
Requesting heterogeneous data sources
with array comprehensions in Hop.js

Yoann Couillec Manuel Serrano
Inria

Firstname.Lastname@inria.fr

Abstract
During the past few years the volume of data has increased dra-
matically. New kinds of data stores have emerged as NoSQL fam-
ily stores. Many modern applications now collect, analyze, and
produce data from several heterogeneous sources. However imple-
menting such applications is still difficult because of lack of ap-
propriate tools and formalisms. We propose a solution to this prob-
lem in the context of the JavaScript programming language by ex-
tending array comprehensions. Our extension allows programmers
to query data from usual stores, such as SQL databases, NoSQL
databases, Semantic Web data repositories, Web pages, or even
custom user defined data structures. The extension has been im-
plemented in the Hop.js system. It is the subject of this paper.

Categories and Subject Descriptors H2.3 [Languages]: Query
Languages; H2.3 [Information Search and Retrieval]: Query for-
mulation

Keywords JavaScript, array comprehension, , language-integrated
query, database, web page, web service, compilation, aggregation.

1. Introduction
Creating applications involving data sources raises several pro-
gramming problems. First, integrating a query language within
a programming language suffers the well-known impedance mis-
match problem [1]. Second, as the data sources rely on different
models, they are generally interrogated with specific means such
as a dedicated query languages, ad-hoc APIs, or sets of HTTP re-
quests. This creates a second impedance mismatch between the
sources themselves. Our contribution proposes a unique formalism
to query over multiple sources. It is based on JavaScript array com-
prehensions.

Merging data query languages and algorithmic programming
languages is an old problem. Solutions have been long proposed
and are now widely deployed. For instance, the popular Java Hi-
bernate framework enables Java programs to conveniently access
databases [12] or the Links [6] programming language, merges the
algorithmic language and the database language inside a single pro-
gramming language.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DBPL ’15, October 27, 2015, Pittsburgh, Pennsylvania, United States.
Copyright c© 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Modern applications use different kinds of data: i) raw data,
which are used to encode unorganized information like media re-
sources, ii) structured data, which are found in relational databases,
and iii) data streams which are, for instance, produced by cen-
sors. This heterogeneity raises programming problems for applica-
tions that combine multiple data sources. Linq [2, 3] and F#’s Type
Providers [5] address this problem. They allow the programmers to
write queries on arbitrary data sets such as collections, XML data,
and relational databases. Linq demonstrated that comprehensions
constitute a convenient means for expressing queries since data are
collections of objects.

Links solves the impedance mismatch problem by combining
the code of the three tiers: the server, the client, and the database.
Links compiles the queries to the SQL [17] and XQuery [14].

In a recent work [4], Cheney, Lindley, and Wadler combine
Linq and Links in a single language named PLinq. It employs
quoted expressions to queries over relational databases. It relies on
normalization of quoted terms. The authors have proved that one
query over a unique database produces a unique SQL query [13]
and that the PLinq query normalization process always succeeds.

In this paper, we show how to use array comprehensions for
querying over several data sources evenly. We based our solution
on Links and PLinq for merging the query language and the pro-
gramming language and on Linq for supporting multiple backends.
Our extension to JavaScript array comprehension has been imple-
mented in Hop.js, a multitier extension of JavaScript. It offers the
possibility of requesting multiple and heterogeneous data sources
with a single query. It supports usual data stores, such as relational
databases, NoSQL databases, etc. It also supports less traditional
sources of data such as Web pages and Web services. Furthermore,
it allows users to develop their own custom sources backends.

2. Array Comprehensions as a DSL for querying
data sources

Comprehensions are defined by the mathematics set theory [8]. In
their original form, they are written as:

{ x2 | x ∈ A ∧ odd x }

In this example, the comprehension expresses the set of all square
of x such as x belongs to the set A and such as x is odd. As argued
before [9], this construction is a clear, concise, and efficient way
to express queries. Trinder and Wadler [10] have shown that any
relational calculus queries can be expressed as a comprehension.

In this section, we recap the main components of the EC-
MAScript 7 array comprehension proposal. Then, we present two
examples that show how to query data sources with comprehen-
sions.

comprehension := [iterable+ filter? expression]
iterable := for (javascript-lhs of javascript)

filter := if (javascript)
expression := javascript

Figure 1. Array comprehension syntax

Figure 2. IAAF: A Web page as a data source (http://www-
.iaaf.org/records/toplists/pole-vault/indoor/men/senior/-
2015).

2.1 Syntax
Comprehensions are supported by many languages such as Haskell,
F#, and Python. In JavaScript, comprehensions were introduced in
the version 1.71. The syntax2 is presented in Figure 1.

