Advances in Spectral-Spatial Classification of Hyperspectral Imagery

Yuliya Tarabalka^{1,2}, Jón Atli Benediktsson², Jocelyn Chanussot¹

¹GIPSA-Lab, Grenoble Institute of Technology, France ²University of Iceland, Reykjavik, Iceland e-mail: yuliya.tarabalka@hyperinet.eu

October 26, 2009

Outline

Introduction

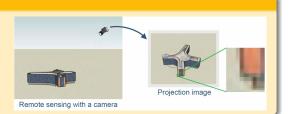
- 2 Classification using SVM and Adaptive Neighborhoods
 - Segmentation
 - Spectral-spatial classification
 - Concluding discussion
- 3 Segmentation and classification using SVM-derived markers
 - Marker selection
 - Classification using marker-controlled region growing
 - Marker-controlled watershed
 - Construction of a Minimum Spanning Forest
 - Concluding discussion
- Conclusions and perspectives

Classification using SVM and Adaptive Neighborhoods Segmentation and classification using SVM-derived markers Conclusions and perspectives

Spectral imagery

Spatial context

- 2D
- Digital image → composed of pixels



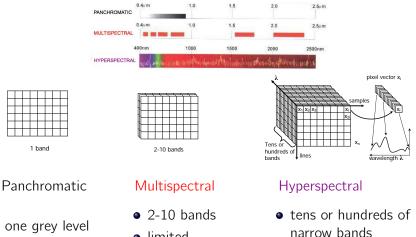
Spectral context

• Measurement of intensity of EM radiations (light)

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Classification of Hyperspectral Imagery

Spectral context



detailed spectral info

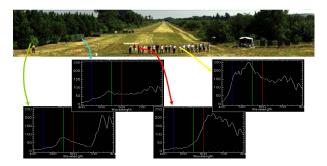
• one grey level value per pixel

1 band

 limited spectral info

Hyperspectral image

- Every pixel contains a detailed spectrum (>100 spectral bands)
- \bullet More information per pixel \rightarrow increasing capability to distinguish objects



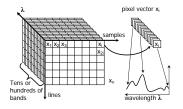
Hyperspectral image

Every pixel contains a detailed spectrum (>100 spectral bands)

+ More information per pixel \rightarrow increasing capability to distinguish objects

– Dimensionality increases \rightarrow image analysis becomes more complex

Efficient algorithms for automatic processing are required!



Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Classification of Hyperspectral Imagery

Classification problem

Input ROSIS image $[610 \times 340 \times 103]$

Ground-truth data



Task

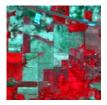
Assign every pixel to **one** of the **nine** classes: alphalt meadows trees metal sheets bare soil bitumen bricks

Classification using SVM and Adaptive Neighborhoods Segmentation and classification using SVM-derived markers Conclusions and perspectives

Classification problem (2)

Input AVIRIS image $[145 \times 145 \times 200]$

Ground-truth data



Task

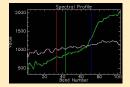
Assign **every** pixel to **one** of the **16** classes: corn-no till, corn-min till, corn, soybeans-no till, soybeans-min till, soybeans-clean till, alfalfa, grass/pasture, grass/trees, grass/pasture-mowed, hay-windrowed, oats, wheat, woods, bldg-grass-tree-drives, stone-steel towers

Classification using SVM and Adaptive Neighborhoods Segmentation and classification using SVM-derived markers Conclusions and perspectives

Classification approaches

Only spectral information

- Spectra of each pixel is analyzed
- Directly accessible
- Variety of methods (e.g. SVM)
 → good classification results



alphalt meadows gravel trees metal sheets bare soil bitumen bricks shadows Overall accuracy = 81.01%

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Classification of Hyperspectral Imagery

Classification using SVM and Adaptive Neighborhoods Segmentation and classification using SVM-derived markers Conclusions and perspectives

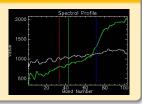
Classification approaches

Only spectral information

- Spectrum of each pixel is analyzed
- Directly accessible
- Variety of methods (e.g. SVM)
 → good classification results

Spectral + spatial information

- Info about spatial structures included
- How to define structures?
 - \bullet closest neighborhood \rightarrow not flexible enough
 - adaptive neighborhood (segmentation map)
 → currently investigated



Objective

- Segment a hyperspectral image = find an exhaustive partitioning of the image into homogeneous regions
- \bullet Spectral info + spatial info \rightarrow classify image

oods Segmentation Spectral-spatial classification tives Concluding discussion

Outline

Introduction

Classification using SVM and Adaptive Neighborhoods

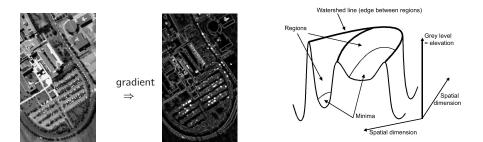
- Segmentation
- Spectral-spatial classification
- Concluding discussion

