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Motivation: how to segment a melting floe?

Track multiyear ice floes from low-resolution images
Advanced Microwave Scanning Radiometer, 6.25 km/pix

How to segment moderate-resolution images?
Moderate-Resolution Imaging Spectroradiometer, 250 m/pix

⇒ ⇒ ⇒ ⇒
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Motivation: how to segment a melting floe?

⇒ ⇒ ⇒ ⇒

Difficulties:
Low signal-to-noise ratio
Low contrast between neighboring objects
Foreground & background intensity distributions vary significantly over time
Foreground can be occluded or undistinguishable from a part of the background
Data for some pixels can be missing
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How to segment a melting floe?

Solution:

Temporal coherence in video sequences = a lot of
information, not available for a single image

Take advantage of both past and future data
(omniscient approach)
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How to exploit temporal coherence?

Previous works: Our problem:

Rely on coherence of
foreground/background
intensity distributions over
time [Shi’98,
Grundmann’10]

Foreground/background
intensity distributions
vary significantly over
time

Introduce shape priors into
image segmentation
[Cremers’02,
Schoenemann’07]

Shape prior is unknown

Shape is changing over
time

Smooth 2D+T
spatio-temporal volume
[Riklin-Raviv’10, Wolz’10]

Rapid shrinkage events
will be underestimated
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How to exploit temporal coherence?

Shape prior information:

Object monotonously shrinks in time
(multiyear ice floe can only melt)

⇓

Solution:

Introduce shape shrinkage constraint in
spatio-temporal video segmentation

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 7



Introduction
Enforcing shape growth/shrinkage in graph cuts

Applications
Conclusions and perspectives

Objective

Aim:
To segment monotonously growing or shrinking shapes,
From time sequences of extremely noisy images,
In a low computational time

Method:
Formulate video segmentation as an optimization problem,
Using the spatio-temporal graph of pixels,
With shape growth or shrinkage constraint expressed with
directed infinite links.
Globally-optimal solution is computed with a graph cut

Examples of growing shapes:

Savanna fires, 2D satellite data Brain tumor, 3D medical MRI volumes

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 8
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Graph cut for image segmentation

source

sink
to all nodes

Image grid at time t

V
W

Graph-cut = tool to find globally-optimal segmentation*:
1 map an image onto a graph
2 minimize a criterion of the form:

E(L) =
∑
pixels i

Vi(Li) +
∑
i∼j

Wi ,j(Li , Lj)

Li = label of pixel i
individual potential Vi(Lti ) = penalty for a pixel i to have a label Li
Wi ,j(Li , Lj) = submodular interaction term between adjacent pixels i
and j : Wi ,j(0, 0) +Wi ,j(1, 1) 6 Wi ,j(0, 1) +Wi ,j(1, 0)

*[Boykov&Kolmogorov’04]
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Graph cut for image segmentation

Goal: Compute T (t ∈ [1, T ]) segmentation maps
Lt = {Lt(x,y) ∈ [0, 1], x = [1..H], y = [1..W ]},

Lt(x,y) =

{
1, if (x, y) ∈ foreground at time t;

0, otherwise.

Graph-cut segmentation:
1 map each image I(t) onto a graph
2 minimize a submodular energy of the form:

Et(L) =
∑
pixels i

V ti (L
t
i ) +

∑
i∼j

W t
i ,j(L

t
i , L

t
j )

Lti = label of pixel i at time t

individual potential V ti (L
t
i ) = penalty for a pixel i to have a label Lti

W t
i ,j (L

t
i , L

t
j ) = interaction term between adjacent pixels i and j
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Enforcing shape growth

Shape growth = property that the foreground cannot
lose any pixel when time advances

Enforcing shape growth (label 1 = foreground,
label 0 = background)

⇔ if Lt1i = 1, then L
t2
i = 1 ∀t2 > t1

⇔ pair of pixels ((x, y , t), (x, y , t + 1)) cannot have
the pair of labels (1, 0)

