Classification of Hyperspectral Images Using Automatic Marker Selection and Minimum Spanning Forest

Yuliya Tarabalka^{1,2}, Jocelyn Chanussot¹, Jón Atli Benediktsson²

¹GIPSA-Lab, Grenoble Institute of Technology, France ²University of Iceland, Reykjavik, Iceland e-mail: yuliya.tarabalka@hyperinet.eu

August 26, 2009

Outline

2 Segmentation and classification of hyperspectral images

Classification problem

Input AVIRIS image $[145 \times 145 \times 200]$

Ground-truth data

Task

Assign **every** pixel to **one** of the **16** classes: corn-no till, corn-min till, corn, soybeans-no till, soybeans-min till, soybeans-clean till, alfalfa, grass/pasture, grass/trees, grass/pasture-mowed, hay-windrowed, oats, wheat, woods, bldg-grass-tree-drives, stone-steel towers

Classification approaches

Only spectral information

- Spectrum of each pixel is analyzed
- Directly accessible
- Kernel-based methods (e.g. SVM)
 → good classification results

Classification approaches

Only spectral information

- Spectrum of each pixel is analyzed
- Directly accessible
- Kernel-based methods (e.g. SVM)
 → good classification results

Spectral + spatial information

- Info about spatial structures included
- How to define structures?
 - closest neighborhood \rightarrow not flexible enough
 - adaptive neighborhood (segmentation map)
 - \rightarrow currently investigated

Our previous research

- Segment a hyperspectral image = find an exhaustive partitioning of the image into homogeneous regions
- Spectral info + spatial info → classify image (majority vote within each region)

Unsupervised segmentation

- Unsupervised segmentation = exhaustive partitioning into homogeneous regions
- How to define a measure of homogeneity?

Unsupervised segmentation

- Unsupervised segmentation = exhaustive partitioning into homogeneous regions
- How to define a measure of homogeneity?

Unsupervised segmentation

- Unsupervised segmentation = exhaustive partitioning into homogeneous regions
- How to define a measure of homogeneity?

Marker-controlled segmentation

- Reduce oversegmentation ⇐ incorporate *a priori* knowledge into segmentation
- We propose to use markers

Objective

- Determine markers automatically ← using results of a pixel-wise classification
- Marker-controlled region growing→ segment and classify a hyperspectral image

Input

- *B*-band hyperspectral image $\mathbf{X} = {\mathbf{x}_j \in \mathbb{R}^B, j = 1, 2, ..., n}$
- *B* ~ 100

Pixel-wise classification

- SVM classifier^{*} → well suited for hyperspectral images
- Output:

Hyperspectral image

(B bands)

Pixel-wise classification

*C. Chang and C. Lin, "LIBSVM: A library for Support Vector Machines," Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

classification map

probability map

Perform connected components labeling of the classification map

- If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
- If it is small \rightarrow its pixels with probabilities > T% (90%)

are used as a marker

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

classification map

probability map

- Perform connected components labeling of the classification map
- Analyse each conne
 - If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
 - If it is small \rightarrow its pixels with probabilities > T% (90%)

are used as a marker

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

classification map

probability map

- Perform connected components labeling of the classification map
- Analyse each connected component:
 - If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
 - If it is small \rightarrow its pixels with probabilities > T% (90%)

are used as a marker

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

probability map

Perform connected components labeling of the classification map

- Analyse each connected component:
 - If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
 - If it is small \rightarrow its pixels with probabilities > T% (90%)

are used as a marker

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

Must contain a marker!

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

- Perform connected components labeling of the classification map
- ponents labeling
- Analyse each connected component:
 - If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
 - If it is small \rightarrow its pixels with probabilities > T% (90%)

are used as a marker

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

lyperspectral image (B bands)

Construction of

minimum spanning

forest

Pixel-wise classification

reliable classified

pixels

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

Perform connected components labeling of the classification map

- Analyse each connected component:
 - If it is large (> 20 pixels) → use P% (5%) of its pixels with the highest probabilities as a marker
 - If it is small \rightarrow its pixels with probabilities > T% (90%)

are used as a marker

Selection of the most reliable classified pixels

Analysis of classification and probability maps:

classification map

probability map

- Each connected component → 1 or 0 marker (2250 regions → 107 markers)
- Marker is not necessarily a connected set of pixels
- Each marker has a class label

map of 107 markers

Construction of a Minimum Spanning Forest (MSF)

1) Map an image onto a graph

• Weight *w_{i,j}* indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{ib}^2]^{1/2}}\right)$$

Construction of a Minimum Spanning Forest (MSF)

1) Map an image onto a graph

 Weight w_{i,j} indicates the degree of dissimilarity between pixels x_i and x_j. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{ib}^2]^{1/2}}\right)$$

- 1) Map an image onto a graph
 - Weight *w_{i,j}* indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

- 1) Map an image onto a graph
 - Weight *w_{i,j}* indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

- 1) Map an image onto a graph
 - Weight *w_{i,j}* indicates the degree of dissimilarity between pixels **x**_{*i*} and **x**_{*j*}. Spectral Angle Mapper (SAM) distance can be used:

$$w_{i,j} = SAM(\mathbf{x}_i, \mathbf{x}_j) = \arccos\left(\frac{\sum_{b=1}^{B} x_{ib} x_{jb}}{[\sum_{b=1}^{B} x_{ib}^2]^{1/2} [\sum_{b=1}^{B} x_{jb}^2]^{1/2}}\right)$$