3 Segmentation and classification using SVM-derived markers

- Marker selection
- Classification using marker-controlled region growing
 Marker-controlled watershed
 - Construction of a Minimum Spanning Forest
- Concluding discussion
- 4 Conclusions and perspectives

Segmentation Spectral-spatial classification Concluding discussion

1. Watershed segmentation



Region growing method:

- Minimum of a gradient = core of a homogeneous region
- 1 region = set of pixels connected to 1 local minimum of the gradient
- Watershed lines = edges between adjacent regions

Segmentation Spectral-spatial classification Concluding discussion

1. Watershed segmentation

Tarabalka, Y., Chanussot, J., Benediktsson, J. A., Angulo, J., Fauvel, M., 2008. Segmentation and classification of hyperspectral data using watershed. In Proc. of IGARSS '08, Boston, USA.

Segmentation Spectral-spatial classification Concluding discussion

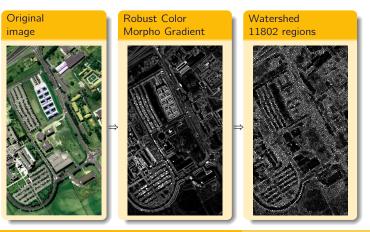
1. Watershed segmentation

Tarabalka, Y., Chanussot, J., Benediktsson, J. A., Angulo, J., Fauvel, M., 2008. Segmentation and classification of hyperspectral data using watershed. In Proc. of IGARSS '08, Boston, USA.

Segmentation Spectral-spatial classification Concluding discussion

1. Watershed segmentation

Tarabalka, Y., Chanussot, J., Benediktsson, J. A., Angulo, J., Fauvel, M., 2008. Segmentation and classification of hyperspectral data using watershed. In Proc. of IGARSS '08, Boston, USA.

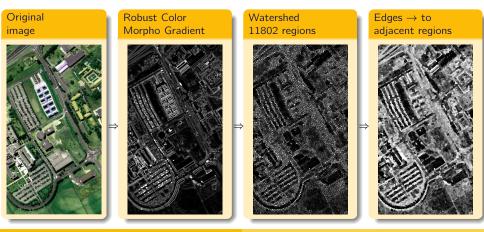


Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Segmentation Spectral-spatial classification Concluding discussion

1. Watershed segmentation

Tarabalka, Y., Chanussot, J., Benediktsson, J. A., Angulo, J., Fauvel, M., 2008. Segmentation and classification of hyperspectral data using watershed. In Proc. of IGARSS '08, Boston, USA.



Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Segmentation Spectral-spatial classification Concluding discussion

2. Partitional clustering (EM)

Clustering

- pixels are grouped into C clusters
- in each cluster \rightarrow pixels drawn from a Gaussian distribution
- \bullet distribution parameters \rightarrow EM algorithm

② Labeling of connected components

10 clusters

Segmentation Spectral-spatial classification Concluding discussion

2. Partitional clustering (EM)

- pixels are grouped into C clusters
- in each cluster \rightarrow pixels drawn from a Gaussian distribution
- $\bullet\,$ distribution parameters $\rightarrow\,$ EM algorithm
- 2 Labeling of connected components

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

10 clusters ⇒ 21450 regions

same cluster, but different regions!

Segmentation Spectral-spatial classification Concluding discussion

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*): Spectral Angle Mapper (SAM) between the region mean vectors u_i and u_j

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- 3 Merge adjacent regions with $DC = DC_{min}$
- Merge non-adjacent regions with DC ≤ DC_{min} · SpectralClusterWeight
- If not converge, go to 2

Segmentation Spectral-spatial classification Concluding discussion

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*): Spectral Angle Mapper (SAM) between the region mean vectors *u_i* and *u_j*

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- 3 Merge adjacent regions with $DC = DC_{min}$
- Merge non-adjacent regions with DC ≤ DC_{min} · SpectralClusterWeight

If not converge, go to 2

1	2	3		
4	5	6		
7	8	9		
10	11	12		

Segmentation Spectral-spatial classification Concluding discussion

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*): Spectral Angle Mapper (SAM) between the region mean vectors *u_i* and *u_j*

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- 3 Merge adjacent regions with $DC = DC_{min}$
- Merge non-adjacent regions with DC ≤ DC_{min} · SpectralClusterWeight

If not converge, go to 2



Segmentation Spectral-spatial classification Concluding discussion

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*): Spectral Angle Mapper (SAM) between the region mean vectors u_i and u_j

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- Merge adjacent regions with $DC = DC_{min}$
- Merge non-adjacent regions with $DC \leq DC_{min} \cdot SpectralClusterWeight$

If not converge, go to 2

Segmentation Spectral-spatial classification Concluding discussion

3. Hierarchical image segmentation (HSEG, [Tilton98])

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*): Spectral Angle Mapper (SAM) between the region mean vectors u_i and u_j