⇔ directed infinite link from each pixel to its predecessor
in time
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Graph cut with shape growth constraint

Segment jointly all T images together
apply graph cut to the 3D grid W ×H × T
with directed infinite links in time

Criterion minimized: E =
∑

t E
t under the constraint of shape growth:

E =
∑
pixels i

Vi(Li) +
∑
i∼j

Wi ,j(Li , Lj) + ∞
∑
t

δLti>L
t+1
i
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Extensions

Shape shrinkage: reverse the direction of
infinite links

from each pixel to its successor in time

3D shape: set directed infinite links for all
voxel pairs ((x, y , z, t), (x, y , z, t − 1))

Encourage, but not impose shape growth:
replace directed infinite links by directed
finite links

Inter-sequences inclusion constraint:
foreground in one sequence has to be
included in foreground of another sequence

see figure

Weighting frames by reliability
strong level of noise at time t → multiply
Et by a small reliability factor < 1

Sequence 2Sequence 1

t

t+1

t+2

t+3

Directed infinite links

Segmenting jointly two sequences
S1 and S2, by enforcing

the foreground of S1 to contain
the foreground of S2,

with directed infinite links between
all pixels of coordinates (x, y , t),

from S1 towards S2

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 14
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Complexity

Precise theoretical worst case complexity:
Depends on the max-flow algorithm used
Ranges from quasi-quadratic to cubic

In practice: computational complexity is typically much faster
We used the graph-cut algorithm of Boykov & Kolmogorov
Total computational time grows linearly with the number of frames
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 Average time per frame
Total computational time

Memory requirements
Long sequences of big images ⇒ graph-cut implementations for massive
grids [Delong&Boykov’08]
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Rewriting as a multi-label problem

Sequence segmentation with shape growth constraint

Successive labels Li(t) of a pixel i over time might change only once
0 (background) → 1 (foreground)

This vector of labels Li(t) is of the form (0, 0, . . . , 0, 1, . . . , 1)
can be represented by the time index τi of the first 1
τi ∈ [1, T + 1], with T + 1 meaning “never”

m

Multi-label problem on a single image

Can be expressed in the MRF form (slide 10) with:

Vi(τi) :=
∑
t<τi

V ti (0) +
∑
t>τi

V ti (1)

Wi ,j(τi , τj) :=
∑

t<min(τi ,τj )

W t
i ,j(0, 0) +

∑
τi6t<τj

W t
i ,j(1, 0)+

∑
τj6t<τi

W t
i ,j(0, 1) +

∑
t>max(τi ,τj )

W t
i ,j(1, 1)

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 16
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Multi-label problem (τi = time index of the first 1)

Can be expressed in the MRF form (slide 10) with:

Vi(τi) :=
∑
t<τi

V ti (0) +
∑
t>τi

V ti (1)

Wi ,j(τi , τj) :=
∑

t<min(τi ,τj )

W t
i ,j(0, 0) +

∑
τi6t<τj

W t
i ,j(1, 0)+

∑
τj6t<τi

W t
i ,j(0, 1) +

∑
t>max(τi ,τj )

W t
i ,j(1, 1)

Submodularity of the binary interaction terms W t in each frame ⇒
submodularity of the multilabel interaction term W :

Wi ,j(τ1, τ2) +Wi ,j(τ
′
1, τ
′
2) 6 Wi ,j(τ1, τ

′
2) +Wi ,j(τ

′
1, τ2)

for all labels satisfying τ1 6 τ ′1 and τ2 6 τ
′
2

m
This MRF-based energy can be minimized globally efficiently

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 17
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Multi-label problem (τi = time index of the first 1)

Can be expressed in the MRF form (slide 10) with:

Vi(τi) :=
∑
t<τi

V ti (0) +
∑
t>τi

V ti (1)

Wi ,j(τi , τj) :=
∑

t<min(τi ,τj )

