A Multiple Classifier Approach for Spectral-Spatial Classification of Hyperspectral Data

Yuliya Tarabalka^{1,2}, Jón Atli Benediktsson¹, Jocelyn Chanussot², James C. Tilton³

¹University of Iceland, Reykjavik, Iceland ²GIPSA-Lab, Grenoble Institute of Technology, France ³NASA Goddard Space Flight Center, Greenbelt, USA e-mail: yuliya.tarabalka@hyperinet.eu

July 28, 2010

Conclusions and perspectives

Hyperspectral image

Every pixel contains a detailed spectrum (>100 spectral bands)

+ More information per pixel \rightarrow increasing capability to distinguish objects

– Dimensionality increases \rightarrow image analysis becomes more complex

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Supervised classification problem

ROSIS image Spatial resolution: 1.3m/pix Spectral resolution: 103 bands

Ground-truth data

Task

Nine classes: alphalt, meadows, gravel, trees, metal sheets, bare soil, bitumen, bricks, shadows

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu) MC Approach for Classification of HS Data

Classification approaches

Only spectral information

- Pixelwise approach
- Spectrum of each pixel is analyzed
- SVM and kernel-based methods
 → good classification accuracies

Classification approaches

Only spectral information

- Pixelwise approach
- Spectrum of each pixel is analyzed
- SVM and kernel-based methods
 → good classification accuracies

Spectral + spatial information

- Neighboring pixels are related
 - Info about spatial structures is included
- How to define spatial structures?
- How to combine spectral and spatial information?

Our previous research

- Segment a hyperspectral image = find an exhaustive partitioning of the image into homogeneous regions
- Spectral info + spatial info → classify image (majority vote within each region)

Our previous research

- Segment a hyperspectral image = find an exhaustive partitioning of the image into homogeneous regions
- Spectral info + spatial info → classify image (majority vote within each region)

• Unsupervised segmentation: dependence on the chosen measure of homogeneity

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu) MC Approach for Classification of HS Data

Our previous research: Marker-controlled segmentation

Our previous research: Marker-controlled segmentation

Drawback: strong dependence on the performances of the selected probabilistic classifier

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Objective

- Mitigate the dependence of marker selection from the choice of a classifier
 - \rightarrow using multiple classifiers

Objective

- Mitigate the dependence of marker selection from the choice of a classifier
 - \rightarrow using multiple classifiers

Objective

- Mitigate the dependence of marker selection from the choice of a classifier
 - \rightarrow using multiple classifiers

Input

- *B*-band hyperspectral image $\mathbf{X} = {\mathbf{x}_j \in \mathbb{R}^B, j = 1, 2, ..., n}$
- $B \sim 100$

Multiple spectral-spatial classification

Region growing + edge detection 1 region = set of pixels connected to 1 min of the gradient

Spectral clustering approach In each cluster \rightarrow pixels drawn from a Gaussian distribution

HSEG

Region growing + spectral clustering Iterative merging of regions, starting from 1-pixel regions

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

MC Approach for Classification of HS Data

Multiple spectral-spatial classification

Region growing + edge detection 1 region = set of pixels connected to 1 min of the gradient

Spectral clustering approach In each cluster \rightarrow pixels drawn from a Gaussian distribution

HSEG

Region growing + spectral clustering Iterative merging of regions, starting from 1-pixel regions

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Multiple spectral-spatial classification

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

MC Approach for Classification of HS Data

Marker selection

• Pixels assigned by **all** the classifiers to the same class $$\Downarrow$$ Map of markers

Marker selection

Construction of a Minimum Spanning Forest (MSF)

1) Map an image onto a graph

 Weight w_{i,j} indicates the degree of dissimilarity between pixels x_i and x_j. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

Construction of a Minimum Spanning Forest (MSF)

1) Map an image onto a graph

 Weight w_{i,j} indicates the degree of dissimilarity between pixels x_i and x_j. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

- 1) Map an image onto a graph
 - Weight *w_{i,j}* indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*i*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

- 1) Map an image onto a graph
 - Weight *w_{i,j}* indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

- 1) Map an image onto a graph
 - Weight *w_{i,j}* indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

Construction of a Minimum Spanning Forest (MSF)

2) Construct a MSF $F^* = (V^*, E^*)$ rooted on $\{t_1, ..., t_m\}$

Initialization: $V^* = \{t_1, t_2, ..., t_m\}$ (marker pixels are in the forest)

Choose edge of the image graph e_{ij} with minimal weight such that i ∈ V* and j ∉ V*

If $V^* \neq V$, go to 1

Construction of a Minimum Spanning Forest (MSF)

2) Construct a MSF $F^* = (V^*, E^*)$ rooted on $\{t_1, ..., t_m\}$

Initialization: $V^* = \{t_1, t_2, ..., t_m\}$ (marker pixels are in the forest)