A comprehension is composed of iterable objects, an optional
filter and an expression. Evaluating a comprehension produces a
fresh array whose elements are obtained by evaluating the expres-
sion for every element of iterable objects that is accepted by the fil-
ter. Multiple sources can be used simultaneously. The non-terminal
token javascript-lhs stands for left-hand-side expression 3. Using
ECMAScript comprehensions, the squares of odd numbers are ex-
pressed as:

[for (x of A) if (odd (x)) x * x]

If A is [1,2,3,4], the result of the comprehensions is the array
[1,9].

We will now show our generalization of comprehensions. We
will show how to use them with other types of sources than
JavaScript arrays. We will also show how our extension allows
programs to query data from heterogeneous data sources.

2.2 Using comprehensions
In this section, we show that array comprehensions can be used
beyond JavaScript arrays. For the sake of the example, as an ex-
ample we show how to use them with Web pages, and SPARQL
endpoints. We base our presentation on two practical test cases:
IAAF and DBpedia.

2.2.1 Web pages: IAAF
IAAF is a Web site that presents athletics competition results (see
Figure 2 for the 2015 pole vault results). Each row contains an
athlete’s name, his mark for the race, the date, the event, and also
visual additional information such as a country flag.

1 https://developer.mozilla.org/en-US/docs/Web/
JavaScript/New_in_JavaScript/1.7
2 https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Operators/Array_comprehensions
3 http://www.ecma-international.org/ecma-262/5.1/\#
sec-11.2

Figure 3. DBpedia: The Semantic Web as a data source
(http://dbpedia.org/sparql)

The IAAF pages are not designed to be processed by computer
programs; they are designed for humans. However, with our array
comprehension extension, they can be accessed programmatically,
which lets the IAAF information be used differently. For instance,
the following single request:

[for (x of iaaf.pole_vault.2015)
if (x.mark > 6)
{ name: x.name, mark: x.mark }]

It extracts the athletes’ names and their mark for all pole vault
higher than 6 meters.

In this example iaaf.pole vault.2015 is the data source,
which is queried using the comprehension. It encapsulates the URL
that points to the 2015 pole vault results. The variable x is succes-
sively bound to all the objects that represent the IAAF results. The
filter part of the comprehension selects only the objects whose mark
is greater than 6. For each of these objects, a fresh JavaScript ob-
ject containing the name of the athlete and the mark of the result is
built. These objects are accumulated in the array that is the result
of the evaluation of the comprehension. The IAAF data source is
created as follows:

var Datasource = require ("./datasource.js");
var Iaaf = require ("./datasource-iaaf.js");
var iaaf = Datasource.create (Iaaf);
iaaf.pole_vault.2015 =
iaaf.createTable

("http://www.iaaf.org/records/toplists/
pole-vault/outdoor/men/senior/2015");

This first imports the datasource.js library. Then, it creates
a JavaScript object representing the IAAF Web site and it creates a
data source corresponding to men’s pole vault results of 2015.

2.2.2 SPARQL endpoints: DBpedia
DBpedia is the Semantic Web version of Wikipedia. It uses an
RDF-graph data model and SPARQL as the query language. DB-
pedia uses Virtuoso, a database that provides a Web interface (see
Figure 3). It allows users to write and send SPARQL queries.

The following comprehension shows how to get the birth city of
Barack Obama:

[for (p of dbpedia.person)
for (city of dbpedia.location)

if (p.name == "Barack Obama"
&& p.birthPlace == city)
city.name];

This comprehension uses two for statements as the request in-
volves two data sets: dbpedia.person and dbpedia.location.
The evaluation of the comprehension joins the two data sets on the
city name.

In this example, the variable p is bound to persons and the
variable city is bound to cities. The filter performs the join
operation and selects the person named “Barack Obama”. The
dbpedia.person and dbpedia.location are built with:

var Datasource = require ("./datasource.js");
var DBpedia = require ("./datasource-dbpedia.js");

var dbpedia = Datasource.create
(DBpedia ("http://dbpedia.org/sparql"));

dbpedia.person =
dbpedia.createTable
("http://xmlns.com/foaf/0.1/Person",

[{column: "name",
uri: "http://xmlns.com/foaf/0.1/name"},

{column: "birthDate",
uri: "http://dbpedia.org/ontology/date"}]);

dbpedia.location =
dbpedia.createTable
("http://dbpedia.org/ontology/Place",

[{column: "name",
uri: "http://xmlns.com/foaf/0.1/name"}]);

This code creates a data source, dbpedia, two tables person
and location with their columns, which are used in the compre-
hension.