W t
i ,j(0, 0) +

∑
τi6t<τj

W t
i ,j(1, 0)+

∑
τj6t<τi

W t
i ,j(0, 1) +

∑
t>max(τi ,τj )

W t
i ,j(1, 1)

Particular case: interaction terms W t do not depend on t
Interaction term W can be rewritten as a convex function g of (τi − τj)
Ishikawa’s construction [Ishikawa’03] can be applied

Advantages of our formulation:
Interaction terms can depend on t
Inclusion constraint can be enforced in spatial or/and time subregions only

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 18
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Automated ice floe analysis

The melting of sea ice is correlated to:
increases in sea surface temperature
associated climatic changes

⇓

It is important to:
monitor sea ice evolution
develop methods for automated analysis of satellite measurements

Objective:

Determine how rapidly a multiyear ice floe can melt
By analyzing NASA Aqua measurements:

Advanced Microwave Scanning Radiometer - Earth Observing System
(AMSR-E)
Moderate-Resolution Imaging Spectroradiometer (MODIS)

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 20
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Data set

Target: Arctic multiyear sea ice floe
45-day sequence (mi-August - end of September 2008)

AMSR-E data: 6.25 km/pix, 89 GHz, 32 × 32 pixels
multiyear ice has a low microwave emissivity

⇒ ⇒ ⇒ ⇒

MODIS data: band 1, 250 m/pix, 0.620-0.670 µm, 800 × 800 pixels

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 21



Introduction
Enforcing shape growth/shrinkage in graph cuts

Applications
Conclusions and perspectives

Melting sea ice in satellite images
Growing burned areas in satellite data
Growing tumor in 3D medical scans

Floe detection

We denote
upscaled AMSR-E images smoothed by Gaussian: At , t ∈ [1, T ]
MODIS images: It , t ∈ [1, T ]

On AMSR-E images, multiyear ice is darker than water, young ice and
clouds
⇒ Estimate for each time t:

reliable region of the foreground RF
reliable region of the background RB

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 22
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Floe alignment
The images must be aligned:

∀t, x, y , Lt+1(x,y) = 1 =⇒ Lt(x,y) = 1

Compute:
histograms of the intensities It of the floe, pt(I|F ), and of the
background, pt(I|B)
map of floe probabilities:

pt(F |I) = pt(I|F )P t(F )
pt(I|F )P t(F ) + pt(I|B)P t(B) ,

P t(B) =

At −min
x,y

At(x,y)

max
x,y

At(x,y) −min
x,y

At(x,y)
, P t(F ) = 1− P t(B).

Align images: exhaustive searching over rigid motions
maximize the correlation between maps of foreground probabilities at the
current and previous moments

To reach a pixelic alignment precision
maximize correlation between ∇pt(F |I) and [∇pt−1(F |I) + ∇pt−2(F |I) ]/2

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 23
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Graph-cut segmentation with shrinkage constraint

Potentials and interaction terms between neighboring pixels:

V ti (1) = −ln[pti (F |I)], V ti (0) = −ln[pti (B|I)],

W t
i ,j = δLi 6=Lj β exp

[
−
(Iti − Itj )2

2σ2

]
,

where:
pti (F |I) and pti (B|I) are computed from histograms of floe and
background reliable regions
σ2 := var(It)
β controls the importance of spatial interaction

Apply graph-cut: minimize

E =
∑
pixels i

Vi(Li) +
∑
i∼j

Wi ,j(Li , Lj) + ∞
∑
t

δLt+1i >Lti

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 24
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Ice floe segmentation with shrinkage constraint (β = 2)

Original MODIS data Graph-cut with directed infinite links
Manual segmentation

Dice score (DC) = 0.980 ± 0.007

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 25
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Comparison with other graph-cut-based methods

[w/o] No temporal links, i.e. independent segmentation of each frame

[Feedforward] Foreground pixels of the frame t are marked as seeds
with infinite unary costs in the frame (t + 1)

