Classification Based Marker Selection for Watershed Transform of Hyperspectral Images

Yuliya Tarabalka^{1,2}, Jocelyn Chanussot¹, Jón Atli Benediktsson²

¹GIPSA-Lab, Grenoble Institute of Technology, France ²University of Iceland, Reykjavik, Iceland e-mail: yuliya.tarabalka@hyperinet.eu

July 15, 2009

Outline

2 Marker-controlled watershed segmentation and classification

Conclusions and perspectives

Hyperspectral image

Every pixel contains a detailed spectrum (>100 spectral bands)

+ More information per pixel \rightarrow increasing capability to distinguish objects

– Dimensionality increases \rightarrow image analysis becomes more complex

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Marker Selection for Watershed of HS Images

Classification problem

Input AVIRIS image $[145 \times 145 \times 200]$

Ground-truth data

Task

Assign **every** pixel to **one** of the **16** classes: corn-no till, corn-min till, corn, soybeans-no till, soybeans-min till, soybeans-clean till, alfalfa, grass/pasture, grass/trees, grass/pasture-mowed, hay-windrowed, oats, wheat, woods, bldg-grass-tree-drives, stone-steel towers

Classification approaches

Only spectral information

- Spectrum of each pixel is analyzed
- Directly accessible
- Kernel-based methods (e.g. SVM)
 → good classification results

Classification approaches

Only spectral information

- Spectrum of each pixel is analyzed
- Directly accessible
- Kernel-based methods (e.g. SVM)
 → good classification results

Spectral + spatial information

- Info about spatial structures included
- How to define structures?
 - \bullet closest neighborhood \rightarrow not flexible enough
 - adaptive neighborhood (segmentation map)
 - \rightarrow currently investigated

Our previous research (IGARSS'08)

- Segment a hyperspectral image by watershed = find an exhaustive partitioning of the image into homogeneous regions
- Spectral info + spatial info → classify image (majority vote within each region)

Introduction

Marker-controlled watershed segmentation and classification Conclusions and perspectives

Watershed segmentation

Region growing method:

- Minimum of a gradient = core of a homogeneous region
- 1 region = set of pixels connected to 1 local minimum of the gradient
- Watershed lines = edges between adjacent regions

Watershed segmentation (IGARSS'08)

Original image

Robust Color Morpho Gradient

Watershed 1277 regions

Watershed segmentation (IGARSS'08)

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Marker Selection for Watershed of HS Images

Marker-controlled watershed segmentation

Determine markers for each region of interest

Marker-controlled watershed segmentation

Determine markers for each region of interest

Objective

- Determine markers automatically ← using results of a pixel-wise classification
- Marker-controlled watershed \rightarrow segment and classify a hyperspectral image

Input

- *B*-band hyperspectral image $\mathbf{X} = {\mathbf{x}_j \in \mathbb{R}^B, j = 1, 2, ..., n}$
- $B \sim 100$

Pixel-wise classification

- SVM classifier^{*} → well suited for hyperspectral images
- Output:

*C. Chang and C. Lin, "LIBSVM: A library for Support Vector Machines," Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

Hyperspectral image (B bands)

Gradient

Pixel-wise

classification

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

classification map

probability map

-lyperspectral image (B bands) Pixel-wise Gradient classification classification map gradien probability ma image Selection of the most map of Marker-controlled reliable classified watershed pixels segmentation . Segmentation map + classification man

- Perform connected components labeling of the classification map
- 2 Analyse each connected co
 - If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
 - If it is small \rightarrow its pixels with probabilities > T% (90%)

are used as a marker

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

classification map

probability map

Perform connected components labeling of the classification map

② Analyse each connected

- If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
- If it is small \rightarrow its pixels with probabilities > T% (90%)

are used as a marker

Marker-controlled watershed segmentation and classification

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

classification map

probability map

Analyse each connected component:

- If it is large (> 20 pixels) \rightarrow use P%
- If it is small \rightarrow its pixels with

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

Perform connected components labeling of the classification map

- Analyse each connected component:
 - If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
 - If it is small \rightarrow its pixels with probabilities > T% (90%)

are used as a marker

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Must contain a marker!

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

- Perform connected components labeling of the classification map
- Analyse each connected component:
 - If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
 - If it is small \rightarrow its pixels with probabilities > T% (90%)

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

Perform connected components labeling of the classification map

- Analyse each connected component:
 - If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
 - If it is small \rightarrow its pixels with probabilities > T% (90%)

are used as a marker

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Has a marker only if it is very reliable

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

classification map

probability map

- Each connected component \rightarrow 1 or 0 marker (2250 regions \rightarrow 107 markers)
- Marker is not necessarily a connected set of pixels
- Each marker has a class label

map of 107 markers

Gradient

*Y. Tarabalka et al., "Segmentation and classification of hyperspectral data using watershed," in Proc. of IGARSS'08, Boston, USA, 2008.

