Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery

Yuliya Tarabalka and James C. Tilton

NASA Goddard Space Flight Center, Mail Code 606.3, Greenbelt, MD 20771, USA e-mail: yuliya.tarabalka@nasa.gov

July 28, 2011

2 Proposed spectral-spatial classification scheme

Conclusions and perspectives

Hyperspectral image

Every pixel contains a detailed spectrum (>100 spectral bands)

+ More information per pixel \rightarrow increasing capability to distinguish objects

– Dimensionality increases \rightarrow image analysis becomes more complex

↓ Advanced algorithms are required!

Supervised classification problem

AVIRIS image Spatial resolution: 20m/pix Spectral resolution: 200 bands

Ground-truth data

Task

16 classes: corn-no till, corn-min till, corn, soybeans-no till, soybeans-min till, soybeans-clean till, alfalfa, grass/pasture, grass/trees, grass/pasture-mowed, hay-windrowed, oats, wheat, woods, bldg-grass-tree-drives, stone-steel towers

Classification approaches

Only spectral information

- Pixelwise approach
- Spectrum of each pixel is analyzed
- SVM and kernel-based methods
 → good classification accuracies

Classification approaches

Only spectral information

- Pixelwise approach
- Spectrum of each pixel is analyzed
- SVM and kernel-based methods
 → good classification accuracies

Spectral + spatial information

- Info about spatial structures is included
 - Because neighboring pixels are related
- How to extract spatial information?
- How to combine spectral and spatial information?

Our previous research

- Segment a hyperspectral image into homogeneous regions
 - Each region = adaptive neighborhood for all the pixels within the region
- \bullet Spectral info + segmentation map \rightarrow classify image

Our previous research

- Segment a hyperspectral image into homogeneous regions
 - Each region = adaptive neighborhood for all the pixels within the region
- \bullet Spectral info + segmentation map \rightarrow classify image

• Unsupervised segmentation: dependence on the chosen measure of homogeneity

Our previous research: Marker-controlled segmentation

Our previous research: Marker-controlled segmentation

Drawback: strong dependence on the performance of the selected probabilistic classifier

- Perform segmentation and classification concurrently
 - \rightarrow best merge region growing with integrated classification

Input

- *B*-band hyperspectral image $\mathbf{X} = {\mathbf{x}_j \in \mathbb{R}^B, j = 1, 2, ..., n}$
- *B* ~ 100

Preliminary probabilistic classification

- Kernel-based SVM classifier^{*} → well suited for hyperspectral images
- Output:
 - classification map

- for each pixel \mathbf{x}_j :
- a vector of K class probabilities

$$\{P(L_j = k | \mathbf{x}_j) \\ k = 1, ..., K\}$$

*C. Chang and C. Lin, "LIBSVM: A library for Support Vector Machines," Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2011.

Hierarchical step-wise optimization with classification

1 Each pixel \mathbf{x}_i = one region R_i

- preliminary class label $L(R_i)$
- class probabilities

$$\{P_k(R_i) = P(L(R_i) = k | R_i), k = 1, ..., K\}$$

Hierarchical step-wise optimization with classification

- Calculate Dissimilarity Criterion (DC) between spatially adjacent regions
 - DC = function of region statistical, geometrical and classification features

Hierarchical step-wise optimization with classification

- Calculate Dissimilarity Criterion between adjacent regions:
 - Compute Spectral Angle Mapper between the region mean vectors u_i and u_j

$$SAM(u_i, u_j) = \arccos\left(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2}\right)$$

 If adjacent regions have equal class labels → they belong more likely to the same region:

 $DC = (2 - \max(P_{k'}(R_i), P_{k'}(R_j))) \cdot SAM(\mathbf{u}_i, \mathbf{u}_j)$

Hierarchical step-wise optimization with classification

- Calculate Dissimilarity Criterion between adjacent regions:
 - Compute Spectral Angle Mapper between the region mean vectors u_i and u_j

$$SAM(u_i, u_j) = \arccos\left(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2}\right)$$

 If adjacent regions have equal class labels → they belong more likely to the same region:

 $DC = (2 - \max(P_{k'}(R_i), P_{k'}(R_j))) \cdot SAM(\mathbf{u}_i, \mathbf{u}_j)$

Hierarchical step-wise optimization with classification

- Calculate Dissimilarity Criterion between adjacent regions:
 - Compute Spectral Angle Mapper between the region mean vectors u_i and u_j

$$SAM(u_i, u_j) = \arccos\left(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2}\right)$$

 If adjacent regions have equal class labels → they belong more likely to the same region:

 $DC = (2 - \max(P_{k'}(R_i), P_{k'}(R_j))) \cdot SAM(\mathbf{u}_i, \mathbf{u}_j)$