[Bi=const] Bidirectional temporal links with a constant weight

[Bi=variable] Bidirectional temporal links are computed based on
intensity differences between pixels in successive frames [Wolz’10]
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Comparison with other graph-cut-based methods

[w/o]

DC = .933 ± .099

[Feedforward]

DC = .554 ± .128

[Bi=variable]

DC = .958 ± .048

Conclusion: These methods are very sensitive to:
noise
variations of foreground/background intensities

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 27
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Using temporal links with constant weights
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bidirectional temporal links
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Area of a multiyear ice floe as a function
of time, computed by using mono- and
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Conclusions

Advantages of using graph-cut with temporal directed infinite links:

1 Succeeds in segmenting very noisy and low-contrast data
2 Copes well with rapid shrinkage events
3 No parameters needed to quantify temporal coherency

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 29
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Automated mapping of burned areas

Biomass burning has a significant impact on a
climate system

⇓

Automated mapping of burned areas to:
help heal the scars
prevent future fires

Objective:

Segment growing burned areas in time series of images

By analyzing Terra Moderate Resolution Imaging Spectroradiometer
(MODIS) measurements

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 31
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State of the art

MODIS Collection 5.1 Direct Broadcast
Monthly Burned Area Product (MCD64A1)

change detection approach [Giglio 2009]
uses MODIS Level 2G (bands 1, 5, 7)
and Level 3 daily active fire products
spatial filtering within the closest fixed
neighborhoods

Estimated days of burn, MODIS tile h31v10

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 32
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Our objective

Compute globally-optimal spatio-temporal segmentation of growing
burned areas
From a time series of very noisy data

Cloud contamination, missing data

Using a new graph-cut-based method with shape growth constraint

⇒ ⇒ ⇒ ⇒ ⇒

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 33
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Data set

⇒ ⇒ ⇒ ⇒ ⇒

Forty days of Terra MODIS Level 2G measurements (MOD09GA)
Over tropical savannas in the Northern Australia (tile h31v10)
Acquired in September - October 2011 (days 244-283)
Band 5 (1.24 µm) 500-m land surface reflectance data
T = 40 images with spatial dimensions of 400 × 400 pixels

MCD64A1 burned area product
Training: computing an initial histogram of burned
areas
Validation

Training mask
(days 213-243)

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 34
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Proposed spatio-temporal segmentation method

0 Initialization:
k := 0

MCD64A1[t1 −D, t1 − 1] → initial
burned training mask RBk

1 Unburned training mask
RUk = complementary (dilation (RBk ))

k:=k+1.	  Foreground	  
training	  mask	  =	  Lt1+kT’-‐3	  

k:=0.	  Create	  ini<al	  
foreground	  training	  mask	  

Build	  background	  
training	  mask	  

Apply	  graph-‐cut	  on	  a	  joint	  
graph	  of	  images	  
[t1,	  t1+(k+1)T’-‐1]	  	  

If	  all	  images	  are	  
segmented	  

yes	  

T	  segmenta<on	  
maps	  

no	  

For	  images	  [t1+kT’,	  t1+(k+1)T’-‐1]	  
compute	  intensity	  histograms	  
for	  foreground	  and	  background	  

Compute	  individual	  poten<als	  
and	  interac<on	  terms	  between	  

neighboring	  pixels	  

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 35
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Proposed spatio-temporal segmentation method

T’	  images	  

…	   …	   …	   …	  

For images t = [t1 + kT ′, t1 + (k + 1)T ′ − 1]:
2 Compute intensity histograms of MODIS band 5

for burned pt(I|B) and unburned pt(I|U) areas
using masks RBk and RUk

3 Compute individual potentials and interaction
terms, assuming pt(B) = pt(U) = 1/2:

V ti (1) = −ln[p
t(B|Iti )] = −ln

[
pt(Iti |B)

pt(Iti |B) + pt(I
t
i |U)

]
,

V ti (0) = −ln[p
t(U|Iti )] = −ln

[
pt(Iti |U)

pt(Iti |B) + pt(I
t
i |U)