3. Array comprehension plugins
We present here the generic architecture we have designed to allow
comprehensions to operate over data sources. This architecture is
open as it allows user programs define their own comprehension
backends by means of plugins. For the sake of simplicity, in this
section we assume comprehensions over single sets.

As seen before, a comprehension is composed of three ele-
ments: an iterable, a generator expression, and a filter expression.
The compilation of each of these elements depends on the nature of
the data source. For instance, the DBpedia comprehension backend
compiles the query into SPARQL while the IAAF backend com-
piles the query into a sequence of URL downloading and HTML
parsing actions. Second, the backend compiles the filter. The very
nature of this compilation highly depends on the capacities of the
backend. In the least efficient case, this compilation generates a
JavaScript predicate that is applied once all the records have been
extracted from the data source. In the most efficient case, the fil-
ter is fully compiled into the query language of the data source
when it supports one which is expressive enough. Third, the back-
end compiles the generator, mixing JavaScript code generation and
the possibilities offered by the data source.

The appropriate plugin associated with a comprehension de-
pends on the type of the data source, which is only known at run-
time. Thus, a comprehension cannot be entirely compiled before
the execution starts. Half of the compilation occurs during the static
compilation of the program. During that stage, the comprehension
is compiled as if it was a plain array comprehension. This compila-
tion also inserts serialized forms of the abstract syntax trees (AST)
representing the filter, the generator, and the variables to which data
sources are bound. These AST are used at runtime by the second
half of the comprehension compilation, which is specific to each
plugin.

When a comprehension is to be evaluated, the appropriate plu-
gin is selected by inspecting the dynamic type of the data source.

Using the JavaScript late binding mechanism, the data source plu-
gin implementation is then obtained. The plugin defines i) the query
compiler that uses the AST produced by the static compilation, and
ii) the runtime system that executed the query.

3.1 Generic plugin definition
An array comprehension plugin is characterized by five methods:

1. predicate: a predicate which is true if and only if the filter
expression can handled natively by the data source. It takes as
argument filter AST. If the predicate if false, the filter will be
implemented in JavaScript and used on all the values fetched
from the data source.

2. compileTable: a function that compiles the iterable object
into the formalism of the data source query language. It takes
three arguments: the initial query, the variable identifier of the
comprehension expression, and the iterable object.

3. compileProjectionGenerator: a function that compiles the
projections from the generator expression. It takes three argu-
ments: the generator AST, the initial query and information
about the columns.

4. compileFilter: a function that compiles the filter. It takes two
arguments: the initial query and the filter AST.

5. execute: a function that execute the native query.

In the following sections we show an example of array compre-
hension plugins implementation.

3.2 Plugin example
As an example, we now describe the implementation of the DB-
pedia plugin. In this example, only simple filters are compiled into
SPARQL: the filter predicate is true only for expressions contain-
ing projections, literals, and || or && binary operators. More com-
plex predicates are handled in JavaScript. The filter might be im-
plemented as:

predicate : function (astf) {
function isValid (token) {

return token == "&&"
|| token == "||"

}
function areValidChildren (children) {

if (children.length == 0){
return true

} else {
var first = children.shift() ;
var rest = children ;
return isValid(first.token)

&& areValidChildren (first.children)
&& areValidChildren (rest)

}
}
return isValid (astf.token)

&& areValidChildren (astf.children);
}

The compile??? functions construct the SPARQL request to
be generated as an abstract syntax tree. It is represented by a
JavaScript structure containing three fields: select, where, and
filter. Each of the compile??? functions takes AST as argu-
ment and modifies it, generally by adding new elements. Where
the SPARQL AST is fully built, it is then pretty printed into the
concrete SPARQL syntax, by the function sparqlToString func-
tion. The abstract representation is a JavaScript object that looks
like:

{ select : ["?x_name"],
where : [{ subject: "?x",

predicate: "a",
object: "dbpedia-owl:Person" },

{ subject: "?x",
predicate: "foaf:name",
object: "?x_name" }],

filter : { type: "==", left: ... } }

This AST represents the following SPARQL query:

SELECT ?x_name {
?x a dbpedia-owl:Person .
?x foaf:name ?x_name .
FILTER (?x_name == "Obama"@en)

}

Assuming the method extractProjections, which extracts
the projections of the generator from an AST, the compile-
ProjectionGenerator method can be defined as:

compileProjectionGenerator:
function (astgen, query, columns) {
var projections = astgen.extractProjections ();
function projectionToSelectString (proj) {

return proj.obj + "_" + e.field
}
function projectionToWhere (proj) {

return {
subject: proj.obj,
predicate: columns[proj.field],
object: projectionToSelectString (proj)

}
}
return {

select: query.select.concat(
projections.map(projectionToSelectString)),

where: query.where.concat(
projections.map(projectionToWhere)),

filter: query.filter
}

}

The method compileFilter, which is not presented here,
transforms a JavaScript boolean expression into SPARQL.

