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1 Linear Ordinary Differential Equations
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Linear Ordinary Differential Equations

Higher order ODEs

Linear equations are of paramount importance in the description of
physical processes

When put into mathematical form, many natural processes appear as
higher-order linear ODEs

, most often as second-order equations

Yuliya Tarabalka (yuliya.tarabalka@inria.fr) Differential Equations 3 / 36



Linear Ordinary Differential Equations

Linear ODEs

A linear ODE of general order n has the form:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+⋯ + a1(x)

dy

dx
+ a0(x)y = f (x)

If f (x) = 0, the equation is called homogeneous

Otherwise, it is inhomogeneous

The general solution will contain n arbitrary constants

May be determined if n boundary conditions are provided
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Linear Ordinary Differential Equations

Linear ODEs

A linear ODE of general order n has the form:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+⋯ + a1(x)

dy

dx
+ a0(x)y = f (x) (1)

To solve any equation of the form (1), we must:

1 Find the general solution of the complementary equation, i.e. equation
formed by setting f (x) = 0:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+⋯ + a1(x)

dy

dx
+ a0(x)y = 0

Find n linearly independent functions y1(x), . . . , yn(x) that satisfy this
equation

The general solution is given by their linear superposition:

yc(x) = c1y1(x) + c2y2(x) +⋯ + cnyn(x)
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Linear Ordinary Differential Equations

Linear ODEs

To solve any equation of the form (1), we must:

1 Find the general solution of the complementary equation, i.e. equation
formed by setting f (x) = 0:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+⋯ + a1(x)

dy

dx
+ a0(x)y = 0 (2)

Find n linearly independent functions y1(x), . . . , yn(x) that satisfy (2)

The general solution is given by their linear superposition:

yc(x) = c1y1(x) + c2y2(x) +⋯ + cnyn(x)

where cm are arbitrary constants ⇒ determined from n boundary
conditions

yc(x) is called the complementary function of (1)
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Linear Ordinary Differential Equations

Linear ODEs

For n functions to be linearly independent over an interval, there must
NOT exist any set of constants c1, . . . , cn, such that:

c1y1(x) + c2y2(x) +⋯ + cnyn(x) = 0

over the interval in question, except for the trivial case c1 = ⋯ = cn = 0
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Linear Ordinary Differential Equations

Linear ODEs

The n functions y1(x), y2(x), . . . , yn(x) are linearly independent over
an interval if

W (y1, y2, . . . , yn) =

RRRRRRRRRRRRRRRRRRR

y1 y2 ⋯ yn
y ′1 y ′2 ⋮
⋮ ⋱ ⋮

y
(n−1)
1 ⋯ ⋯ y

(n−1)
n

RRRRRRRRRRRRRRRRRRR

≠ 0

over that interval

W (y1, y2, . . . , yn) is called the Wronskian of the set of functions
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Linear Ordinary Differential Equations

Linear ODEs

A linear ODE of general order n has the form:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+⋯ + a1(x)

dy

dx
+ a0(x)y = f (x) (1)

If the original equation (1) has f (x) = 0 (i.e. it is homogeneous)

⇓

The complementary function yc(x) is already the general solution

If f (x) ≠ 0, the general solution is given by:

y(x) = yc(x) + yp(x),
where yp(x) is the particular solution

can be any function that satisfies (1) directly, provided it is linearly
independent of yc(x)
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Linear Ordinary Differential Equations

Second-order linear differential equation

The general second-order linear differential equation is given by:

ẍ + p(t)ẋ + q(t)x = g(t) (3)

where ẋ = dx/dt and ẍ = d2x/dt2

A unique solution of (3) requires initial values x(t0) = x0 and
ẋ(t0) = u0

The equation with constant coefficients assumes that p(t) and q(t)
are constants

The equation is said to be homogeneous if g(t) = 0
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Linear Ordinary Differential Equations

The Euler method

We first derive an algorithm for numerical solution

Consider the general second-order ODE:

ẍ = f (t, x , ẋ)

We can write this ODE as the first-order system by introducing u = ẋ :

ẋ = u (4)

u̇ = f (t, x ,u) (5)
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The Euler method

We first derive an algorithm for numerical solution

Consider the general second-order ODE:

ẍ = f (t, x , ẋ)

We can write this ODE as the first-order system by introducing u = ẋ :

ẋ = u (4)

u̇ = f (t, x ,u) (5)

(4) gives the slope of the tangent line to the curve x = x(t)

(5) gives the slope of the tangent line to the curve u = u(t)
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Linear Ordinary Differential Equations

