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Hyperspectral image

Every pixel contains a detailed spectrum (>100 spectral bands)

+ More information per pixel → increasing capability to distinguish
objects

− Dimensionality increases → image analysis becomes more complex

⇓
Advanced algorithms are required!
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Supervised classification problem

AVIRIS image
Spatial resolution: 20m/pix

Spectral resolution: 200 bands

Ground-truth
data

Task

16 classes: corn-no till, corn-min till, corn, soybeans-no till, soybeans-min
till, soybeans-clean till, alfalfa, grass/pasture, grass/trees,
grass/pasture-mowed, hay-windrowed, oats, wheat, woods,

bldg-grass-tree-drives, stone-steel towers
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Classification approaches

Only spectral information

Pixelwise approach

Spectrum of each pixel is analyzed

SVM and kernel-based methods
→ good classification accuracies
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Classification approaches

Only spectral information

Pixelwise approach

Spectrum of each pixel is analyzed

SVM and kernel-based methods
→ good classification accuracies

Spectral + spatial information

Info about spatial structures is included
Because neighboring pixels are related

How to extract spatial information?

How to combine spectral and spatial
information?
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Our previous research

Segment a hyperspectral image into homogeneous regions
Each region = adaptive neighborhood for all the pixels within the region

Spectral info + segmentation map → classify image
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Unsupervised segmentation: dependence on the chosen measure of
homogeneity
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Our previous research: Marker-controlled segmentation

Probabilistic pixelwise
SVM classification

Classification map Probability map

⇒

Markers = the
most reliably
classified pixels

⇒

Marker-
controlled region
growing
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Our previous research: Marker-controlled segmentation

Probabilistic pixelwise
SVM classification

Classification map Probability map

⇒

Markers = the
most reliably
classified pixels

⇒

Marker-
controlled region
growing

Drawback: strong dependence on the performance of the selected
probabilistic classifier
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Objective

Perform segmentation and classification concurrently
→ best merge region growing with integrated classification

	  

⇑ ⇑
Dissimilarity criterion? Convergence criterion?
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Input

B-band hyperspectral image
X = {xj ∈ RB, j = 1, 2, ..., n}

B ∼ 100

 

    Spectral-spatial 
classification map 

Hyperspectral image 

Preliminary 
probabilistic 
classification 

While 
not converged 

Each pixel =  
one region  

Find min(DC) between 
all pairs of spatially 

adjacent regions (SAR) 

Merge all pairs of SAR 
with DC = min(DC). 
Classify new regions 
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Preliminary probabilistic classification

Kernel-based SVM classifier* → well suited for
hyperspectral images

Output:

• classification map
L = {Lj , j = 1, ..., n}

• for each pixel xj :

a vector of K class
probabilities

{P (Lj = k |xj),
k = 1, ..., K}

 

    Spectral-spatial 
classification map 

Hyperspectral image 

Preliminary 
probabilistic 
classification 

While 
not converged 

Each pixel =  
one region  

Find min(DC) between 
all pairs of spatially 

adjacent regions (SAR) 

Merge all pairs of SAR 
with DC = min(DC). 
Classify new regions 

*C. Chang and C. Lin, "LIBSVM: A library for Support Vector Machines," Software available at

http://www.csie.ntu.edu.tw/∼cjlin/libsvm, 2011.
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Hierarchical step-wise optimization with classification

1 Each pixel xi = one region Ri
preliminary class label L(Ri)
class probabilities
{Pk(Ri) = P (L(Ri) = k |Ri), k = 1, ..., K}
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Hierarchical step-wise optimization with classification

2 Calculate Dissimilarity Criterion (DC) between
spatially adjacent regions

DC = function of region statistical, geometrical
and classification features
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Hierarchical step-wise optimization with classification

2 Calculate Dissimilarity Criterion
between adjacent regions:

Compute Spectral Angle Mapper
between the region mean vectors
ui and uj

SAM(ui , uj) = arccos(
ui · uj

‖ui‖2‖uj‖2
)

If adjacent regions have equal class
labels → they belong more likely to
the same region:
DC = (2−max(Pk ′(Ri), Pk ′(Rj))) ·

SAM(ui , uj)

If two large regions are assigned to
different classes → they cannot be
merged together

 
    DC 

Compute SAM between region 
mean vectors SAM(ui, uj) 

L(Ri) = L(Rj) = k’ 

(card(Ri) > M) & 
(card(Rj) > M) 