The execute method is defined as:

execute: function (sparql) {
return DBpediaEvaluate (sparqlToString (sparql))

}

It generates the concrete SPARQL query, i.e. a string representing
a well formed SPARQL expression.

For instance, here is the SPARQL code generated by the com-
pilation of the array comprehension presented Section 2.

SELECT ?city_name {
?p a <http://xmlns.com/foaf/0.1/Person> .
?p <http://xmlns.com/foaf/0.1/name> ?p_name .
?p dbpedia-owl:birthPlace ?p_birthPlace .
?city a dbpedia-owl:Place .
?city dbpprop:name ?city_name .
FILTER (?p_name == "Barack Obama"@en

&& ?p_birthPlace == ?city)
}

Once the SPARQL query is built, the execute method sends
it to the DBpedia endpoint for evaluation (the DBpediaEvaluate
function).

4. Concluding remarks
Comprehensions help programmers writing code involving data
queries as they relieve them from specifying details about the im-
plementation of the data and its source. It is a step towards solving
the impedance mismatch problem. Mainly inspired by the recipe
proposed by Links [6] and PLinq [4], we used comprehension to
transform Web sites as a data source, to make them peers of rela-
tional databases. In this short paper, we have shown how to use
JavaScript array comprehensions over several data sources. We
have presented a generic plugin architecture that permits users to
create plugins over any data sources. Additional details about the
implementation will be given in a forthcoming paper.

Currently only simplistic compilation techniques are used to
compile queries. In particular, they are unable to efficiently handle
querying over multiple data sources. This is left for future work.

References
[1] G. Copeland and D. Maier. Making smalltalk a database system. In

ACM Sigmod Record, vol. 14 no 2, pages 316-325, 1984.
[2] E. Meijer, B. Beckman and G. Bierman. LINQ: Reconciling Object,

Relations and XML in the .NET Framework. In SIGMOD ’06, page 706,
2006.

[3] E. Meijer. There is no impedance mismatch:(language integrated query
in Visual Basic 9). In OOPSLA ’06, pages 710-711, 2006

[4] J. Cheney, S. Lindley and P. Wadler. A practical theory of language-
integrated query. In Proceedings of the 18th ACM SIGPLAN interna-
tional conference on Functional programming, pages 403-416, 2013

[5] D. Syme, K. Battocchi, K. Takeda and al. Strongly-Typed Language
Support for Internet- Scale Information Sources. In Technical Report
MSR-TR-2012-101, Microsoft Research, 2012

[6] E. Cooper, S. Lindley, P. Wadler and J. Yallop. Links: Web program-
ming without tiers. In Formal Methods for Components and Objects,
pages 266-296, 2007

[7] M. Serrano, E. Gallesio and F. Loitsch. Hop: a language for program-
ming the web 2.0. In OOPSLA Companion, pages 975-985, 2006

[8] P. Buneman, L. Libkin, D. Suciu, V. Tannen and L. Wong. Compre-
hension syntax. In ACM Sigmod Record, vol. 23, no 1, pages 87-96,
1994

[9] P. Trinder. Comprehensions, a Query Notation for DBPLs. In DBPL,
pages 55-68, 1991

[10] , P. Trinder and P. Wadler. List comprehensions and the relational
calculus. 1999

[11] E. F. Codd. A relational model of data for large shared data banks. In
Communications of the ACM, vol. 26, no 1, pages 64-69, 1983

[12] Hibernate ORM. http://hibernate.org/orm/ Accessed: 2015-03-10
[13] L. Wong. Normal Forms and Conservative Properties for Query

Languages over Collection Types. In PODS ’93, pages 26-36, 1993
[14] S. Boag, D. Chamberlin, M. F. Fernndez, D. Florescu, J. Robie, J.

Simon and M. Stefanescu. XQuery 1.0: An XML query language. 2002
[15] D. Kitchin, A. Quark, W. Cook and J. Misra. The Orc programming

language. In Formal techniques for Distributed Systems, pages 1-25,
2009

[16] E. PrudHommeaux, A. Seaborne and others. SPARQL query language
for RDF. In. W3C recommendation, vol. 15, 2008

[17] D. D. Chamberlin and R. F. Boyce. SEQUEL: A structured English
query language. In Proceedings of the 1974 ACM SIGFIDET (now
SIGMOD) workshop on Data description, access and control, pages
249-264, 1974