]
,

W t
i ,j = δLi 6=Lj β exp

[
−
(Iti − I

t
j )
2

2σ2

]
,

σ2 := var(It).
If Iti is missing, V ti (1) = V

t
i (0) = 0

k:=k+1.	  Foreground	  
training	  mask	  =	  Lt1+kT’-‐3	  

k:=0.	  Create	  ini<al	  
foreground	  training	  mask	  

Build	  background	  
training	  mask	  

Apply	  graph-‐cut	  on	  a	  joint	  
graph	  of	  images	  
[t1,	  t1+(k+1)T’-‐1]	  	  

If	  all	  images	  are	  
segmented	  

yes	  

T	  segmenta<on	  
maps	  

no	  

For	  images	  [t1+kT’,	  t1+(k+1)T’-‐1]	  
compute	  intensity	  histograms	  
for	  foreground	  and	  background	  

Compute	  individual	  poten<als	  
and	  interac<on	  terms	  between	  

neighboring	  pixels	  

Tarabalka & Charpiat & Brucker & Menze (yuliya.tarabalka@inria.fr) Video segmentation with shape growth or shrinkage constraint 36



Introduction
Enforcing shape growth/shrinkage in graph cuts

Applications
Conclusions and perspectives

Melting sea ice in satellite images
Growing burned areas in satellite data
Growing tumor in 3D medical scans

Proposed spatio-temporal segmentation method

(k+1)T’	  images	  

…	   …	   …	   …	  

4 Apply graph-cut on a joint graph
of images [t1, t1 + (k + 1)T ′ − 1]

source

source

source

source

sink

sink

sink

sink

to all nodes

from all nodes

Image grid at time t

t+1

t+2

t+3

Joint segmentation with growth enforcement

sink

to all nodes

from all nodes

t+1

t+2

t+3

Image grid at time t

source

8
8

8

Independent segmentation of T images

5 If all images are segmented, exit. Otherwise:
k := k + 1

Burned training mask RBk = L
t1+kT

′−3

Go to step 1 (Consider the next T ′ images)

k:=k+1.	  Foreground	  
training	  mask	  =	  Lt1+kT’-‐3	  

k:=0.	  Create	  ini<al	  
foreground	  training	  mask	  

Build	  background	  
training	  mask	  

Apply	  graph-‐cut	  on	  a	  joint	  
graph	  of	  images	  
[t1,	  t1+(k+1)T’-‐1]	  	  

If	  all	  images	  are	  
segmented	  

yes	  

T	  segmenta<on	  
maps	  

no	  

For	  images	  [t1+kT’,	  t1+(k+1)T’-‐1]	  
compute	  intensity	  histograms	  
for	  foreground	  and	  background	  

Compute	  individual	  poten<als	  
and	  interac<on	  terms	  between	  

neighboring	  pixels	  
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Segmentation results (β = 2, T ′ = 20)
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Segmentation results

Day MODIS band 5
MCD64A1 map

(day 213 - current) Proposed method No spatial
interactions

No temporal
constraints

251

265

279
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Segmentation results
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No temporal links
MCD64A1 product
Monodirectional links = inf

Day

Burned area as a function of time, when
using no temporal links, monodirectional
infinite links and MCD64A1 product
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Bidirectional links = smoothing constraint
Monodirectional links = growth constraint

Weight

Mean and standard deviation for the dice
score (proposed versus MCD64A1) as a
function of the temporal link’s weight,
when using mono- and bidirectional
temporal links
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Segmentation results
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Spatial interactions, no temporal constraints

Temporal constraints, no spatial interactions

Spatio−temporal graph cut

Day

Percentage of pixels identified as burned
by the proposed method method
AMONG the pixels identified as burned
during [day 244 - current] by MCD64A1
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Conclusions and perspectives

Conclusion

The new method proved to be robust to:
noisy and low-contrast images
missing data

Perspectives

Extend the method for segmenting long time series of satellite data
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Outline