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Pind DC_{min} between adjacent regions
- 3 Merge adjacent regions with $DC = DC_{min}$
- In Merge non-adjacent regions with DC ≤ DC_{min} · SpectralClusterWeight

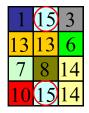
5 If not converge, go to 2

Segmentation Spectral-spatial classification Concluding discussion

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*): Spectral Angle Mapper (SAM) between the region mean vectors u_i and u_j

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- Solution Merge adjacent regions with $DC = DC_{min}$
- Merge non-adjacent regions with DC ≤ DC_{min} · SpectralClusterWeight
- If not converge, go to 2



Segmentation Spectral-spatial classification Concluding discussion

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*): Spectral Angle Mapper (SAM) between the region mean vectors *u_i* and *u_j*

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- Solution Merge adjacent regions with $DC = DC_{min}$
- Merge non-adjacent regions with DC ≤ DC_{min} · SpectralClusterWeight
- If not converge, go to 2

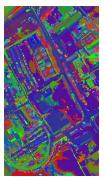
SCW = 0.07231 regions

Segmentation Spectral-spatial classification Concluding discussion

- Region growing + Spectral Clustering
- Dissimilarity criterion (*DC*): Spectral Angle Mapper (SAM) between the region mean vectors *u_i* and *u_j*

$$SAM(u_i, u_j) = \arccos(\frac{u_i \cdot u_j}{\|u_i\|_2 \|u_j\|_2})$$

- Each pixel one region
- Find DC_{min} between adjacent regions
- Solution Merge adjacent regions with $DC = DC_{min}$
- Merge non-adjacent regions with DC ≤ DC_{min} · SpectralClusterWeight
- If not converge, go to 2



SCW = 0.17575 regions

Outline

Introduction

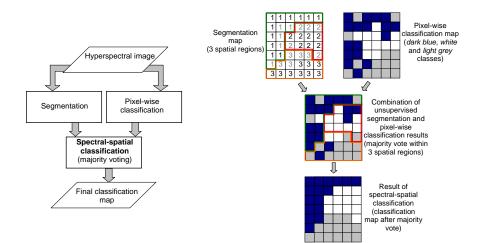
2 Classification using SVM and Adaptive Neighborhoods

Spectral-spatial classification

- Segmentation
- Spectral-spatial classification
- Concluding discussion
- 3 Segmentation and classification using SVM-derived markers
 - Marker selection
 - Classification using marker-controlled region growing
 Marker-controlled watershed
 - Construction of a Minimum Spanning Forest
 - Concluding discussion
- 4 Conclusions and perspectives

Segmentation Spectral-spatial classification Concluding discussion

Spectral-spatial classification scheme

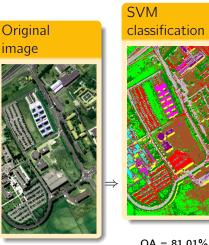


Segmentation Spectral-spatial classification Concluding discussion

Spectral-spatial classification

Segmentation Spectral-spatial classification Concluding discussion

Spectral-spatial classification

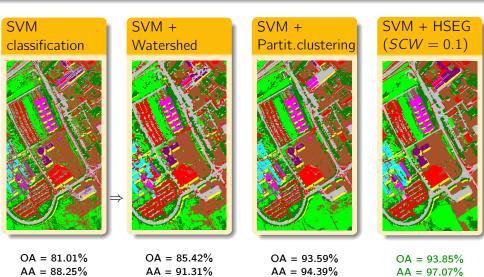


OA = 81.01% AA = 88.25%

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Segmentation Spectral-spatial classification Concluding discussion

Spectral-spatial classification



Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Classification of Hyperspectral Imagery

Segmentation Spectral-spatial classification Concluding discussion

Classification accuracies (%):

	SVM	+Watersh.	+Part.Cl.	+HSEG		EMP ¹	ECHO
SCW				0.0	0.1		
Overall Acc.	81.01	85.42	93.59	90.00	93.85	85.22	87.58
Average Acc.	88.25	91.31	94.39	94.15	97.07	90.76	92.16
Kappa Coef. κ	75.86	81.30	91.48	86.86	91.89	80.86	83.90
asphalt	84.93	93.64	90.72	73.33	94.77	95.36	87.98
meadows	70.79	75.09	92.73	88.73	89.32	80.33	81.64
gravel	67.16	66.12	82.09	97.47	96.14	87.61	76.91
trees	97.77	98.56	99.21	98.45	98.08	98.37	99.31
metal sheets	99.46	99.91	100	99.10	99.82	99.48	99.91
bare soil	92.83	97.35	96.78	98.43	99.76	63.72	93.96
bitumen	90.42	96.23	92.46	95.92	100	98.87	92.97
bricks	92.78	97.92	97.80	98.81	99.29	95.41	97.35
shadows	98.11	96.98	97.74	97.11	96.48	97.68	99.37

¹A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sensing of Environment, vol. 113, Suppl. 1, 2009.