Construction of a Minimum Spanning Forest (MSF)

image graph

Given a graph G, a **MSF** F^* rooted on vertices $\{r_1, ..., r_m\}$ is:

- a non-connected graph without cycles
- contains all the vertices of G
- consists of connected subgraphs, each subgraph (tree) contains (is rooted on) one root r_i
- sum of the edges weights of F* is minimal

Construction of a Minimum Spanning Forest (MSF)

modified graph

2) Add *m* extra vertices r_i , i = 1, ..., m corresponding to *m* markers

Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

- Choose edge of the modified graph e_{ij} with minimal weight such that $i \in V^*$ and $j \notin V^*$
- $V^* = V^* \cup \{j\}, \ E^* = E^* \cup \{e_{i,j}\}$
- 3 If $V^* \neq V$, go to 1

Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

- Choose edge of the modified graph e_{ij} with minimal weight such that $i \in V^*$ and $j \notin V^*$
- 2 $V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$
- 3 If $V^* \neq V$, go to 1

Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

• Choose edge of the modified graph e_{ij} with minimal weight such that $i \in V^*$ and $j \notin V^*$

$$V^* = V^* \cup \{j\}, \ E^* = E^* \cup \{e_{i,j}\}$$

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

If $V^*
eq V$, go to 1

Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

3 If
$$V^* \neq V$$
, go to 1

Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

3 If
$$V^* \neq V$$
, go to 1

Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

3 If
$$V^* \neq V$$
, go to 1

Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

3 If
$$V^* \neq V$$
, go to 1

Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

Initialization: $V^* = \{r_1, r_2, ..., r_m\}$ (roots are in the forest)

$$V^* = V^* \cup \{j\}, E^* = E^* \cup \{e_{i,j}\}$$

3 If
$$V^* \neq V$$
, go to 1

Construction of a Minimum Spanning Forest (MSF)

3) Construct a MSF $F^* = (V^*, E^*)$

4) Class of each marker \rightarrow class of the corresponding region (of all the pixels grown from this marker)

Construction of a Minimum Spanning Forest (MSF)

Pixel-wise classification map

=

MSF-based classification map

 \Rightarrow

Construction of a Minimum Spanning Forest (MSF)

MSF-based classification map

If a marker is classified to the wrong class The whole region grown from this marker risks to be wrongly classified!

 \Rightarrow

Majority voting within connected components

Classification accuracies (%)

	SVM	MSF	MSF+MV	M-WHED*	WHED+MV**
Overall Accuracy	78.17	88.41	91.80	85.99	86.63
Average Accuracy	85.97	91.57	94.28	86.95	91.61
Kappa Coefficient κ	75.33	86.71	90.64	83.98	84.83
Corn-no till	78.18	90.97	93.21	80.35	94.22
Corn-min till	69.64	69.52	96.56	71.94	78.06
Corn	91.85	95.65	95.65	73.37	88.59
Soybeans-no till	82.03	98.04	93.91	98.91	96.30
Soybeans-min till	58.95	81.97	81.97	80.48	68.82
Soybeans-clean till	87.94	85.99	97.16	84.75	90.78
Alfalfa	74.36	94.87	94.87	94.87	94.87
Grass/pasture	92.17	94.63	94.63	95.30	95.08
Grass/trees	91.68	92.40	97.27	92.97	97.99
Grass/pasture-mowed	100	100	100	100	100
Hay-windrowed	97.72	99.77	99.77	99.54	99.54
Oats	100	100	100	100	100
Wheat	98.77	99.38	99.38	99.38	99.38
Woods	93.01	97.59	99.68	99.36	97.11
Bldg-Grass-Tree-Drives	61.52	68.79	68.79	55.45	69.39
Stone-steel towers	97.78	95.56	95.56	64.44	95.56

* Tarabalka et al., IGARSS'09

Yuliya Tarabalka et al. (yuliya.tarabalka@hyperinet.eu)

** Tarabalka et al., IGARSS'08

Classification of HS Images Using Markers and MSF

Conclusions and perspectives

Conclusions

- Method for automatic selection of markers is proposed
- Scheme for segmentation and classification of hyperspectral images is developed
- The proposed method:
 - significantly decreases oversegmentation
 - improves classification accuracies
 - provides classification maps with homogeneous regions

Perspectives

• Use marker selection + other image segmentation methods

Thank you for your attention!

Classification of the Hekla image

AVIRIS image [560 \times 600 \times 157]

Classification accuracies (%)

	SVM	MSF	MSF+MV
Overall Accuracy	88.56	90.34	98.96
Average Accuracy	89.44	94.89	98.45
Kappa Coefficient κ	86.91	89.04	98.80
Andesite lava 1970	88.36	100	100
Andesite lava 1980 l	87.25	92.11	100
Andesite lava 1980 II	88.24	96.96	99.86
Andesite lava 1991 l	84.94	73.19	99.55
Andesite lava 1991 II	93.33	88.89	88.89
Andesite lava with moss cover	94.24	98.46	98.46
Hyaloclastite formation	87.54	99.53	99.68
Lava covered with tephra/scoria	91.69	95.08	97.38
Rhyolite	85.88	96.89	100
Scoria	74.20	97.60	97.60
Firn and glacier ice	100	100	100
Snow	97.59	100	100