
Thesis submitted to obtain the title of
Doctor of Philosophy

École Doctorale des Sciences Pour l’Inénieur
Field: Computer Science

Toward Real-Time Simulation of Aneurysm Coil Embolization
Using the Discrete Exterior Calculus Method

Prepared by Yiyi WEI at
SHACRA, INRIA Lille and LIAMA, CASIA

Defended on 26th March 2012

Advisors: Stéphane COTIN

Research Director at SHACRA Team, INRIA Lille
Songde MA

Professor at LIAMA, Institute of Automation, Chinese Academy of Sciences
Reviewers: Francis LEBOEUF

Professor at LMFA, Ecole Centrale de Lyon
Matthias HARDERS

Senior researcher and lecturer at Computer Vision Lab, ETH Zurich
Examiners: Irène E. VIGNON-CLEMENTEL

Research Scientist at REO Team, INRIA Paris Rocquencourt
Alejandro F. FRANGI

Professor at Department of Mechanical Engineering, University of Sheffield
President: Christophe CHAILLOU

Professor at LIFL, Université des Sciences et Technologies de Lille

Order number: 40795





ACKNOWLEDGMENTS

This thesis ends a wonderful journey of my Ph.D study with the people who have sup-
ported and helped me during the last few years. Nevertheless, my gratitude to these
colleagues, friends and family members will never fade. The impressive experience will
be a priceless treasure throughout all my life.

Among these people, I would like first thank Prof. Songde Ma, Prof. Chunhong Pan
and Prof. Christophe Chaillou. Without their efforts, I would not have this great oppor-
tunity to pursue the fun of scientific research and to study in two different countries.
They dedicated plenty of time to discussing and defining a promising and interesting
Ph.D subject for me, and made the co-tutorial program possible. During these years,
they have been concerned about both my work and my life. I really appreciate what
they have done for me.

I owe a debt of gratitude to my supervisor Stéthane Cotin. You have a deep and wide
understanding of the entire field. Whenever I felt lost, you could always stand at a higher
level to understand the difficulty we met. Nevertheless, the main reason I admire you
is not only the professional knowledge you have, but more importantly, is the way you
think, which has influenced me deeply. I still remember exactly several casual talks we
had when I prepared the manuscript. You mentioned more than once that the goal of a
thesis was not to show a perfect solution to a problem, because people seldom could do
that; the essential was to present what problems we have found, what efforts we have
made, and what potential solutions could be. You told me the thesis was not the end of
my research, but the beginning of my work in the next ten or twenty years, so it was more
valuable to open a door for my future research, rather than to write a conclusion. Lot of
students considered the several months’ writing just as a final step to get the degree. You
let me make this step more meaningful both for me and for other peers. You also talked
about your understanding of the defense, which was a good chance to discuss with the
experts and benefited both sides, but not a final exam for Ph.D student. Eventually,
my defense turned out to be such a success, which allowed us to discuss several key
problems in my thesis, as well as future cooperation based on my Ph.D work. Besides,
I really appreciate how you regard the relation between professors and students; they
are friends, they are equal collaborators. And this was also the way in which you treated
your students. In my mind, it is still a clear picture of we climbing over the iron fence of
IRCICA when we worked together for the MICCAI deadline till the gate was locked. You
never forgot to say thank you for every work I did, and made me feel my efforts had been
recognized and respected. And this feeling encouraged me to discuss any of my ideas
with you, even rambling and immature ones. You were quite busy but always energetic.
Although during your super busy days, you still made time to exchange our thoughts.
Even after a whole day’s traveling, you came to talk to me in the evening before you left
for home. Your such strong sense of responsibility urged me to do better, better and
better. Moreover, you never hesitated to support me to do the things which were good

i



ii

for me. You approved of collaborating with Fang Le in Lyon, with Pierre Alliez in Nice to
solve the problems I met. The help from these experts helped me make a great progress
efficiently.

Actually you acted not only as a supervisor, but more like a wise and considerate
friend. You always considered the situation from my point of view, and gave suggestions
which were most favorable for me. When I was unhealthy in the second year, you gave
me no stress for my work and emphasized that the health was most important for me. I
cannot write down all the memories of working with you in these years, because there
are too many, and too many. I can neither express all my thankfulness to you, because
there are too much, and too much.