The Euler method

We first derive an algorithm for numerical solution

Consider the general second-order ODE:

ẍ = f (t, x , ẋ)

We can write this ODE as the first-order system by introducing u = ẋ :

ẋ = u (4)

u̇ = f (t, x ,u) (5)

Beginning at the initial values (x ,u) = (x0,u0) at time t = t0, we
move along the tangent lines to determine x1 = x(t0 +∆t) and
u1 = u(t0 +∆t):

x1 = x0 +∆tu0

u1 = u0 +∆tf (t0, x0,u0)
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Linear Ordinary Differential Equations

The Euler method

Consider the general second-order ODE:

ẍ = f (t, x , ẋ)
We can write this ODE as the first-order system by introducing u = ẋ :

ẋ = u, u̇ = f (t, x ,u)

Beginning at the initial values (x ,u) = (x0,u0) at time t = t0, we
move along the tangent lines to determine x1 = x(t0 +∆t) and
u1 = u(t0 +∆t):

x1 = x0 +∆tu0

u1 = u0 +∆tf (t0, x0,u0)

The values t1 = t0 +∆t, x1 and u1 are then used as new initial values
to get the solution for t2

. . .

As ∆t → 0, the numerical solution converges to the unique solution
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Linear Ordinary Differential Equations

The Euler method

x1 = x0 +∆tu0

u1 = u0 +∆tf (t0, x0,u0)
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Linear Ordinary Differential Equations

The principle of superposition

Consider the general second-order linear homogeneous ODE:

ẍ + p(t)ẋ + q(t)x = 0 (6)

and suppose that x = X1(t) and x = X2(t) are its solutions

A linear combination of X1(t) and X2(t):

X (t) = c1X1(t) + c2X2(t), c1, c2 = const

The principle of superposition states that x = X (t) is also a
solution of (6), i.e.:

Any linear combination of solutions to (6) is also a solution
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Linear Ordinary Differential Equations

The Wronskian

Suppose we determined two solutions x = X1(t) and x = X2(t)

We then attempt to write the general solution as
X (t) = c1X1(t) + c2X2(t)

This general solution should be able to satisfy two initial conditions:

x(t0) = x0, ẋ(t0) = u0

Applying these initial conditions, we get:

c1X1(t0) + c2X2(t0) = x0

c1Ẋ1(t0) + c2Ẋ2(t0) = u0
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Linear Ordinary Differential Equations

The Wronskian

Applying the initial conditions, we get:

c1X1(t0) + c2X2(t0) = x0

c1Ẋ1(t0) + c2Ẋ2(t0) = u0

Solution of this system for unknowns c1 and c2 results in

c1 =
x0Ẋ2(t0) − u0X2(t0)

W
, c2 =

u0X1(t0) − x0Ẋ1(t0)
W

W is called the Wronskian and is given by

W = X1(t0)Ẋ2(t0) − Ẋ1(t0)X2(t0)

The Wronskian must satisfy W ≠ 0 for a solution to exist

When W ≠ 0 ⇒ the two solutions are linearly independent!
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Solution of this system for unknowns c1 and c2 results in

c1 =
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Linear Ordinary Differential Equations

2nd-order linear homogeneous ODE with const coefficients

Let’s solve a linear homogeneous, constant coefficient ODE:

aẍ + bẋ + cx = 0, a,b, c = const

Applications: position of a freely-oscillating frictional mass on a
spring, damped pendulum, ...

Possible solution:

1 Find 2 linearly independent solutions

2 Construct a linear combination of solutions

3 The two constants are used to satisfy two initial conditions
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Linear Ordinary Differential Equations

2nd-order linear homogeneous ODE with const coefficients

Let’s solve a linear homogeneous, constant coefficient ODE:

aẍ + bẋ + cx = 0, a,b, c = const

Which form of the solution could we guess?