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Classification of Hyperspectral Imagery

Segmentation Spectral-spatial classification Concluding discussion

Outline

Introduction

- Classification using SVM and Adaptive Neighborhoods
 - Segmentation
 - Spectral-spatial classification
 - Concluding discussion

3 Segmentation and classification using SVM-derived markers

- Marker selection
- Classification using marker-controlled region growing
 Marker-controlled watershed
 - Narker-controlled watershed
 - Construction of a Minimum Spanning Forest
- Concluding discussion
- 4 Conclusions and perspectives

Segmentation Spectral-spatial classification Concluding discussion

- Spectral-spatial classification improves accuracies when compared to pixel-wise classification
- Several segmentation techniques are investigated
- The HSEG segmentation map leads to the best classification
- Obtained classification accuracies > all previous results

However...

Segmentation Spectral-spatial classification Concluding discussion

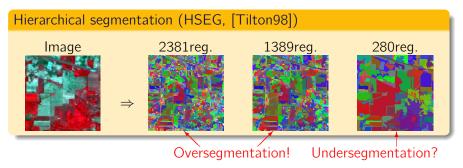
Unsupervised segmentation

- Unsupervised segmentation = exhaustive partitioning into homogeneous regions
- How to define a measure of homogeneity?

Segmentation Spectral-spatial classification Concluding discussion

Unsupervised segmentation

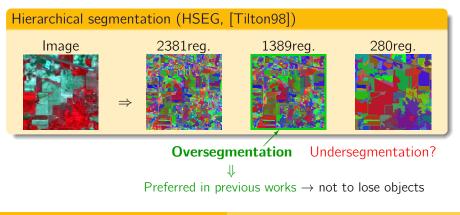
- Unsupervised segmentation = exhaustive partitioning into homogeneous regions
- How to define a measure of homogeneity?



Segmentation Spectral-spatial classification Concluding discussion

Unsupervised segmentation

- Unsupervised segmentation = exhaustive partitioning into homogeneous regions
- How to define a measure of homogeneity?



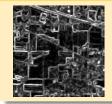
Segmentation Spectral-spatial classification Concluding discussion

Watershed segmentation (IGARSS'08)

Original image



Robust Color Morpho Gradient



Watershed 1277 regions

Classification using SVM and Adaptive Neighborhoods

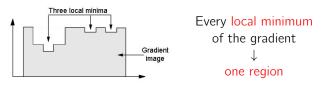
Spectral-spatial classification Concluding discussion

Watershed segmentation (IGARSS'08)

Original image

Robust Color Morpho Gradient

Severe oversegmentation!



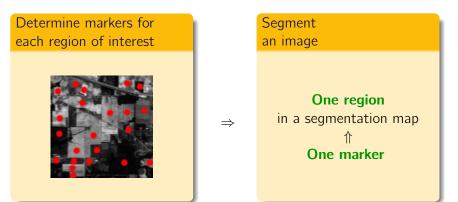
Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Classification of Hyperspectral Imagery

Segmentation Spectral-spatial classification Concluding discussion

Marker-controlled segmentation

- Reduce oversegmentation ⇐ incorporate a priori knowledge into segmentation
- We propose to use markers



Segmentation Spectral-spatial classification Concluding discussion

Objective

- Determine markers automatically \leftarrow using results of a pixel-wise classification
- Marker-controlled region growing→ segment and classify a hyperspectral image

Outline

Marker selection Classification using marker-controlled region growing Concluding discussion

1 Introduction

- 2 Classification using SVM and Adaptive Neighborhoods
 - Segmentation
 - Spectral-spatial classification
 - Concluding discussion

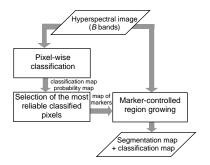
Segmentation and classification using SVM-derived markers

- Marker selection
- Classification using marker-controlled region growing
 Marker-controlled watershed
 - Construction of a Minimum Spanning Forest
- Concluding discussion
- 4 Conclusions and perspectives

Input

Marker selection Classification using marker-controlled region growing Concluding discussion

- *B*-band hyperspectral image $\mathbf{X} = {\mathbf{x}_j \in \mathbb{R}^B, j = 1, 2, ..., n}$
- $B \sim 100$



Marker selection Classification using marker-controlled region growing Concluding discussion

Pixel-wise classification

• SVM classifier* \rightarrow well suited for . Hyperspectral image (B bands) hyperspectral images • Output: Pixel-wise classification Selection of the most map of Marker-controlled classification map probability map reliable classified region growing pixels Segmentation map + classification ma probability estimate for each pixel to belong to the assigned class

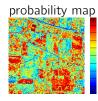
*C. Chang and C. Lin, "LIBSVM: A library for Support Vector Machines," Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

