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Non-Parametric TechniquesNonNon--Parametric TechniquesParametric Techniques

•
 

All Parametric densities are unimodal (have a 
single local maximum), whereas many practical 
problems involve multi-modal densities

•
 

Nonparametric procedures can be used with 
arbitrary distributions and without the 
assumption that the forms of the underlying 
densities are known

•
 

We will consider
•

 
Parzen Density Estimation

•
 

Kn Nearest Neighbor Estimation
•

 
k-Nearest Neighbor Rule
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Histogram EstimationHistogram EstimationHistogram Estimation

•
 

Normalized histogram density 
estimation is perhaps the simplest 
density estimation approach

•
 

Histogram density estimation has the 
main shortcomings that it is not smooth

•
 

Other approaches are needed to 
overcome this problem
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Histogram Estimation – Example 1DHistogram Estimation Histogram Estimation –– Example 1DExample 1D
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Histogram Estimation – Example 2DHistogram Estimation Histogram Estimation –– Example 2DExample 2D
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Density EstimationDensity EstimationDensity Estimation

•
 

Basic idea: 
Probability that a vector x will fall in region R is: 

P is a smoothed (or averaged) version of the density 
function p(x) if we have a sample of size n; 
therefore, the probability that k points fall in R is 
then: 

and the expected value for k is: 
E(k) = nP (3)

( ) (1)P p x dx′ ′= ∫
R

( ) (2)
⎛ ⎞
⎜ ⎟
⎝ ⎠

n-kk
k

n
P = P 1-P

k
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Density EstimationDensity EstimationDensity Estimation

ML estimation of  P = θ

• is reached for
•Therefore, the ratio k/n is a good estimate for the 
probability P and hence for the density function p.  
•p(x) is continuous and the region R is so small that p 
does not vary significantly within it, we can write:  

where x is a point within R and V is the volume 
enclosed by R.

( )kθ
Max P θ

′ ′ ≅∫
R

p(x )dx p(x)V (4)

θ̂ ≅
k= P
n
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Density EstimationDensity EstimationDensity Estimation

• Combining equations (1) , (3) and (4) yields:

≅
k/np(x)
V
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Density EstimationDensity EstimationDensity Estimation

Justification of equation (4)

We assume that p(x) is continuous and that region 
R is so small that p does not vary significantly 
within R. Since p(x) = constant, it is not a part of 
the integral.

(4)                    )(')'(∫
ℜ

≅ Vxpdxxp
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Where: μ(R) is: a surface in the Euclidean space R2

a volume in the Euclidean space R3

a hypervolume in the Euclidean space Rd

∫ ∫ ∫
ℜ ℜ ℜ

ℜ ℜ=== )()'x(p'dx)x(1)'x(p'dx)'x(p'dx)'x(p μ

Density EstimationDensity EstimationDensity Estimation



Nonparametric tech.Pattern Recognition:

11

Since p(x) ≅ p(x’) = constant, therefore in 
the Euclidean space R3:

nV
k)x(p  and

V).x(p'dx)'x(p

≅

≅∫
ℜ

Density EstimationDensity EstimationDensity EstimationDensity Estimation
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•
 

Condition for convergence

The fraction k/(nV) is a space averaged value 
of p(x).
p(x) is obtained only if V approaches zero.

This is the case where no samples are 
included in R: it is an uninteresting case!

fixed)n (if  0)x(plim
0k ,0V

==
=→

Density EstimationDensity EstimationDensity EstimationDensity Estimation
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In this case, the estimate diverges: it is an 
uninteresting case!

∞=
≠→

)x(plim
0k ,0V

Density EstimationDensity EstimationDensity EstimationDensity Estimation
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Density EstimationDensityDensity EstimationEstimation

The volume V needs to approach 0 anyway if 
we want to use this estimation

•
 

Practically, V cannot be allowed to become small 
since the number of samples is always limited

•
 

One will have to accept a certain amount of 
variance in the ratio k/n and a certain amount of 
averaging of the density p(x)
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Theoretically, if an unlimited number of samples is 
available, we can circumvent this difficulty
To estimate the density of x, we form a sequence of 
regions

R1 , R2 ,…containing x: the first region contains one 
sample, the second two samples and so on.

Let Vn be the volume of Rn , kn the number of samples 
falling in Rn

 

and pn (x) be the nth

 
estimate for p(x):

pn (x) = (kn /n)/Vn

Density EstimationDensity EstimationDensity EstimationDensity Estimation
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Three necessary conditions should apply if we want pn (x) to 
converge to p(x):

0n/klim )3

klim )2

0Vlim )1

nn

nn

nn

=

∞=

=

∞→

∞→

∞→

Density EstimationDensity EstimationDensity EstimationDensity Estimation
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Density EstimationDensity EstimationDensity Estimation

•
 

There are two different ways of obtaining sequences 
of regions that satisfy these conditions:

1) Shrink an initial region where 
and show that 

This is called “the Parzen-window estimation 
method”

2) Specify kn as some function of n,  such as 
; the volume Vn is grown until 

it encloses kn neighbors of x. This is called 
“the kn -nearest neighbor estimation method”

→∞
→n

n
p (x) p(x)
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Density EstimationDensity EstimationDensity Estimation
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation

Properties:
•

 
Also known as kernel estimator or Parzen 
windows

•
 

Can be used for multiple features
•

 
Window width is an important parameter in the 
Parzen Density Estimation.