Our ansatz, or educated guess:

x = ert ⇒ ẋ = rert , ẍ = r2ert

where r is a constant to be determined

This yields:

ar2ert + brert + cert = 0 ⇒ ar2 + br + c = 0,

which is a quadratic equation for the unknown constant r
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Linear Ordinary Differential Equations

2nd-order linear homogeneous ODE with const coefficients

We solve aẍ + bẋ + cx = 0

ar2 + br + c = 0 is called the characteristic equation of our ODE

The two solutions of this characteristic equation are:

r± = 1

2a
(−b ±

√
b2 − 4ac)

Three cases are possible:

1 b2 − 4ac > 0 ⇒ two roots are distinct and real

2 b2 − 4ac < 0 ⇒ two roots are distinct and complex conjugate of each
other

3 b2 − 4ac = 0 ⇒ there is one real root
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: real distinct roots

We solve aẍ + bẋ + cx = 0

When r+ ≠ r− are real roots, the general solution:

x(t) = c1e
r+t + c2e

r−t

The unknown constants c1 and c2 can be determined by the initial
conditions:

x(t0) = x0, ẋ(t0) = u0
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: real distinct roots

Example: Solve ẍ + 5ẋ + 6x = 0 with x(0) = 2, ẋ(0) = 3

We take as our ansatz x = ert and obtain the characteristic equation:

r2 + 5r + 6 = 0

It factors to (r + 3)(r + 2) = 0

The general solution to the ODE is:

x(t) = c1e
−2t + c2e

−3t

The solution for ẋ :

ẋ(t) = −2c1e
−2t − 3c2e

−3t
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: real distinct roots

Example: Solve ẍ + 5ẋ + 6x = 0 with x(0) = 2, ẋ(0) = 3

Using the initial conditions:

c1 + c2 = 2

−2c1 − 3c2 = 3

c1 = 9

c2 = 2 − c1 = −7

The unique solution satisfying both ODE and the initial conditions:

x(t) = 9e−2t − 7e−3t
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

We solve aẍ + bẋ + cx = 0

If b2 − 4ac < 0, the roots occur as complex conjugate pairs

With

λ = − b

2a
, µ = 1

2a

√
4ac − b2,

the two roots are λ + iµ and λ − iµ

Two complex exponential solutions to our ODE:

Z1(t) = eλte iµt , Z2(t) = eλte−iµt

Any linear combination of Z1 and Z2 is also a solution to our ODE
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the two roots are λ + iµ and λ − iµ

Two complex exponential solutions to our ODE:

Z1(t) = eλte iµt , Z2(t) = eλte−iµt

Any linear combination of Z1 and Z2 is also a solution to our ODE
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Z1(t) = eλte iµt , Z2(t) = eλte−iµt

We can form two different linear combinations that are real:

X1(x) =
Z1 + Z2

2
= eλt (e

iµt + e−iµt

2
) = eλt cosµt,

X2(x) =
Z1 − Z2

2i
= eλt (e

iµt − e−iµt

2i
) = eλt sinµt

Apply again the principle of superposition to get the general
solution:

x(t) = eλt(A cosµt +B sinµt)
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

Example: Solve ẍ + x = 0 with x(0) = x0 and ẋ(0) = u0

The characteristic equation is:

r2 + 1 = 0

with roots r± = ±i

The general solution of the ODE is:

x(t) = A cos t +B sin t

The derivative is:
ẋ(t) = −A sin t +B cos t

Applying the initial conditions:

x(0) = A = x0, ẋ(0) = B = u0
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: complex conj roots

Example: Solve ẍ + x = 0 with x(0) = x0 and ẋ(0) = u0

The general solution of the ODE is:

x(t) = A cos t +B sin t

Applying the initial conditions:

x(0) = A = x0, ẋ(0) = B = u0

The final solution is:

x(t) = x0 cos t + u0 sin t
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: repeated roots

We solve aẍ + bẋ + cx = 0

If b2 − 4ac = 0, the degenerate root is:

r = − b

2a

The general solution in this case can be written in the form:

x(t) = (c1 + c2t)ert

Result to remember: For the case of repeated roots, the second
solution is t times the first solution
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If b2 − 4ac = 0, the degenerate root is:

r = − b

2a

The general solution in this case can be written in the form:

x(t) = (c1 + c2t)ert

Result to remember: For the case of repeated roots, the second
solution is t times the first solution

Yuliya Tarabalka (yuliya.tarabalka@inria.fr) Differential Equations 27 / 36



Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: repeated roots
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: repeated roots

Example: Solve ẍ + 2ẋ + x = 0 with x(0) = 1 and ẋ(0) = 0

The characteristic equation:

r2 + 2r + 1 = (r + 1)2 = 0

A repeated root r = −1

The general solution:

x(t) = c1e
−t + c2te

−t

The derivative: ẋ(t) = −c1e
−t + c2e

−t − c2te
−t

Applying the initial conditions:

c1 = 1

−c1 + c2 = 0 ⇒ c2 = 1
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Linear Ordinary Differential Equations