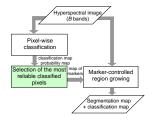
Marker selection Classification using marker-controlled region growing Concluding discussion

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

classification map



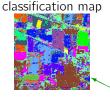


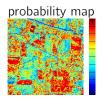
- Perform connected components labeling of the classification map
- ② Analyse each connected component:
 - If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
 - If it is small → its pixels with probabilities > T% (90%) are used as a marker

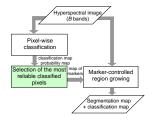
Marker selection Classification using marker-controlled region growing Concluding discussion

Selection of the most reliable classified pixels

Analysis of classification and probability maps:







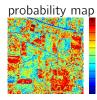
- Perform connected components labeling of the classification map
- ② Analyse each connected component:
 - If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
 - If it is small \rightarrow its pixels with probabilities > T% (90%) are used as a marker

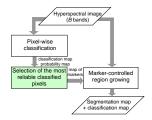
Marker selection Classification using marker-controlled region growing Concluding discussion

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

classification map

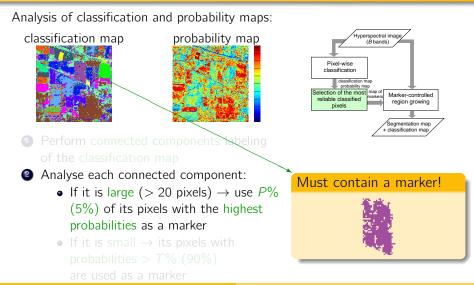




- Perform connected components labeling of the classification map
- Analyse each connected component:
 - If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
 - If it is small \rightarrow its pixels with probabilities > T% (90%)

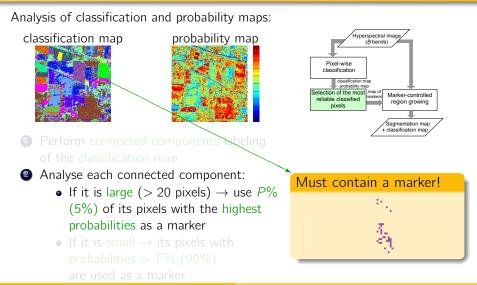
Marker selection Classification using marker-controlled region growing Concluding discussion

Selection of the most reliable classified pixels



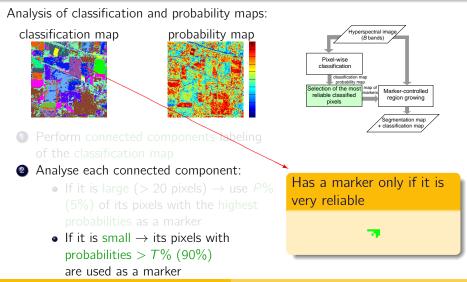
Marker selection Classification using marker-controlled region growing Concluding discussion

Selection of the most reliable classified pixels



Marker selection Classification using marker-controlled region growing Concluding discussion

Selection of the most reliable classified pixels

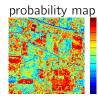


Marker selection Classification using marker-controlled region growing Concluding discussion

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

classification map



Pixel-wise classification reliable classified pixels Marker Selection of the most maker pixels Marker-controlled region growing Segmentation map + classification map

Hyperspectral image

(B bands)

- Each connected component \rightarrow 1 or 0 marker (2250 regions \rightarrow 107 markers)
- Marker is not necessarily a connected set of pixels
- Each marker has a class label

map of 107 markers

Outline

Introduction

- 2 Classification using SVM and Adaptive Neighborhoods
 - Segmentation
 - Spectral-spatial classification
 - Concluding discussion

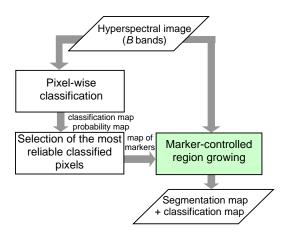
3 Segmentation and classification using SVM-derived markers

- Marker selection
- Classification using marker-controlled region growing
 - Marker-controlled watershed
 - Construction of a Minimum Spanning Forest
- Concluding discussion
- Conclusions and perspectives

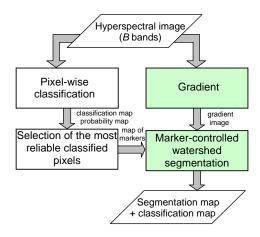
Marker selection Classification using marker-controlled region growing Concluding discussion

Marker selection Classification using marker-controlled region growing Concluding discussion

Marker-controlled region growing

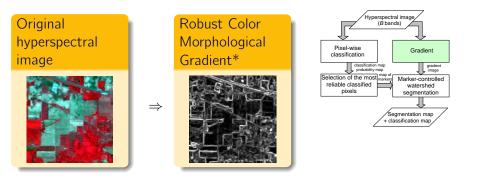


Marker selection Classification using marker-controlled region growing Concluding discussion



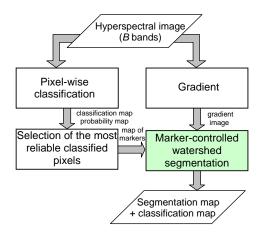
Marker selection Classification using marker-controlled region growing Concluding discussion

1. Marker-controlled watershed / Gradient



*Y. Tarabalka et al., "Segmentation and classification of hyperspectral data using watershed," in Proc. of IGARSS'08, Boston, USA, 2008.

