/
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

Example: Solve X + x = 0 with x(0) = xp and x(0) = up
@ The characteristic equation is:

r?+1=0

with roots ry = £/

@ The general solution of the ODE is:
x(t) =Acost+ Bsint
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

Example: Solve X + x = 0 with x(0) = xp and x(0) = up
@ The characteristic equation is:

r?+1=0

with roots ry = £/

@ The general solution of the ODE is:
x(t) =Acost+ Bsint

@ The derivative is:
x(t) =-Asint+ Bcost
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

Example: Solve X + x = 0 with x(0) = xp and x(0) = up
@ The characteristic equation is:

r?+1=0

with roots ry = £/

@ The general solution of the ODE is:
x(t) =Acost+ Bsint

@ The derivative is:
x(t) =-Asint+ Bcost

@ Applying the initial conditions:
x(0) =A=xp, x(0)=B-=u
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

Example: Solve X + x = 0 with x(0) = xo and x(0) = ug
@ The general solution of the ODE is:

x(t) =Acost + Bsint

o Applying the initial conditions:

x(0)=A=xp, x(0)=B-=u

@ The final solution is:

x(t) =xpcost+ upsint
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: repeated roots

@ We solve ax+ bx+cx =0

o If b2 —4ac =0, the degenerate root is:
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: repeated roots

@ We solve ax+ bx+cx =0

o If b2 —4ac =0, the degenerate root is:

b

"~ 2a
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: repeated roots

@ We solve ax+ bx+cx =0

o If b2 —4ac =0, the degenerate root is:

_b
2a

@ The general solution in this case can be written in the form:

x(t) = (c1 + cot)e™
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: repeated roots

@ We solve ax+ bx+cx =0

o If b2 —4ac =0, the degenerate root is:

_b
2a

@ The general solution in this case can be written in the form:

x(t) = (c1 + cot)e™

@ Result to remember: For the case of repeated roots, the second
solution is t times the first solution
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: repeated roots

Example: Solve X + 2x + x =0 with x(0) =1 and x(0) =0

@ The characteristic equation:

rP+2r+1=(r+1)?=0

A repeated root r = -1

The general solution:

x(t)=cre "+ cpte””

@ The derivative: x(t) = -cie '+ et - cte™t

Applying the initial conditions:
C = 1

—-cg+c=0 => =1
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: repeated roots

Example: Solve X + 2x + x = 0 with x(0) =1 and x(0) =0
@ The general solution:

x(t) =cre "+ cote’ "

@ Applying the initial conditions:
C1 = 1

—cg+c=0 = =1

@ The solution is:
x(t)=(1+t)e"
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

@ The second-order linear inhomogeneous ODE:

X+ p(t)x+q(t)x = g(t)

with initial conditions x(tp) = xp and x(0) = v
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

@ The second-order linear inhomogeneous ODE:

%+ p()% + (£)x = g (1) (7)
with initial conditions x(tp) = xp and x(0) = v
@ Four-step solution:
© Find the general solution of the homogeneous equation
X+p(t)x+q(t)x=0
Let us denote this solution by:
xc(t) = e X1 (t) + ©Xo(t), c1,¢ = const
@ Find any particular solution x, of (7)
© Write the general solution of (7) as: x(t) = xc(t) + x,(t)

© Apply the initial conditions to determine the constants
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

Example: Solve % —3x —4x =3e?" with x(0)=1 and x(0)=0
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

Example: Solve % —3x —4x =3e?" with x(0)=1 and x(0)=0

@ First, we solve the homogeneous equation
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

Example: Solve X —3x —4x =3e?" with x(0) =1 and x(0)=0
@ First, we solve the homogeneous equation

o The characteristic equation: r> —=3r—4=(r-4)(r+1)=0
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

Example: Solve X —3x —4x =3e? with x(0)=1 and x(0)=0
@ First, we solve the homogeneous equation
o The characteristic equation: r> —=3r—4=(r-4)(r+1)=0

4 t

@ The complementary function: x.(t) = cie™ + coe”
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

Example: Solve X —3x —4x =3e? with x(0)=1 and x(0)=0
@ First, we solve the homogeneous equation
o The characteristic equation: r> —=3r—4=(r-4)(r+1)=0

4 t

@ The complementary function: x.(t) = cie™ + coe”

@ We choose the ansatz for the particular solution so that the
exponential will cancel out:

x,(t) = Ae**, ; A= const
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

Example: Solve X —3x —4x =3e? with x(0)=1 and x(0)=0
@ First, we solve the homogeneous equation
o The characteristic equation: r> —=3r—4=(r-4)(r+1)=0

4 t

@ The complementary function: x.(t) = cie™ + coe”

@ We choose the ansatz for the particular solution so that the
exponential will cancel out:
x,(t) = Ae**, ; A= const

e Upon substituting x, into the ODE: 4A-6A-4A=3 = A=-1/2

Yuliya Tarabalka (yuliya.tarabalka®inria.fr) Differential Equations 31/36



Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

Example: Solve X —3x —4x =3e? with x(0)=1 and x(0)=0
@ First, we solve the homogeneous equation
o The characteristic equation: r> —=3r—4=(r-4)(r+1)=0