Hierarchical step-wise optimization with classification

- Calculate Dissimilarity Criterion between adjacent regions:
 - Compute Spectral Angle Mapper between the region mean vectors u_i and u_j

$$SAM(u_i, u_j) = \arccos\left(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2}\right)$$

 If adjacent regions have equal class labels → they belong more likely to the same region:

 $DC = (2 - \max(P_{k'}(R_i), P_{k'}(R_j))) \cdot SAM(\mathbf{u}_i, \mathbf{u}_j)$

Hierarchical step-wise optimization with classification

- Calculate Dissimilarity Criterion between adjacent regions:
 - Compute Spectral Angle Mapper between the region mean vectors u_i and u_j

$$SAM(u_i, u_j) = \arccos\left(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2}\right)$$

- If adjacent regions have equal class labels \rightarrow they belong more likely to the same region
- If two large regions are assigned to different classes → they cannot be merged together
- If two regions have different class labels → DC between them is penalized by
 (2) min(B) (B) (B) (B)))

$$(2 - \min(P_{L(R_j)}(R_i), P_{L(R_i)}(R_j)))$$

Hierarchical step-wise optimization with classification

Find the smallest dissimilarity criterion DC_{min}

Hierarchical step-wise optimization with classification

Merge all pairs of spatially adjacent regions with DC = DC_{min}.

For each new region $R_{new} = R_i + R_j$:

$$P_k(R_{new}) = \frac{P_k(R_i)card(R_i) + P_k(R_j)card(R_j)}{card(R_{new})}$$
$$L(R_{new}) = \arg\max_k \{P_k(R_{new})\}$$

All the pixels in R_{new} get a definite class label.

Hierarchical step-wise optimization with classification

Merge all pairs of spatially adjacent regions with DC = DC_{min}.

For each new region $R_{new} = R_i + R_j$:

$$P_k(R_{new}) = \frac{P_k(R_i)card(R_i) + P_k(R_j)card(R_j)}{card(R_{new})}$$
$$L(R_{new}) = \arg\max_k \{P_k(R_{new})\}$$

All the pixels in R_{new} get a definite class label.

Hierarchical step-wise optimization with classification

- Calculate Dissimilarity Criterion between adjacent regions
- Find the smallest dissimilarity criterion DC_{min}
- Merge all pairs of spatially adjacent regions with DC = DC_{min}
- Stop if all n pixels get a definite class label. If not converged, go to step 2

Classification maps

SVM

Proposed HSwC method

Classification accuracies (%)

	No. of Samp.		SV/M	ECHO	SVM	HSeg	HSWC
	Train	Test	1 3 1 101		MSF	+MV	HSWC
Overall Accuracy	-	-	78.17	82.64	88.41	90.86	89.24
Average Accuracy	-	-	85.97	83.75	91.57	93.96	94.18
Kappa Coefficient κ	-	-	75.33	80.38	86.71	89.56	87.76
Corn-no till	50	1384	78.18	83.45	90.97	90.46	93.06
Corn-min till	50	784	69.64	75.13	69.52	83.04	82.53
Corn	50	184	91.85	92.39	95.65	95.65	97.28
Soybeans-no till	50	918	82.03	90.10	98.04	92.06	95.10
Soybeans-min till	50	2418	58.95	64.14	81.97	84.04	74.36
Soybeans-clean till	50	564	87.94	89.89	85.99	95.39	96.10
Alfalfa	15	39	74.36	48.72	94.87	92.31	97.44
Grass/pasture	50	447	92.17	94.18	94.63	94.41	93.96
Grass/trees	50	697	91.68	96.27	92.40	97.56	97.85
Grass/pasture-mowed	15	11	100	36.36	100	100	100
Hay-windrowed	50	439	97.72	97.72	99.77	99.54	98.86
Oats	15	5	100	100	100	100	100
Wheat	50	162	98.77	98.15	99.38	98.15	99.38
Woods	50	1244	93.01	94.21	97.59	98.63	99.52
Bldg-Grass-Tree-Drives	50	330	61.52	81.52	68.79	82.12	81.52
Stone-steel towers	50	45	97.78	97.78	95.56	100	100

Conclusions and perspectives

Conclusions

- New spectral-spatial classification method for hyperspectral images was proposed
- New dissimilarity criterion between image regions was defined
- The proposed method:
 - improves classification accuracies
 - provides classification maps with homogeneous regions

Perspectives

- Explore further the choice of:
 - optimal representative features for segmentation regions
 - dissimilarity measures between regions

Thank you for your attention!

Best Merge Region Growing with Integrated Probabilistic Classification for Hyperspectral Imagery

Yuliya Tarabalka and James C. Tilton

NASA Goddard Space Flight Center, Mail Code 606.3, Greenbelt, MD 20771, USA e-mail: yuliya.tarabalka@nasa.gov

July 28, 2011