Marker selection Classification using marker-controlled region growing Concluding discussion



Marker selection Classification using marker-controlled region growing Concluding discussion

1. Marker-controlled watershed

• Transform the gradient $f_g \rightarrow$ markers are the only minima

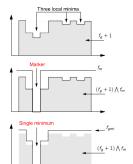
• Create a marker image:

$$f_m(\mathbf{x}) = \begin{cases} 0, \\ t_m(\mathbf{x}) \end{cases}$$

if **x** belongs to marker, otherwise

- Compute $(f_g + 1) \wedge f_m$
- Perform minima imposition: morphological reconstruction by erosion of $(f_g + 1) \bigwedge f_m$ from f_m :

$$f_{gmi} = R^{\varepsilon}_{(f_g+1) \bigwedge f_m}(f_m)$$



Marker selection Classification using marker-controlled region growing Concluding discussion

1. Marker-controlled watershed

- Transform the gradient $f_g \rightarrow$ markers are the only minima
 - Create a marker image:

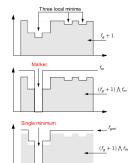
$$f_m(\mathbf{x}) = \begin{cases} 0, \\ t_{max}, \end{cases}$$

if **x** belongs to marker, otherwise

• Compute $(f_g + 1) \bigwedge f_m$

• Perform minima imposition: morphological reconstruction by erosion of $(f_g + 1) \bigwedge f_m$ from f_m :

$$f_{gmi} = R^{\varepsilon}_{(f_g+1) \bigwedge f_m}(f_m)$$



Marker selection Classification using marker-controlled region growing Concluding discussion

1. Marker-controlled watershed

• Transform the gradient $f_g \rightarrow$ markers are the only minima

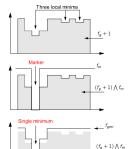
• Create a marker image:

$$f_m(\mathbf{x}) = \begin{cases} 0, \\ t_m(\mathbf{x}) \end{cases}$$

if **x** belongs to marker, otherwise

- Compute $(f_g + 1) \bigwedge f_m$
- Perform minima imposition: morphological reconstruction by erosion of $(f_g + 1) \bigwedge f_m$ from f_m ?

$$f_{gmi} = R^{\varepsilon}_{(f_g+1) \bigwedge f_m}(f_m)$$



Marker selection Classification using marker-controlled region growing Concluding discussion

1. Marker-controlled watershed

• Transform the gradient $f_g \rightarrow$ markers are the only minima

• Create a marker image:

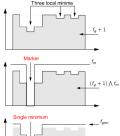
$$f_m(\mathbf{x}) = \begin{cases} 0, \\ t_m(\mathbf{x}) \end{cases}$$

if **x** belongs to marker, otherwise

• Compute $(f_g + 1) \wedge f_m$

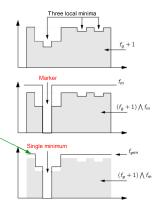
 Perform minima imposition: morphological reconstruction by erosion of (f_g + 1) ∧ f_m from f_m:

$$f_{gmi} = R^{\varepsilon}_{(f_g+1) \bigwedge f_m}(f_m)$$



Marker selection Classification using marker-controlled region growing Concluding discussion

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)

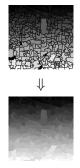


Marker selection Classification using marker-controlled region growing Concluding discussion

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)

Marker selection Classification using marker-controlled region growing Concluding discussion

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)
- Assign every watershed pixel to the spectrally most similar neighboring region

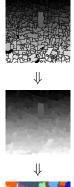


Marker selection Classification using marker-controlled region growing Concluding discussion

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)
- Assign every watershed pixel to the spectrally most similar neighboring region

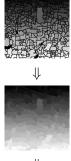
Marker selection Classification using marker-controlled region growing Concluding discussion

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)
- Assign every watershed pixel to the spectrally most similar neighboring region
- Merge regions belonging to the same marker



Marker selection Classification using marker-controlled region growing Concluding discussion

- Transform the gradient $f_g \rightarrow$ markers are the only minima
- Apply watershed on the filtered gradient image f_{gmi} (Vincent and Soille, 1991)
- Assign every watershed pixel to the spectrally most similar neighboring region
- Merge regions belonging to the same marker
- Solution Class of each marker → class of the corresponding region



Marker selection Classification using marker-controlled region growing Concluding discussion

Classification maps & classification accuracies (%)