2-ord linear homog ODE w/const coef: repeated roots

Example: Solve ẍ + 2ẋ + x = 0 with x(0) = 1 and ẋ(0) = 0

The general solution:

x(t) = c1e
−t + c2te

−t

Applying the initial conditions:

c1 = 1

−c1 + c2 = 0 ⇒ c2 = 1

The solution is:
x(t) = (1 + t)e−t
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

The second-order linear inhomogeneous ODE:

ẍ + p(t)ẋ + q(t)x = g(t) (7)

with initial conditions x(t0) = x0 and ẋ(0) = u0

Four-step solution:

1 Find the general solution of the homogeneous equation

ẍ + p(t)ẋ + q(t)x = 0

Let us denote this solution by:

xc(t) = c1X1(t) + c2X2(t), c1, c2 = const

2 Find any particular solution xp of (7)

3 Write the general solution of (7) as: x(t) = xc(t) + xp(t)
4 Apply the initial conditions to determine the constants
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

Example: Solve ẍ − 3ẋ − 4x = 3e2t with x(0) = 1 and ẋ(0) = 0

First, we solve the homogeneous equation

The characteristic equation: r2 − 3r − 4 = (r − 4)(r + 1) = 0

The complementary function: xc(t) = c1e
4t + c2e

−t

We choose the ansatz for the particular solution so that the
exponential will cancel out:

xp(t) = Ae2t , ; A = const

Upon substituting xp into the ODE: 4A − 6A − 4A = 3 ⇒ A = −1/2

The general solution:

x(t) = c1e
4t + c2e

−t − 1

2
e2t
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Linear Ordinary Differential Equations

Second-order linear inhomogeneous ODE

Example: Solve ẍ − 3ẋ − 4x = 3e2t with x(0) = 1 and ẋ(0) = 0

The general solution:

x(t) = c1e
4t + c2e

−t − 1

2
e2t

The derivative:
ẋ(t) = 4c1e

4t − c2e
−t − e2t

Applying the initial conditions:

c1 + c2 − 1/2 = 1,

4c1 − c2 − 1 = 0

c1 = 1/2, c2 = 1

The solution that satisfies both the ODE and initial conditions:

x(t) = 1

2
e4t − 1

2
e2t + e−t
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs

The properties of the Laplace transform make it a great tool to solve
ODEs:

1 Linearity:
aẍ + bẋ + cx = g(t)

aL{ẍ} + bL{ẋ} + cL{x} = L{g}
2 The first derivative:

L{ẋ} = sf̄ (s) − x(0)
3 The second derivative:

L{ẍ} = s2 f̄ (s) − sx(0) − ẋ(0)
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs

Example: Solve ẍ − ẋ − 2x = 0 with x(0) = 1 and ẋ(0) = 0

Taking the Laplace transform of both sides of the ODE:

[s2f̄ (s) − sx(0) − ẋ(0)] − [sf̄ (s) − x(0)] − [2f̄ (s)] = 0

⇓

f̄ (s) = (s − 1)x(0) + ẋ(0)
s2 − s − 2

Applying the initial conditions:

f̄ (s) = s − 1

(s − 2)(s + 1)

We now need to compute the inverse Laplace transform
x(t) = L−1{f̄ (s)}
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Example: Solve ẍ − ẋ − 2x = 0 with x(0) = 1 and ẋ(0) = 0
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[s2f̄ (s) − sx(0) − ẋ(0)] − [sf̄ (s) − x(0)] − [2f̄ (s)] = 0

⇓

f̄ (s) = (s − 1)x(0) + ẋ(0)
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs

Example: Solve ẍ − ẋ − 2x = 0 with x(0) = 1 and ẋ(0) = 0

The Laplace transformed solution:

f̄ (s) = s − 1

(s − 2)(s + 1)

Direct inversion is not possible ⇒ we can use a partial fraction
expansion:

s − 1

(s − 2)(s + 1)
= a

s − 2
+ b

s + 1

Using the cover-up method, we multiply both sides by s − 2 and put
s = 2:

a = s − 1

s + 1
]s=2 =

1

3
, similarly: b = s − 1

s − 2
]s=−1 =

2

3
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Linear Ordinary Differential Equations

Using Laplace transform to solve ODEs

Example: Solve ẍ − ẋ − 2x = 0 with x(0) = 1 and ẋ(0) = 0

The Laplace transformed solution:

f̄ (s) = s − 1

(s − 2)(s + 1)
= 1

3
⋅ 1

s − 2
+ 2

3
⋅ 1

s + 1

The solution to the ODE:

x(t) = L−1{f̄ (s)} = 1

3
e2t + 2

3
e−t
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