MVA - Discrete Inference and Learning Lecture 9

Learning - Final remarks

Yuliya Tarabalka Inria Sophia Antipolis-Méditerranée - TITANE team Université Côte d'Azur - France

Overview

1. Feature extraction

2. Performance evaluation

Overview

1. Feature extraction

2. Performance evaluation

Why do we need feature extraction?

Motivation

- Main motivation: get out most of the data
- For classification task: find a space where samples from different classes are well separable

Objectives:

- Reduce computational load of the classifier
- Increase data consistency
- Incorporate different sources of information into a feature vector: spectral, spatial, multisource, ...

Feature extraction to reduce dimensionality

- PCA seeks directions that are efficient for representation
 - Unsupervised technique
- Discriminant analysis seeks directions that are efficient for discrimination
 - Supervised technique
- Many other techniques
 - Independent component analysis, manifold learning algorithms, autoencoders, ...

Extract features from text data

- 1. **Trimming Vocabulary:** remove "non-content" words (very frequent "stop words" such as "the", "and", ... or very rare words e.g., that just occur 10 times in 100000 words)
- 2. **Stemming:** Reduce all variants of a word to a single term (e.g., see, saw, seen \rightarrow "see")
- 3. Define Classes: Define how many classes do you have?
 - Eg. Spam/not spam, News categorization: Sport, Science, Politics
 - Categorize and assign number to the words
 - Count the frequency (number of occurrence) of each word

Features for image data: extract spatial info

- By simply looking at a grey pixel, we cannot say if it belongs to a *building* or a *road*
- We guess a category by considering spatial/contextual information
- How can a classifier consider this rich source of information?

- 1. Closest fixed neighborhoods
 - Markov Random Field [Pony00, Jackson02, Farag05]
 - Contextual features [Camps-Valls06]
 - Spectral content +
 - Spatial content (e.g. mean or standard deviation per spectral band)
 - + Simplicity
 - Imprecision at the border of regions

- 1. Closest fixed neighborhoods
 - Markov Random Field [Pony00, Jackson02, Farag05]
 - Contextual features [Camps-Valls06]
 - Spectral content +
 - Spatial content (e.g. mean or standard deviation per spectral band)
 - + Simplicity
 - Imprecision at the border of regions

Histograms of oriented gradients

Histogram of Gradient

- Dividing the image window into small spatial regions (*cells*)
- Cells can be either rectangle or radial.
- Each cell accumulating a weighted local 1-D histogram of gradient directions over the pixels of the cell.

Histograms of oriented gradients

Histogram of gradient

- 2. Morphological and area filtering
 - Morphological profiles [Pesaresi01, Dell'Acqua04, Benediktsson05]
 - Self-complementary area filtering [Fauvel07]
 - Attribute profiles [Ghamisi15, Cavallaro17]
 - + Neighborhoods are adapted to the structures
 - + Non-linear operators \Rightarrow do not blur the edges as convolutions do
 - Neighborhoods are scale dependent

Closing - Original - Opening

Course on mathematical morphology: http://www-sop.inria.fr/members/Yuliya.Tarabalka/teaching.htm

Lecture 9: Learning: final remarks

- 2. Morphological and area filtering
 - Morphological profiles [Pesaresi01, Dell'Acqua04, Benediktsson05]
 - Self-complementary area filtering [Fauvel07]
 - Attribute profiles [Ghamisi15, Cavallaro17]
 - + Neighborhoods are adapted to the structures
 - + Non-linear operators \Rightarrow do not blur the edges as convolutions do
 - Neighborhoods are scale dependent

Course on mathematical morphology: http://www-sop.inria.fr/members/Yuliya.Tarabalka/teaching.htm

- 2. Morphological and area filtering
 - Morphological profiles [Pesaresi01, Dell'Acqua04, Benediktsson05]
 - Self-complementary area filtering [Fauvel07]
 - Attribute profiles [Ghamisi15, Cavallaro17]
 - + Neighborhoods are adapted to the structures
 - + Non-linear operators \Rightarrow do not blur the edges as convolutions do
 - Neighborhoods are scale dependent