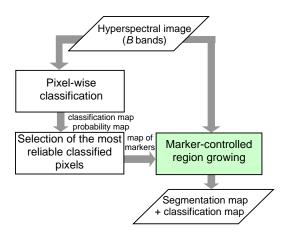
SVM		SVM	Markers	NoMarker*
	Overall Accuracy	78.17	85.99	86.63
	Average Accuracy	85.97	86.95	91.61
	Kappa Coefficient κ	75.33	83.98	84.83
	Corn-no till	78.18	80.35	94.22
	Corn-min till	69.64	71.94	78.06
Markers(107reg.)	Corn	91.85	73.37	88.59
	Soybeans-no till	82.03	98.91	96.30
	Soybeans-min till	58.95	80.48	68.82
	Soybeans-clean till	87.94	84.75	90.78
	Alfalfa	74.36	94.87	94.87
	Grass/pasture	92.17	95.30	95.08
	Grass/trees	91.68	92.97	97.99
NoMarker*(1277reg.)	Grass/pasture-mowed	100	100	100
	Hay-windrowed	97.72	99.54	99.54
	Oats	100	100	100
	Wheat	98.77	99.38	99.38
	Woods	93.01	99.36	97.11
	Bldg-Grass-Tree-Drives	61.52	55.45	69.39
*IGARSS'08	Stone-steel towers	97.78	64.44	95.56

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Classification of Hyperspectral Imagery

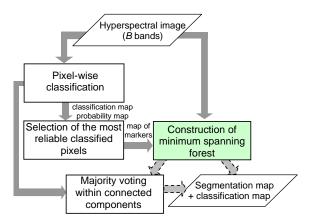
Marker selection Classification using marker-controlled region growing Concluding discussion

Marker-controlled region growing



Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

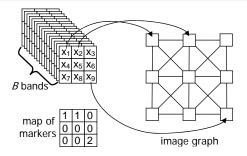
1) Map an image onto a graph

• Weight *w_{i,j}* indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



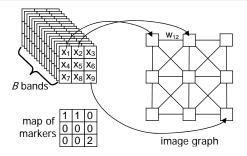
1) Map an image onto a graph

• Weight *w_{i,j}* indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



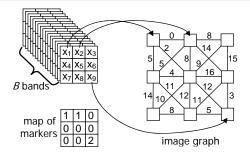
1) Map an image onto a graph

• Weight *w_{i,j}* indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



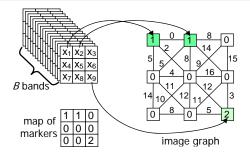
1) Map an image onto a graph

• Weight *w_{i,j}* indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



1) Map an image onto a graph

• Weight *w_{i,j}* indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

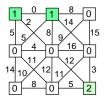


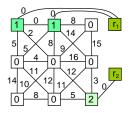
image graph

Given a graph G, a **MSF** F^* rooted on vertices $\{r_1, ..., r_m\}$ is:

- a non-connected graph without cycles
- contains all the vertices of G
- consists of connected subgraphs, each subgraph (tree) contains (is rooted on) one root r_i
- sum of the edges weights of F* is minimal

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

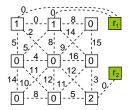


modified graph

2) Add *m* extra vertices r_i , i = 1, ..., m corresponding to *m* markers

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



3) Construct a MSF $F^* = (V^*, E^*)$

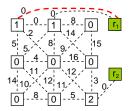
Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

■ Choose edge of the modified graph e_{ij} with minimal weight such that $i \in V^*$ and $j \notin V^*$

3 If $V^* \neq V$, go to 1

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

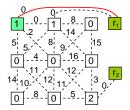
• Choose edge of the modified graph e_{ij} with minimal weight such that $i \in V^*$ and $j \notin V^*$

$$2 V^* = V^* \cup \{j\}, \ E^* = E^* \cup \{e_{i,j}\}$$

3 If $V^* \neq V$, go to 1

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



3) Construct a MSF $F^* = (V^*, E^*)$

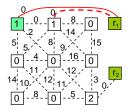
Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

• Choose edge of the modified graph e_{ij} with minimal weight such that $i \in V^*$ and $j \notin V^*$

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



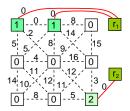
3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



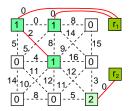
3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



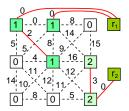
3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



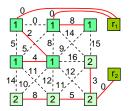
3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



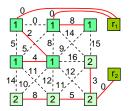
3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)



- 3) Construct a MSF $F^* = (V^*, E^*)$
- 4) Class of each marker \rightarrow class of the corresponding region (of all the pixels grown from this marker)

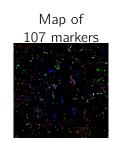
Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

MSF-based classification map

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest (MSF)

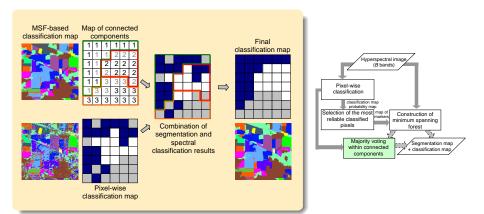


MSF-based classification map

If a marker is classified to the wrong class The whole region grown from this marker risks to be wrongly classified!