1 Introduction

2 Enforcing shape growth/shrinkage in graph cuts

3 Applications
Melting sea ice in satellite images
Growing burned areas in satellite data
Growing tumor in 3D medical scans

4 Conclusions and perspectives
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Task

Glioma is the most frequent primary tumor of the brain

The tumor is known to grow steadily

Objective: segment lesions from longitudinal sets of multimodal
magnetic resonance image (MRI) volumes
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Data description

Multimodal image volumes, each comprising:
T1 MRI
contrast-enhanced T1 MRI (T1c)
T2 MRI
T2 FLAIR MRI

Acquired from ten patients initially diagnosed with low grade glioma

Time series have 3-14 time points
3-6 months between any two acquisitions

All image volumes were rigidly registered

Approximate truth: three 2D slices intersecting with the tumor center
were manually annotated by an expert in every volume
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Segmentation with growth constraint

Segmentations of 3D volumes of each individual data point:
generative model for multimodal brain segmentation [Menze’10]

Models the lesion with a latent atlas class [Riklin-Raviv’10] amending
the tissue atlas of the standard EM segmenter [Kapur’96]

Tumor = Foreground (F ), Healthy tissue = Background (B)
Changes of the core (visible in T1c) occur within the larger edema
regions (visible in T2 or FLAIR)
Class transitions: from healthy to edema, from edema to core

Potential V s,ti (L
s,t
i ) of label L

s,t
i at voxel i , time point t, and imaging

sequence s:
V s,ti (0) = ps,t(F |I

s,t),

V s,ti (1) = ps,t(B|I
s,t) = 1− ps,t(F |Is,t).

We identified tumor subclasses with p(F |Is=T1,t) for core, and p(F |Is=T2,t)
with edema
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Segmentation with growth constraint

Potential V s,ti (L
s,t
i ) of label L

s,t
i at voxel i , time point t, and imaging

sequence s:
V s,ti (0) = ps,t(F |I

s,t),

V s,ti (1) = ps,t(B|I
s,t) = 1− ps,t(F |Is,t).

3D spatial constraints in a 26-neighborhood:

W s,t
i ,j (L

s,t
i , L

s,t
j ) = δLi 6=Lj β

α(i , j)

αtot
exp

(
−
(
Is,t(i)− Is,t(j)

A

)2)
with β = 0.5, α(p, q) = 1

distance(p,q)
, αtot =

∑
q∈N (pixel p) α(p, q) and

A = 1
3

(
max Is,t −min Is,t

)
Inter-sequence inclusion constraints:

Foregrounds in T1 and T1c modalities are
included in the one of T2
Foreground in T2 is included in the one of
FLAIR

Sequence 2Sequence 1

t

t+1

t+2

t+3

Directed infinite links
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Segmentation results (14 observations)
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Volume-time plot for a patient with 14 observations
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(Red) Proposed segmentation with growth constraint
(Blue) Initial multimodal segmentation [Menze’10]
(Green) Manual segmentation
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Two time series of T2 and FLAIR MR image volumes

The tumor grows rapidly
between the second and
forth scene.

Intensity modifications
in the last scene lead to
a suboptimal
performance of the
initial multimodal
segmentation

(Green) Proposed segmentation with growth constraint
(Yellow) Initial multimodal segmentation [Menze’10]
(Magenta) Manual evaluation
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Using temporal links with constant weights

Changes* in the average segmentation performance of the ten image
sequences when testing different regularization approaches
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e 

sc
or

e

*The box indicates quartiles, the whiskers indicate outliers
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Conclusions

The main contribution:
1 a new framework for segmentation of 2D/3D image time series with the

constraint of shape growth/shrinkage,
2 in order to be able to segment very noisy/low-contrast/incomplete data,
3 in a very low computational time.

The new method:
proved to be robust to important noise and low-contrast
linear complexity in practice

Future works

Other applications, such as organ development
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Thank you for your attention!
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