Course on mathematical morphology: http://www-sop.inria.fr/members/Yuliya.Tarabalka/teaching.htm

- 3. Superpixels derived from segmentation
 - Extraction and Classification of Homogeneous Objects [Kettig76]
 - ...
 - Multiscale segmentation, then features are derived from the regions [Linden07, Huang09]
 - + Flexible
 - Computationally demanding
 - Difficult to scale/parallelize

- 4. Features handcrafted for a particular application
 - Example 1: Line templates with different orientations for road detection [Jeong15]
 - Example 2: Rectangular templates for building detection [Garcin01]
 - + Can model complex shape
 - Lack of genericity
 - Computationally demanding

- 4. Features handcrafted for a particular application
 - Example 1: Line templates with different orientations for road detection [Jeong15]
 - Example 2: Rectangular templates for building detection [Garcin01]
 - + Can model complex shape
 - Lack of genericity
 - Computationally demanding

Modern trend & Conclusions

Deep learning:

• Automatically learn features if a lot of training data are available

Advice:

- If for the considered application it is easy to hand-craft class-separable features, no need to learn them
- If it is not easy to discriminate between categories, learning features often helps

Overview

1. Feature extraction

2. Performance evaluation

How to evaluate performance of a classifier?

• Common strategy:

- 1. Split all available data into training and test sets
- 2. Train a classifier using the training data
- 3. Compare the obtained results with the test data

Training set

Test set

How to evaluate performance of a classifier?

• Common strategy:

- 1. Split all available data into training and test sets
- 2. Train a classifier using the training data
- 3. Compare the obtained results with the test data

Test set

How to evaluate performance of a classifier?

• Common strategy:

- 1. Split all available data into training and test sets
- 2. Train a classifier using the training data
- 3. Compare the obtained results with the test data

Training set

Test set

1. Visual/huiman comparison of classification results

1. Visual/huiman comparison of classification results

- Very important, but is possible for a limited data
- Reveals weaknesses of the classifier
- 2. Accuracy measures: overall / misclassification rate, class-specific, average, kappa coefficient, intersection over union

- **Confusion matrix**: table, where each column represents the instances in a predicted class, while each row represents the instances in an actual class
 - Easy to see where the system mislabels one class as another

Percentage	Classification data				
Reference data	C_1	C_2	C_3	Row total	Class-specific accuracy
C_1	C ₁₁	C_{12}	C_{13}	$\sum_{i}^{K} C_{1i}$	$\frac{C_{11}}{\sum_{i}^{K} C_{1i}}$
C_2	C ₂₁	C_{22}	C_{23}	$\sum_{i}^{K} C_{2i}$	$\frac{C_{22}}{\sum_{i}^{K} C_{2i}}$
C_3	C_{31}	C_{22}	C_{33}	$\sum_{i}^{K} C_{3i}$	$\frac{C_{33}}{\sum_{i}^{K}C_{3i}}$
Column total	$\sum_{i}^{K} C_{i1}$	$\sum_{i}^{K} C_{i2}$	$\sum_{i}^{K} C_{i3}$	Ν	
User's accuracy	$\frac{C_{11}}{\sum_{i}^{K} C_{i1}}$	$\frac{C_{11}}{\sum_{i}^{K} C_{i2}}$	$\frac{C_{33}}{\sum_{i}^{K} C_{i3}}$		

• *C_i* represents the class *i* and *C_{ij}* is the number of pixels classified to the class *j* and referenced as the class *i*