Marker selection Classification using marker-controlled region growing Concluding discussion

2. Construction of a Minimum Spanning Forest / Post-processing



Introducti Adaptivo Noidhborbos

Classification using SVM and Adaptive Neighborhoods Segmentation and classification using SVM-derived markers Conclusions and perspectives Marker selection Classification using marker-controlled region growing Concluding discussion

Classification accuracies (%)

	SVM MSF MSF+MV		M-WHED*	WHED+MV**	
		-			
Overall Accuracy	78.17	88.41	91.80	85.99	86.63
Average Accuracy	85.97	91.57	94.28	86.95	91.61
Kappa Coefficient κ	75.33	86.71	90.64	83.98	84.83
Corn-no till	78.18	90.97	93.21	80.35	94.22
Corn-min till	69.64	69.52	96.56	71.94	78.06
Corn	91.85	95.65	95.65	73.37	88.59
Soybeans-no till	82.03	98.04	93.91	98.91	96.30
Soybeans-min till	58.95	81.97	81.97	80.48	68.82
Soybeans-clean till	87.94	85.99	97.16	84.75	90.78
Alfalfa	74.36	94.87	94.87	94.87	94.87
Grass/pasture	92.17	94.63	94.63	95.30	95.08
Grass/trees	91.68	92.40	97.27	92.97	97.99
Grass/pasture-mowed	100	100	100	100	100
Hay-windrowed	97.72	99.77	99.77	99.54	99.54
Oats	100	100	100	100	100
Wheat	98.77	99.38	99.38	99.38	99.38
Woods	93.01	97.59	99.68	99.36	97.11
Bldg-Grass-Tree-Drives	61.52	68.79	68.79	55.45	69.39
Stone-steel towers	97.78	95.56	95.56	64.44	95.56

* Tarabalka et al., IGARSS'09

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

** Tarabalka et al., IGARSS'08

Classification of Hyperspectral Imagery

Marker selection Classification using marker-controlled region growing Concluding discussion

Classification using markers for the Pavia image

Marker selection Classification using marker-controlled region growing Concluding discussion

Classification accuracies for the Pavia image (%):

	SVM	+WHED	+Part.Cl.	+HSEG		MSF	MSF+MV
SCW				0.0	0.1		
Overall Acc.	81.01	85.42	93.59	90.00	93.85	84.14	91.08
Average Acc.	88.25	91.31	94.39	94.15	97.07	92.35	94.76
Kappa Coef. κ	75.86	81.30	91.48	86.86	91.89	79.71	88.30
Asphalt	84.93	93.64	90.72	73.33	94.77	93.05	93.16
Meadows	70.79	75.09	92.73	88.73	89.32	72.30	85.65
Gravel	67.16	66.12	82.09	97.47	96.14	89.15	89.15
Trees	97.77	98.56	99.21	98.45	98.08	87.02	91.24
Metal sheets	99.46	99.91	100	99.10	99.82	99.91	99.91
Bare soil	92.83	97.35	96.78	98.43	99.76	97.11	99.91
Bitumen	90.42	96.23	92.46	95.92	100	98.57	98.57
Bricks	92.78	97.92	97.80	98.81	99.29	95.66	99.05
Shadows	98.11	96.98	97.74	97.11	96.48	98.36	96.23

Outline

Marker selection Classification using marker-controlled region growing Concluding discussion

1 Introduction

- 2 Classification using SVM and Adaptive Neighborhoods
 - Segmentation
 - Spectral-spatial classification
 - Concluding discussion

Segmentation and classification using SVM-derived markers

- Marker selection
- Classification using marker-controlled region growing
 Marker-controlled watershed
 - Construction of a Minimum Spanning Forest
- Concluding discussion

Conclusions and perspectives

Marker selection Classification using marker-controlled region growing Concluding discussion

Classification using Minimum Spanning Forest grown from automatically selected markers:

- significantly decreases oversegmentation
- improves classification accuracies
- provides classification maps with homogeneous regions

Robustness of the parameters settings for the marker selection procedure has been experimentally proved

Conclusions

- Several schemes for spectral-spatial classification of hyperspectral images are proposed and investigated
- 2 The developed techniques:
 - significantly decrease oversegmentation
 - improve classification accuracies
 - provide classification maps with more homogeneous regions

when compared to the previously proposed classification methods

Classification using MSF gives the best or close to the best classification accuracies for all the tested images

Perspectives

Further develop marker-based methods

- investigate parameter estimation techniques
- develop new similarity measures
- Apply and adapt the proposed methods for analysis of multivariate and multisource data in other types of applications
 - medical imaging

Thank you for your attention!