2
$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

3 If
$$V^* \neq V$$
, go to 1

Construction of a Minimum Spanning Forest (MSF)

2) Construct a MSF $F^* = (V^*, E^*)$ rooted on $\{t_1, ..., t_m\}$

Initialization: $V^* = \{t_1, t_2, ..., t_m\}$ (marker pixels are in the forest)

• Choose edge of the image graph e_{ij} with minimal weight such that $i \in V^*$ and $j \notin V^*$

$$V^* = V^* \cup \{j\}, \ E^* = E^* \cup \{e_{i,j}\}$$

3 If $V^* \neq V$, go to 1

Construction of a Minimum Spanning Forest (MSF)

2) Construct a MSF $F^* = (V^*, E^*)$ rooted on $\{t_1, ..., t_m\}$

Initialization: $V^* = \{t_1, t_2, ..., t_m\}$ (marker pixels are in the forest)

$$V^* = V^* \cup \{j\}, \ E^* = E^* \cup \{e_{i,j}\}$$

3 If
$$V^* \neq V$$
, go to 1

Construction of a Minimum Spanning Forest (MSF)

2) Construct a MSF $F^* = (V^*, E^*)$ rooted on $\{t_1, ..., t_m\}$

Initialization: $V^* = \{t_1, t_2, ..., t_m\}$ (marker pixels are in the forest)

$$V^* = V^* \cup \{j\}, \ E^* = E^* \cup \{e_{i,j}\}$$

3 If
$$V^* \neq V$$
, go to 1

Construction of a Minimum Spanning Forest (MSF)

2) Construct a MSF $F^* = (V^*, E^*)$ rooted on $\{t_1, ..., t_m\}$

Initialization: $V^* = \{t_1, t_2, ..., t_m\}$ (marker pixels are in the forest)

$$V^* = V^* \cup \{j\}, \ E^* = E^* \cup \{e_{i,j}\}$$

• If
$$V^*
eq V$$
, go to 1

Construction of a Minimum Spanning Forest (MSF)

2) Construct a MSF $F^* = (V^*, E^*)$ rooted on $\{t_1, ..., t_m\}$

3) Class of each marker \rightarrow class of the corresponding region (of all the pixels grown from this marker)

MSSC-MSF classification results

OA = 97.90% AA = 98.59%

MSSC-MSF classification results

OA = 97.90% AA = 98.59% OA = 81.01% AA = 88.25%

Multiple classification using several pixelwise techniques

 Assess the importance of spectral-spatial approaches for marker selection

OA =	87.98%
AA =	92.05%

OA = 97.60% AA = 98.59%

Classification accuracies (%):

			Spectral-spatial results			Marker-based		
	SVM	ECHO	used for marker selection			classification		
			SVM	SVM	SVM+	Prev.*	MC-	MSSC-
			+WH	+EM	HSEG	method	MSF	MSF
Over.Acc.	81.01	87.58	85.42	94.00	93.85	91.08	87.98	97.90
Aver.Acc.	88.25	92.16	91.31	93.13	97.07	94.76	92.05	98.59
Coef. κ	75.86	83.90	81.30	91.93	91.89	88.30	84.32	97.18
Asphalt	84.93	87.98	93.64	90.10	94.77	93.16	87.01	98.00
Meadows	70.79	81.64	75.09	95.99	89.32	85.65	83.24	96.67
Gravel	67.16	76.91	66.12	82.26	96.14	89.15	75.37	97.80
Trees	97.77	99.31	98.56	85.54	98.08	91.24	98.97	98.83
Metal sh.	99.46	99.91	99.91	100	99.82	99.91	99.91	99.91
Bare soil	92.83	93.96	97.35	96.72	99.76	99.91	93.24	100
Bitumen	90.42	92.97	96.23	91.85	100	98.57	95.11	99.90
Bricks	92.78	97.35	97.92	98.34	99.29	99.05	97.00	99.76
Shadows	98.11	99.37	96.98	97.36	96.48	96.23	98.62	96.48

*Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using Minimum Spanning Forest grown from automatically selected markers," IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 2010.

Conclusions and perspectives

Conclusions

- Multiple classifier approach for automatic selection of markers was proposed
- Scheme for classification of hyperspectral images was developed
- The proposed method:
 - improves classification accuracies
 - provides classification maps with homogeneous regions

Perspectives

• Explore further the integration of spectral-spatial approaches in multiple classifier systems

Thank you for your attention!

A Multiple Classifier Approach for Spectral-Spatial Classification of Hyperspectral Data

Yuliya Tarabalka^{1,2}, Jón Atli Benediktsson¹, Jocelyn Chanussot², James C. Tilton³

¹University of Iceland, Reykjavik, Iceland ²GIPSA-Lab, Grenoble Institute of Technology, France ³NASA Goddard Space Flight Center, Greenbelt, USA e-mail: yuliya.tarabalka@hyperinet.eu

July 28, 2010