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu) Marker Selection for Watershed of HS Images

Marker-controlled watershed segmentation

- Transform the gradient $f_g \rightarrow$ markers are the only minima
 - Create a marker image:

$$f_m(\mathbf{x}) = \begin{cases} 0\\ t_l \end{cases}$$

if **x** belongs to marker, otherwise

- Compute $(f_g + 1) \wedge f_m$
- Perform minima imposition: morphological reconstruction by erosion of $(f_g + 1) \bigwedge f_m$ from f_m :

$$f_{gmi} = R^{\varepsilon}_{(f_g+1) \bigwedge f_m}(f_m)$$

- Transform the gradient $f_g \rightarrow$ markers are the only minima
 - Create a marker image:

$$f_m(\mathbf{x}) = \begin{cases} 0, & \text{if} \\ t_{max}, & 0 \end{cases}$$

- Compute $(f_g + 1) \bigwedge f_m$
- Perform minima imposition: morphological reconstruction by erosion of $(f_g + 1) \bigwedge f_m$ from f_m :

$$f_{gmi} = R^{\varepsilon}_{(f_g+1) \bigwedge f_m}(f_m)$$

Marker-controlled watershed segmentation

- Transform the gradient $f_g \rightarrow$ markers are the only minima
 - Create a marker image:

$$f_m(\mathbf{x}) = \begin{cases} 0\\ t_r \end{cases}$$

if **x** belongs to marker, otherwise

- Compute $(f_g + 1) \bigwedge f_m$
- Perform minima imposition: morphological reconstruction by erosion of $(f_g + 1) \bigwedge f_m$ from f_m

$$f_{gmi} = R^{\varepsilon}_{(f_g+1) \bigwedge f_m}(f_m)$$

Three local minima

Marker-controlled watershed segmentation

- Transform the gradient $f_g \rightarrow$ markers are the only minima
 - Create a marker image:

$$f_m(\mathbf{x}) = \begin{cases} 0\\ t_r \end{cases}$$

if **x** belongs to marker, otherwise

- Compute $(f_g + 1) \bigwedge f_m$
- Perform minima imposition: morphological reconstruction by erosion of (f_g + 1) ∧ f_m from f_m:

$$f_{gmi} = R^{\varepsilon}_{(f_g+1) \bigwedge f_m}(f_m)$$

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)
- Assign every watershed pixel to the spectrally most similar neighboring region

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)
- Assign every watershed pixel to the spectrally most similar neighboring region

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)
- Assign every watershed pixel to the spectrally most similar neighboring region
- Merge regions belonging to the same marker

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)
- Assign every watershed pixel to the spectrally most similar neighboring region
- Merge regions belonging to the same marker
- Solution Class of each marker → class of the corresponding region

Classification maps & classification accuracies (%)

SVM			
		And a	
	610	1.11	
		6 - Cong	
1		1.0	

Proposed(107reg.)

Previous*(1277reg.)

*IGARSS'08

	SVM	Proposed	Previous*
Overall Accuracy	78.17	85.99	86.63
Average Accuracy	85.97	86.95	91.61
Kappa Coefficient κ	75.33	83.98	84.83
Corn-no till	78.18	80.35	94.22
Corn-min till	69.64	71.94	78.06
Corn	91.85	73.37	88.59
Soybeans-no till	82.03	98.91	96.30
Soybeans-min till	58.95	80.48	68.82
Soybeans-clean till	87.94	84.75	90.78
Alfalfa	74.36	94.87	94.87
Grass/pasture	92.17	95.30	95.08
Grass/trees	91.68	92.97	97.99
Grass/pasture-mowed	100	100	100
Hay-windrowed	97.72	99.54	99.54
Oats	100	100	100
Wheat	98.77	99.38	99.38
Woods	93.01	99.36	97.11
Bldg-Grass-Tree-Drives	61.52	55.45	69.39
Stone-steel towers	97.78	64.44	95.56

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Marker Selection for Watershed of HS Images

Conclusions and perspectives

Conclusions

- Method for automatic selection of markers for watershed transform is proposed
- Scheme for segmentation and classification of hyperspectral images is developed
- The proposed method:
 - significantly decreases oversegmentation
 - improves classification accuracies
 - provides classification maps with homogeneous regions

Perspectives

• Use marker selection + other image segmentation methods

attend WHISPERS'09, France, August 2009!

Thank you for your attention!