RAF103F Mynsturgreining

Pattern Recognition

Instructor: Yuliya Tarabalka, Tel. 844 73 06, E-mail: <u>yuliya.tarabalka@hyperinet.eu</u>

Supervisory teacher: Jón Atli Benediktsson

Course Outline:

•••••

4

Course Outline:

1. Introduction	ו
2. Mathematical Preliminaries	A 1 week
3. Bayesian Decision Theory	1 week
4. Maximum Likelihood Estimation	1 week
Mid-term exam	
5. Non-Parametric Classification	1 week
6. Linear Discriminant Functions	1 week
7. Feature Extraction for Representation and Classification	} 1 week
8. Unsupervised Analysis	J
Final exam	-

Generalities

Hours: Tuesday 13:20-14:50 (2h), Thursday 13:20-15:40 (3h), ? (2h) Location: O-104

Requirements:

- Home works (10% of the final grade)
- Mid-term exam (10%)
- Final project (30%)
- Final exam (50%)

Final Project

- Design, implementation and testing of a pattern recognition system
- Aim: to apply one or several pattern classification techniques to real world data
- Evaluation: report of 4 to 10 pages, including:
 - The problem you will try to solve
 - The method you are going to apply to solve it
 - Results and their discussion
 - Conclusions

Reading Material

- R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd ed., John Wiley & Sons, 2000.
- 2. K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed., Academic Press 1990.
- 3. C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.

1. Introduction

Introduction

- Examples of Patterns
- Examples of Applications
- Pattern Recognition Systems
- The Design Cycle
- Conclusion

What is a pattern?

- Pattern: a description (sort) of an object
- "Each pattern is a three-part rule, which expresses a relation between a certain *context*, a *problem*, and a *solution*." (C. Alexander. "A Pattern Language". Oxford University Press, New York, 1977)

Examples of Patterns

Figure 3: Examples of (visual) patterns/measurements.

11

Introduction

Examples of Patterns

Figure 1.1. Variety of different images all representing the same character A (from Hofstadter's Metamagical Themes: Questing for the Essence of Mind and Pattern [HOF1985]).

Pattern recognition is the scientific discipline whose goal is the classification of objects (patterns) into a number of categories or classes*

* http://profsite.um.ac.ir/~patternrec/about.htm

Pattern recognition is the science of making *inferences* from *perceptual data*, using tools from statistics, probability, computational geometry, machine learning, signal processing, and algorithm design

Introduction

Pattern Recognition Approaches

15

.....

Pattern Recognition Applications

- Analysis of Remote Sensing Imagery
- Speech/speaker recognition
- Classification of seismic signals
- Medical waveform classification (EEG, ECG)
- Biometric ID: Identification of people from physical characteristics
- Medical image analyses (CAT scan, MRI)
- License plate recognition
- Decision making in stock trading

Optical Character Recognition (OCR)

Handwritten Digit Recognition

Segmented

Unsegmented

65473 60198 68544 20065 70117 18032 8720 27260 61325 14559 74136 1933 (13101 20878 60521 38002 48640-2398 20907 14848

Handwritten Character Recognition

Chocolate Variety Pack

Play video

•••••

Face Detection & Recognition

Test image:

Problems:

- 1. Is there a face?
- 2. If yes, how many?
- 3. How many are female?

4. Is Jones there? If yes, which one?

Introduction

Face Recognition

Image databases: G:

Test image:

Who is this guy?

Tasks:

- Face detection
- Local feature extraction
- Global feature extraction
- Data classification

Face recognition homepage: http://www.face-rec.org

Biometric Identification

Identification of people from their physical characteristics, such as

- faces
- voices
- fingerprints
- palm prints
- hand vein distributions
- hand shapes and sizes
- retinal scans

Introduction

Example: Speaker Recognition

Example: Gender Classification

Goal:

Determine a person's gender from his/her profile data

Features collected

- Birthday
- Blood type
- Height and weight
- Hair length
- Voice pitch
- ...
- Chromosome

Remote sensing image classification

Input image (103 spectral channels)

Task: Assign every pixel to one of the nine classes: alphalt meadows gravel trees metal sheets bare soil bitumen bricks

Reference data

Spectral context

Panchromatic: one grey level value per pixel Multispectral: limited spectral info Hyperspectral: detailed spectral info

••••

Introduction

Spectral context

.

Feature Space

Three spectral responses mapped to a multivariant feature space. Though sampling at only two wavelengths is shown here, sampling at any number of wavelengths could be used, resulting in a correspondingly higher dimensional feature space.

There is no such thing as a clean pixel

Spectral responses for a typical pair of classes, showing the interval at each wavelength into which they fall.

Feature Space

Support Vector Machines classification

Class	Training samples	Test samples
Asphalt	548	6304
Meadows	540	18146
Gravel	392	1815
Trees	524	2912
Metal sheets	265	1113
Bare soil	532	4572
Bitumen	375	981
Bricks	514	3364
Shadows	231	795

Support Vector Machines classification

alphalt, meadows, gravel, trees, metal sheets, bare soil, bitumen, bricks, shadows

Overall accuracy = 81%

Spectral-spatial classification

- Info about spatial structures included
 - For more accurate classification
- How to define spatial structures automatically?