Percentage	Classification data				
Reference data	C_1	C_2	C_3	Row total	Class-specific accuracy
C_1	C11	C_{12}	C_{13}	$\sum_{i}^{K} C_{1i}$	$\frac{C_{11}}{\sum_{i}^{K} C_{1i}}$
C_2	C_{21}	C_{22}	C_{23}	$\sum_{i}^{K} C_{2i}$	$\frac{C_{22}}{\sum_{i}^{K} C_{2i}}$
C_3	C_{31}	C_{22}	C_{33}	$\sum_{i}^{K} C_{3i}$	$\frac{C_{33}}{\sum_{i}^{K}C_{3i}}$
Column total	$\sum_{i}^{K} C_{i1}$	$\sum_{i}^{K} C_{i2}$	$\sum_{i}^{K} C_{i3}$	Ν	
User's accuracy	$\frac{C_{11}}{\sum_{i}^{K} C_{i1}}$	$\frac{C_{11}}{\sum_{i}^{K} C_{i2}}$	$\frac{C_{33}}{\sum_{i}^{K} C_{i3}}$		

• **Overall Accuracy** (OA) is the percentage of correctly classified pixels (*K* is the number of classes):

$$\textit{OA} = rac{\sum_{i}^{K}\textit{C}_{ii}}{\sum_{ij}^{K}\textit{C}_{ij}} imes 100\%$$

Percentage	Classification data				
Reference data	C_1	C_2	C_3	Row total	Class-specific accuracy
C_1	C ₁₁	C_{12}	C_{13}	$\sum_{i}^{K} C_{1i}$	$\frac{C_{11}}{\sum_{i}^{K} C_{1i}}$
C_2	C_{21}	C_{22}	C_{23}	$\sum_{i}^{K} C_{2i}$	$\frac{C_{22}}{\sum_{i}^{K} C_{2i}}$
C_3	C_{31}	C_{22}	C_{33}	$\sum_{i}^{K} C_{3i}$	$\frac{C_{33}}{\sum_{i}^{K}C_{3i}}$
Column total	$\sum_{i}^{K} C_{i1}$	$\sum_{i}^{K} C_{i2}$	$\sum_{i}^{K} C_{i3}$	Ν	
User's accuracy	$\frac{C_{11}}{\sum_{i}^{K} C_{i1}}$	$\frac{C_{11}}{\sum_{i}^{K} C_{i2}}$	$\frac{C_{33}}{\sum_{i}^{K} C_{i3}}$		

• Class Accuracy (CA, or producer's accuracy) is the percentage of correctly classified pixels for a given class:

$$CA_i = \frac{C_{ii}}{\sum_{j}^{K} C_{ij}} \times 100\%$$

Percentage	Classification data				
Reference data	C_1	C_2	C_3	Row total	Class-specific accuracy
C_1	C11	C_{12}	C_{13}	$\sum_{i}^{K} C_{1i}$	$\frac{C_{11}}{\sum_{i}^{K} C_{1i}}$
C_2	C_{21}	C_{22}	C_{23}	$\sum_{i}^{K} C_{2i}$	$\frac{C_{22}}{\sum_{i}^{K} C_{2i}}$
C_3	C_{31}	C_{22}	C_{33}	$\sum_{i}^{K} C_{3i}$	$\frac{C_{33}}{\sum_{i}^{K}C_{3i}}$
Column total	$\sum_{i}^{K} C_{i1}$	$\sum_{i}^{K} C_{i2}$	$\sum_{i}^{K} C_{i3}$	N	
User's accuracy	$\frac{C_{11}}{\sum_{i}^{K} C_{i1}}$	$\frac{C_{11}}{\sum_{i}^{K} C_{i2}}$	$\frac{C_{33}}{\sum_{i}^{K} C_{i3}}$		