•
 

The width is usually found by trial and error
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation

Use the Parzen-window approach to estimate densities:
•

 
Assume that the region Rn is a d-dimensional 

hypercube

ϕ((x-xi )/hn ) is equal to unity if xi falls within the 
hypercube of volume Vn centered at x. It is equal to zero 
otherwise.

( )
ϕ

ϕ
⎧ ≤⎪
⎨
⎪⎩

L

Rd
n n n n

j

V = h h :length of the edge of
Let (u) be the following window function :

11 u
(u) = j = 1, ,d2

0 otherwise
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation

• The number of samples in this hypercube is:

By using we obtain the following estimate: 

pn (x) estimates p(x) as an average of functions of x and 
the samples (xi ) (i = 1,… ,n). These functions ϕ

 
can be 

general.

ϕ
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
i=n

i
n

i=1 n

x - xk =
h

ϕ
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
i=n

i
n

i=1 n n

1 1 x - xp (x) =
n V h

≅
k/np(x)
V
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation

The window function is being used for 
interpolation – each sample contributing to 
estimate in accordance with its distance from x

ϕ
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
i=n

i
n

i=1 n n

1 1 x - xp (x) =
n V h
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Effect of the window width on pn (x)EffectEffect of the of the windowwindow widthwidth on on ppnn (x)(x)
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation

•
 

The behavior of the Parzen-window method 
Case where p(x) N(0,1) 

• Let                                                        and 

(h1 : known parameter)

is an average of normal densities centered at 
the samples xi . 

ϕ
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑
i=n

i
n

i=1 n n

1 1 x - xp (x) =
n h h
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation

h = 0.3

h = 0.1
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation

• Numerical results: 

For n = 1 and h1 =1

For n = 10 and h = 0.1, the contributions of the 
individual samples are clearly observable

( ) ( ) ( )ϕ →
2

1-1/2 x-x
1 1 1

1p (x) = x - x = e N x ,1
2π
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation
Analogous results are also obtained in two dimensions:
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation

•
 

Case where p(x) = λ1 U(a,b) + λ2 T(c,d) (unknown 
density) (mixture of a uniform and triangle densities)
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation



Nonparametric tech.Pattern Recognition:

36

Parzen Density EstimationParzenParzen Density EstimationDensity Estimation

Classification Example

In classifiers based on Parzen-window estimation:
•

 
We estimate the densities for each category and 

classify a test point by the label corresponding to the 
maximum posterior

•
 

The decision region for a Parzen-window classifier 
depends upon the choice of the window function as 
illustrated in the following figure
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Parzen Density EstimationParzenParzen Density EstimationDensity Estimation



Nonparametric tech.Pattern Recognition:

38

Parzen Density Estimation – Samples neededParzenParzen Density Estimation Density Estimation –– Samples neededSamples needed
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Parzen Density Estimation – ExerciseParzenParzen Density Estimation Density Estimation –– ExerciseExercise
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Kn Nearest Neighbor EstimationKKnn Nearest Neighbor EstimationNearest Neighbor Estimation

Goal: a solution for the problem of the unknown “best”
 

window 
function

 Let the cell volume be a function of the training data. 
Center

 
a cell about x and let it grow until it captures 

kn

 

samples (kn

 

= f(n)) 

kn
 

are called the kn
 

nearest-
 neighbors

 
of x

Two
 

possibilities can occur:
 Density is high near x. Therefore,

 
the cell will be small 

which provides a good resolution. 
Density is low. Therefore, the cell will grow large and not

 stop until higher density regions are reached.

We can obtain a family of estimates by setting                  
and choosing different values for k1
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Kn Nearest Neighbor EstimationKKnn Nearest Neighbor EstimationNearest Neighbor Estimation
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Kn Nearest Neighbor EstimationKKnn Nearest Neighbor EstimationNearest Neighbor Estimation
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Illustration: Kn Nearest Neighbor EstimationIllustration: Illustration: KKnn Nearest Neighbor EstimationNearest Neighbor Estimation

• Previous example for Parzen
•

 
For n = 1 and                        ; the estimate 

becomes:

Pn (x) = 1 / V1

= 1 / 2|x-x1 |
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Kn Nearest Neighbor EstimationKKnn Nearest Neighbor EstimationNearest Neighbor Estimation
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Kn Nearest Neighbor EstimationKKnn Nearest Neighbor EstimationNearest Neighbor Estimation
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Estimation of a-posteriori probabilitiesEstimation of aEstimation of a--posteriori probabilitiesposteriori probabilities

•
 

Goal: estimate P(ωi | x) from a set of n 
labeled samples

•
 

Let us place a cell of volume V around x 
and capture k samples 

•
 

ki samples amongst k turned out to be 
labeled ωI then: 

•
 

An estimate for Pn (ωi | x) is: 
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Estimation of a-posteriori probabilitiesEstimation of aEstimation of a--posteriori probabilitiesposteriori probabilities

•
 

ki /k is the fraction of the samples within the 
cell that are labeled ωi

•
 

For minimum error rate, the most 
frequently represented category within the 
cell is selected

•
 

If k is large and the cell sufficiently small, 
the performance will approach the best 
possible 
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The Nearest Neighbor RuleThe Nearest Neighbor RuleThe Nearest Neighbor Rule

•
 

Let Dn = {x1 , x2 , …, xn } be a set of n labeled prototypes

•
 

Let x’ ∈
 

Dn be the closest prototype to a test point x 
then the nearest-neighbor rule for classifying x is to 
assign it the label associated with x’

•
 

The nearest-neighbor rule leads to an error rate greater 
than the minimum possible: the Bayes rate

•
 

If the number of prototype is large (unlimited), the error 
rate of the nearest-neighbor classifier is never worse 
than twice the Bayes rate (it can be demonstrated)

•
 

If n → ∞, it is always possible to find x’ sufficiently close 
so that: 

P(ωi | x’) ≅
 

P(ωi | x) 
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ExampleExampleExample
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Decision Boundary for NNRDecision Boundary for NNRDecision Boundary for NNR

Voronoi diagram: piecewise linear boundary
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K-Nearest Neighbor Rule (K-NNR)KK--Nearest Neighbor Rule (KNearest Neighbor Rule (K--NNR)NNR)

Steps:
1. Find the first k nearest neighbors of a given point. 
2. Determine the class of the given point by a voting    

mechanism among these k nearest neighbors.

Feature 1

Fe
at

ur
e 

2 : class-A point
: class-B point
: point with unknown class

Circle of 3-nearest neighbors
The point is class B via 3-NNR.
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The k-Nearest Neighbor RuleThe kThe k--Nearest Neighbor RuleNearest Neighbor Rule

•
 

Goal: Classify x by assigning it the label 
most frequently represented among the k 
nearest samples and use a voting scheme



Nonparametric tech.Pattern Recognition:

53

The k-Nearest Neighbor RuleThe kThe k--Nearest Neighbor RuleNearest Neighbor Rule
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ExampleExampleExample

• Example: k = 3 (odd value) and x = (0.10, 0.25)T

• Closest vectors to x with their labels are: {(0.10, 0.28, ω
2

); 
(0.12, 0.20, ω

2
); (0.09, 0.30, ω

5
)} 

One voting scheme assigns the label ω
2

to x since ω
2 

is the most frequently represented

1

2

5

2

Prototype Labels
(0.15,0.35) ω
(0.10,0.28) ω
(0.09,0.30) ω
(0.12,0.20) ω
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Flowchart for Nearest NeighborFlowchart for Nearest NeighborFlowchart for Nearest Neighbor

FeatureFeature
extractionextraction

DataData
reductionreduction

DistanceDistance
measuremeasure

General flowchart: Particle example:

From image to features

Distance Computation

None
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ExampleExampleExample

A real-world application, word pronunciation, is 
used to exemplify how the classifier learns and 
classifies:

http://demo.viidea.com/aaai07_bosch_knnc/

http://demo.viidea.com/aaai07_bosch_knnc
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The k-Nearest Neighbor RuleThe kThe k--Nearest Neighbor RuleNearest Neighbor Rule
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The Error for the k-Nearest Neighbor RuleThe Error for the kThe Error for the k--Nearest Neighbor RuleNearest Neighbor Rule
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Distance MetricsDistance MetricsDistance Metrics

L-d norms (aka Minkowski distance):

•
 

d = 1: City block distance, Manhattan metric, 
taxicab distance

•
 

d = 2: Euclidean distance

•
 

d = inf: maximum distance metric

d
d

d

1/

i
i |x|)x(d ⎟

⎠

⎞
⎜
⎝

⎛
= ∑r

d ( x ) |x |i
i

1
r

= ∑

d ( x ) |x |i
i

2
2r

= ∑

d ( x ) m ax x
i i∞ =

r
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Error Estimation – k-NN Error Estimation Error Estimation –– kk--NN NN 

Resubstitution error:



Nonparametric tech.Pattern Recognition:

61

Error Estimation – k-NN Error Estimation Error Estimation –– kk--NN NN 

Leave one out error:
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