DC = ∞ 

DC = (2 – min(PL(Rj)(Ri), 
PL(Ri)(Rj)))SAM(ui, uj) 

 

    yes no 

    yes no DC = (2 – max(Pk’(Ri), 
Pk’(Rj)))SAM(ui, uj) 
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Hierarchical step-wise optimization with classification

2 Calculate Dissimilarity Criterion
between adjacent regions:

Compute Spectral Angle Mapper
between the region mean vectors
ui and uj

SAM(ui , uj) = arccos(
ui · uj

‖ui‖2‖uj‖2
)

If adjacent regions have equal class
labels → they belong more likely to
the same region
If two large regions are assigned to
different classes → they cannot be
merged together
If two regions have different class
labels → DC between them is
penalized by
(2−min(PL(Rj )(Ri), PL(Ri )(Rj)))
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Hierarchical step-wise optimization with classification

3 Find the smallest dissimilarity criterion DCmin
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Hierarchical step-wise optimization with classification

4 Merge all pairs of spatially adjacent regions
with DC = DCmin.

For each new region Rnew = Ri + Rj :

Pk(Rnew ) =
Pk(Ri)card(Ri) + Pk(Rj)card(Rj)

card(Rnew )

L(Rnew ) = argmax
k
{Pk(Rnew )}

All the pixels in Rnew get a definite class label.

 

    Spectral-spatial 
classification map 

Hyperspectral image 

Preliminary 
probabilistic 
classification 

While 
not converged 

Each pixel =  
one region  

Find min(DC) between 
all pairs of spatially 

adjacent regions (SAR) 

Merge all pairs of SAR 
with DC = min(DC). 
Classify new regions 

Yuliya Tarabalka and James C. Tilton (yuliya.tarabalka@nasa.gov) Best merge region growing with integrated classification for HS data 16



Introduction
Proposed spectral-spatial classification scheme

Conclusions and perspectives

Hierarchical step-wise optimization with classification

4 Merge all pairs of spatially adjacent regions
with DC = DCmin.

For each new region Rnew = Ri + Rj :

Pk(Rnew ) =
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L(Rnew ) = argmax
k
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All the pixels in Rnew get a definite class label.
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Hierarchical step-wise optimization with classification

2 Calculate Dissimilarity Criterion between
adjacent regions

3 Find the smallest dissimilarity criterion DCmin

4 Merge all pairs of spatially adjacent regions
with DC = DCmin

5 Stop if all n pixels get a definite class label.
If not converged, go to step 2  
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Classification maps

SVM Proposed HSwC method
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Classification accuracies (%)

No. of Samp. SVM ECHO SVM HSeg HSwCTrain Test MSF +MV
Overall Accuracy - - 78.17 82.64 88.41 90.86 89.24
Average Accuracy - - 85.97 83.75 91.57 93.96 94.18
Kappa Coefficient κ - - 75.33 80.38 86.71 89.56 87.76
Corn-no till 50 1384 78.18 83.45 90.97 90.46 93.06
Corn-min till 50 784 69.64 75.13 69.52 83.04 82.53
Corn 50 184 91.85 92.39 95.65 95.65 97.28
Soybeans-no till 50 918 82.03 90.10 98.04 92.06 95.10
Soybeans-min till 50 2418 58.95 64.14 81.97 84.04 74.36
Soybeans-clean till 50 564 87.94 89.89 85.99 95.39 96.10
Alfalfa 15 39 74.36 48.72 94.87 92.31 97.44
Grass/pasture 50 447 92.17 94.18 94.63 94.41 93.96
Grass/trees 50 697 91.68 96.27 92.40 97.56 97.85
Grass/pasture-mowed 15 11 100 36.36 100 100 100
Hay-windrowed 50 439 97.72 97.72 99.77 99.54 98.86
Oats 15 5 100 100 100 100 100
Wheat 50 162 98.77 98.15 99.38 98.15 99.38
Woods 50 1244 93.01 94.21 97.59 98.63 99.52
Bldg-Grass-Tree-Drives 50 330 61.52 81.52 68.79 82.12 81.52
Stone-steel towers 50 45 97.78 97.78 95.56 100 100
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Conclusions and perspectives

Conclusions
1 New spectral-spatial classification method for hyperspectral images

was proposed
2 New dissimilarity criterion between image regions was defined
3 The proposed method:

improves classification accuracies
provides classification maps with homogeneous regions

Perspectives

Explore further the choice of:
optimal representative features for segmentation regions
dissimilarity measures between regions
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Thank you for your attention!
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