• Average Accuracy (AA) is the mean of class-specific accuracies for all the classes:

$$AA = \frac{\sum_{i}^{K} CA_{i}}{K} \times 100\%$$

Kappa Coefficient (κ) is the percentage of agreement, *i.e.*, correctly classified pixels, corrected by the number of agreements that would be expected purely by chance:

$$\kappa = \frac{P_o - P_e}{1 - P_e} \times 100\%,$$
$$P_o = OA/100\%,$$

$$C_{i\cdot} = \sum_{j}^{K} C_{ij}, \quad C_{\cdot j} = \sum_{j}^{K} C_{ji},$$

Percentage	Classification data				
Reference data	C_1	C_2	C_3	Row total	Class-specific accuracy
C_1	C_{11}	C_{12}	C_{13}	$\sum_{i}^{K} C_{1i}$	$\frac{C_{11}}{\sum_{i}^{K} C_{1i}}$
C_2	C_{21}	C_{22}	C_{23}	$\sum_{i}^{K} C_{2i}$	$\frac{C_{22}}{\sum_{i}^{K} C_{2i}}$
C_3	C_{31}	C_{22}	C_{33}	$\sum_{i}^{K} C_{3i}$	$\frac{\overline{C_{33}}}{\sum_{i}^{K} C_{3i}}$
Column total	$\sum_{i}^{K} C_{i1}$	$\sum_{i}^{K} C_{i2}$	$\sum_{i}^{K} C_{i3}$	N	
User's accuracy	$\frac{C_{11}}{\sum_{i}^{K} C_{i1}}$	$\frac{C_{11}}{\sum_{i}^{K} C_{i2}}$	$\frac{C_{33}}{\sum_{i}^{K}C_{i3}}$		

where N is the number of referenced pixels

Classification map Input image Ground-truth

- Overall accuracy > 90%, average accuracy > 90%
- Is this classification result satisfactory?

Classification map Input image Ground-truth

- \bullet Overall accuracy > 90%, average accuracy > 90%
- Is this classification result satisfactory? ⇒ Depends on the application

Criterion for object-based classification?

- Intersection over union (IoU) criterion
 - Number of pixels assigned to a particular class both in the classified image and in the ground truth, divided by the total amount of pixels labeled as such in either of them
 - Object-based overlap measure typically used for imbalanced datasets

Criterion for object-based classification?

- Intersection over union (IoU) criterion
 - Number of pixels assigned to a particular class both in the classified image and in the ground truth, divided by the total amount of pixels labeled as such in either of them
 - Object-based overlap measure typically used for imbalanced datasets

Color image

OA = 94%. IoU = 61%

How to split data into training and test sets?

- Sampling strategies
 - Train on one area, test on another area
 - Random sampling: randomly select training samples within the area of each class
 - Patch sampling: image is divided into blocks, test samples are from blocks that haven't been used for training
 - Cluster sampling

Test set

How to split data into training and test sets?

- Sampling strategies
 - Train on one area, test on another area
 - Random sampling: randomly select training samples within the area of each class
 - Patch sampling: image is divided into blocks, test samples are from blocks that haven't been used for training
 - Cluster sampling

Choose model / parameters

• Validation: if enough training data, we can use X% for training and Y% for validaton

- Test on different parameters
- Retain parameters that give the highest accuracy on validation set
- If limited training data \Rightarrow cross-validation
 - Different types
 - Popular choice: k-fold cross-validation
 - Randomly partition the training data into k equal sized subsets
 - *k* times: one of *k* subsets is used for validation, and the rest of data are used for training

Underfitting versus overfitting

- **Underfitting:** machine learning algorithm cannot capture the underlying trend of the data
 - Often a result of an excessively simple model
- **Overfitting:** Model or the algorithm fits the data too well & captures the noise of the data
 - Often a result of an excessively complicated model
 - Can be prevented by fitting multiple models and using validation or cross-validation

 $\Leftarrow \mathsf{Good} \mathsf{\ fit}$

 $Overfitting \Rightarrow$

Feature 1

Underfitting versus overfitting

Diagnosing bias vs. variance

What to try next

- Get more training examples
 - Crowdsourced tools, mobile platforms

Lecture 9: Learning: final remarks