Introduction

Spectral-spatial classification

alphalt, meadows, gravel, trees, metal sheets, bare soil, bitumen, bricks, shadows

Overall accuracy = 94%

Introduction

Example: Particle Classification

Particles on an air filter

Introduction

Histogram Analysis P1: 2003 P2: () **P3: P1** Number Number **P2 P2 P**3

Area

Introduction

Histogram Analysis

36

Sample Data Set

Features Class

Area	Perimeter	Class
3	6	P1
5	7	P1
4	4	P1
7	6	P1
12	11	P2
15	10	P2
14	12	P2
17	13	P2
14	19	P3
13	20	P3
15	22	P3
12	18	P3

Design set: Odd-indexed entries

Test set: Even-indexed entries

Input Space Partitioning

Fish Classification Example

"Sorting incoming Fish on a conveyor according to species using optical sensing"

Sea bass

Species →

Salmon

Problem Analysis

- Set up a camera and take some sample images to extract features
 - Length
 - Lightness
 - Width
 - Number and shape of fins
 - Position of the mouth, etc...

This is the set of all suggested features to explore for use in our classifier.

Introduction

Possible Distortion

42

.....

Introduction

Possible Distortion

- Figure 4: Examples of pattern distortions (visual patterns).
 - (a) Geometric distortions of visual (image) patterns-square.
 - (b) Geometric distortions of grid pattern.
 - (c) Geometric distortions of character patterns.
 - (d) More extreme pattern distortions (missing parts and extra parts) using the patterns of parts (a) to (c).

Preprocessing

- Use a segmentation operation to isolate fishes from one another and from the background
- Information from a single fish is sent to a <u>feature extractor</u> whose purpose is to reduce the data by measuring certain features
- The features are passed to a <u>classifier</u>

Fish Classification Example

45

Classification

Select the length of the fish as a possible feature for discrimination

Fish Classification Example

Figure 1.2: Histograms for the length feature for the two categories. No single threshold value l^* (decision boundary) will serve to unambiguously discriminate between the two categories; using length alone, we will have some errors. The value l^* marked will lead to the smallest number of errors, on average.

Fish Classification Example

- The *length* is a poor feature alone
- Select the *lightness* as a possible feature

Fish Classification Example

Figure 1.3: Histograms for the lightness feature for the two categories. No single threshold value x^* (decision boundary) will serve to unambiguously discriminate between the two categories; using lightness alone, we will have some errors. The value x^* marked will lead to the smallest number of errors, on average.

Task of Decision Theory

Decision boundary and cost relationship

 Move the decision boundary toward smaller values of lightness in order to minimize the cost (reduce the number of sea bass that are classified salmon)

This is the task of decision theory

Two Features

Adopt the lightness and add the width of the fish

Fish \rightarrow x = [x₁, x₂] (Lightness, Width)

Decision Boundary

Figure 1.4: The two features of lightness and width for sea bass and salmon. The dark line might serve as a decision boundary of our classifier. Overall classification error on the data shown is lower than if we use only one feature as in Fig. 1.3, but there will still be some errors.

More Features

• We might add other features that are not correlated with the ones we already have. A precaution should be taken not to reduce the performance by adding such "noisy features"

 Ideally, the best decision boundary should be the one which provides an optimal performance such as in the following figure:

Decision Boundary

Figure 1.5: Overly complex models for the fish will lead to decision boundaries that are complicated. While such a decision may lead to perfect classification of our training samples, it would lead to poor performance on future patterns. The novel test point marked ? is evidently most likely a salmon, whereas the complex decision boundary shown leads it to be misclassified as a sea bass.

Issue of Generalization

• However, our satisfaction is premature because the central aim of designing a classifier is to correctly classify novel input.

Decision Boundary

Figure 1.6: The decision boundary shown might represent the optimal tradeoff between performance on the training set and simplicity of classifier.

Pattern Recognition Systems

• Sensing

- Use of a transducer (camera or microphone)
- PR system depends on the bandwidth, the resolution, the sensitivity, and the distortion of the transducer

Segmentation and grouping

• Patterns should be well separated and should not overlap

Pattern Recognition Systems

.....

Pattern Recognition Systems

Feature extraction

- Discriminative features
- Invariant features with respect to translation, rotation and scale.

Classification

- Use a feature vector provided by a feature extractor to assign the object to a category
- Perfect classification is often impossible → to determine the probability for each of the possible categories

Post Processing

• Exploit <u>context</u> input dependent information other than from the target pattern itself to improve performance

The Design Cycle

- Data Collection
- Feature Choice
- Model Choice
- Training
- Evaluation
- Computational Complexity

The Design Cycle

The Design Cycle

Data Collection

• How do we know when we have collected an adequately large and representative set of examples for training and testing the system?

The Design Cycle

Feature Choice

- Depends on the characteristics of the problem domain.
- Preferably:
 - Simple to extract,
 - invariant to irrelevant transformation,
 - insensitive to noise,
 - useful for discriminating patterns in different categories.

The Design Cycle

Model Choice

 Unsatisfied with the performance of our fish classifier and want to jump to another class of model

The Design Cycle

Training

 Use data to determine the classifier. Many different procedures for training classifiers and choosing models

The Design Cycle

Evaluation

 Measure the error rate (or performance) and switch from one set of features to another one

The Design Cycle

Computational Complexity

 What is the trade off between computational ease and performance? (How an algorithm scales as a function of the number of features, patterns or categories?)

The Design Cycle

- Learning and Adaptation
- Supervised learning
 - A teacher provides a category label or cost for each pattern in the training set
- Unsupervised learning
 - The system forms clusters or "natural groupings" of the input patterns

Conclusion

- The number, complexity and magnitude of the sub-problems of PR should not be considered overwhelming
- Many of these sub-problems can be solved
- However, many fascinating unsolved problems still remain