4 t

@ The complementary function: x.(t) = cie™ + coe”

@ We choose the ansatz for the particular solution so that the
exponential will cancel out:

x,(t) = Ae**, ; A= const

e Upon substituting x, into the ODE: 4A-6A-4A=3 = A=-1/2
@ The general solution:

1
x(t) = cre* + et - §e2t
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

Example: Solve % —3x —4x =3e?" with x(0)=1 and x(0)=0
@ The general solution:

t 121:

AL e " ——e
2

x(t) = e

@ The derivative:

x(t) = dcre*t — et — 2t
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

Example: Solve X —3x —4x =3e?" with x(0) =1 and x(0)=0
@ The general solution:

t 121:

AL e " ——e
2

x(t) = e

@ The derivative:

x(t) = dcre*t — et — 2t

@ Applying the initial conditions:
C1+C2—1/2:1,
4cy — o — 1=0
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

Example: Solve X —3x —4x =3e?" with x(0) =1 and x(0)=0
@ The general solution:

t 121:

AL e " ——e
2

x(t) = e

@ The derivative:

x(t) = dcre*t — et — 2t

@ Applying the initial conditions:
C1+C2—1/2:1,
4cy — o — 1=0

ec=1/2, =1
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

Example: Solve X —3x —4x =3e? with x(0)=1 and x(0)=0
@ The general solution:

1
x(t) = cre*t + et - §e2t

The derivative:

x(t) = dcre*t — et — 2t

@ Applying the initial conditions:
C1+C2—1/2:1,
4cy — o — 1=0

= 1/2, Cy = 1
@ The solution that satisfies both the ODE and initial conditions:

1 1
x(t) =¥ - Ze?t 4+ et
2 2
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs

@ The properties of the Laplace transform make it a great tool to solve
ODEs:

© Linearity:
ax + bx + cx = g(t)

al{x}+ bL{x} +cL{x} =L{g}

@ The first derivative: _
L{x} =sf(s)-x(0)

© The second derivative:

L{%} = $*F(s) - sx(0) - x(0)
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs

Example: Solve X—x—-2x=0 with x(0)=1 and x(0)=0
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs
Example: Solve X -x-2x=0 with x(0)=1 and x(0)=0

o Taking the Laplace transform of both sides of the ODE:
[s%F(s) = sx(0) = x(0)] - [sF(s) - x(0)] - [2(s)] = 0
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs
Example: Solve X -x-2x=0 with x(0)=1 and x(0)=0

o Taking the Laplace transform of both sides of the ODE:
[s%F(s) = sx(0) = x(0)] - [sF(s) - x(0)] - [2(s)] = 0

U
_ (s 1)x(0) + X(0)
s2-5-2

f(s)
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs
Example: Solve X—x—-2x=0 with x(0)=1 and x(0)=0

o Taking the Laplace transform of both sides of the ODE:
[s%F(s) = sx(0) = x(0)] - [sF(s) - x(0)] - [2(s)] = 0

U
_ (5= 1)x(0) + x(0)

F
) s2-s5-2
@ Applying the initial conditions:
= s-1
f D .
)= G+
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs
Example: Solve X—x—-2x=0 with x(0)=1 and x(0)=0

o Taking the Laplace transform of both sides of the ODE:
[s%F(s) = sx(0) = x(0)] - [sF(s) - x(0)] - [2(s)] = 0

U
_ (5= 1)x(0) + x(0)

F
) s2-s5-2
@ Applying the initial conditions:
= s-1
f D .
)= G+

@ We now need to compute the inverse Laplace transform
x(t) = L7HF(s)}
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs
Example: Solve X—x—-2x=0 with x(0)=1 and x(0)=0

@ The Laplace transformed solution:

s—-1

(R e )

@ Direct inversion is not possible = we can use a partial fraction
expansion:
s—1 _a N b
(s-2)(s+1) s-2 s+1
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs
Example: Solve X—x—-2x=0 with x(0)=1 and x(0)=0

@ The Laplace transformed solution:

s—-1

(R e )

@ Direct inversion is not possible = we can use a partial fraction
expansion:
s—1 _a N b
(s-2)(s+1) s-2 s+1

e Using the cover-up method, we multiply both sides by s —2 and put
s=2:
-1 1 -1 2
=2 ]s=2 = 3 similarly: b= 2—72]5?1 =3

a=
s+1
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs

Example: Solve X -x-2x=0 with x(0)=1 and x(0) =0

@ The Laplace transformed solution:

Fey-_ sl 1.1 2 1
C(s=-2)(s+1) 3 s-2 3 s+1
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs

Example: Solve X -x-2x=0 with x(0)=1 and x(0) =0

@ The Laplace transformed solution:

- -1 1
fs)=—— = ==, ~ 4

1 1
(s-2)(s+1) 3 s-2 s+1

Wi N

@ The solution to the ODE:

t

17 1o 2
x(t) = L7HF(s)} = §e2 =6
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