Besides, I would like to thank Jérémie Allard and Le Fang, who made a great contri-
bution to this thesis, and gave me lots of professional and technical advices and sugges-
tions.

I would like to thank Jérémie Dequidt and Christian Duriez for helping me solve the
difficulties in my work and finish the manuscript.

I would like to thank Juan Pablo de la Plata, Frédérick ROY, Frédéric Château. You
are so excellent engineers. You were always patient to help me solve all the computer
problems.

I would like to thank Jean-Philippe Deblonde, Olivier Comos, Hadrien Courtecuisse
and Vincent Majorczyk, who shared the lab of "petit lapin" with me. Thank you very
much for sharing ideas in our work and helping my living in France. I will never forget
the stories happened in the house of "petit lapin".

I would like to thank Anne Rejl for taking your time to arrange my stay in Lille, my
travel, and all the things for my thesis and defense.

I would like to thank all my French colleagues for making me feel comfortable in a
country far away from my hometown, and of course the Welsh you recommended!

I would like to thank Pierre Alliez and Stephane Tayeb in Sophia Antipolis for sup-
porting me to create a mesh generator plugin in SOFA.

I would like to thank Haifeng Gong and Huaiyu Wu for leading me to the road of
this research. Your initial guide was indispensable in my following work. I would like
thank all the other Chinese colleagues in LIAMA for sharing their knowledge with me
and helping me deal with all the things when I was away.

I want to express my gratitude to Francis Leboeuf and Matthias Harders for tak-
ing your time to review my manuscript, as well as all the other jury members, Irène
E. Vignon-Clementel, Alejandro F. Frangi, and Christophe Chaillou for attending my de-
fense.

Finally, I am really grateful for my parents, who unconditionally supported me to
pursue my study. I am sorry I did not spend too much time with you in the last four
years, especially every transitional Chinese new year. I know you did care so much, but
still comforted me to let me know you had a good time by yourselves. You were worried
about my health and my life when I was sick. I hope this thesis can be a gift for you to
express my thankfulness to you.



ABSTRACT

Toward Real-Time Simulation of Aneurysm Coil Embolization
Using the Discrete Exterior Calculus Method

Abstract: Over the last decade, remarkable progress has been made to treat cere-
bral aneurysm with endovascular strategies, essentially using platinum coils.
Yet, coil embolization remains a very complex operation which requires care-
ful planning and advanced skills in order to be successful. In this context, a
computer-assisted system, allowing physicians to interactively select and test
different coils in a patient-specific environment, could make a difference. This
involves modeling the vascular structure, medical devices, but also blood flow
and its interaction with coils.

We introduce the Discrete Exterior Calculus method to hemodynamic sim-
ulation for the first time, along with a series of experiments to understand its
accuracy, stability and computational efficiency. More importantly, we improve
the numerical stability by optimizing meshes and using advanced backtracking
schemes. We also apply several techniques for accelerating the computation.
Based on this fast method, we propose a new approach for patient-specific and
real-time simulation of coil embolization, from mesh generation to computa-
tion of blood-coil bilateral interactions, first involving the impact of flow on the
coil during its deployment, and second concerning the decrease of blood ve-
locity within the aneurysm. This allows dynamical planning for two key steps:
choice and placement of the first coil, and assessment of coil packing. Our simu-
lated results demonstrated that the bilateral influence is essential in the surgery
planning. Besides, we propose a preliminary framework for the simulation of
blood-vessel interaction during aneurysm growth, which shows encouraging re-
sults in the two-dimensional case.

Keywords: real-time medical simulation, aneurysm coil embolization, dis-
crete exterior calculus, blood flow simulation, fluid-structure interaction
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RÉSUMÉ

Vers La Simulation Temps-Réel de l’Embolisation d’un Coil dans un
Anévrisme par l’Utilisation de la Méthode du Calcul Extérieur Discret

Résumé: Des progrès ont été réalisés ces dix dernières années dans le traitement
des anévrismes via des procédures endovasculaires avec des coils détachables.
L’embolisation reste une procédure médicale complexe qui requiert une planifi-
cation minutieuse et des compétences techniques avancées. Dans ce contexte,
un simulateur permettant aux radiologistes de choisir et tester différents coils
pour un patient donné est pertinent. Une telle approche nécessite la modéli-
sation du réseau vasculaire, des outils chirurgicaux, du flux sanguin et de son
interaction avec les coils.

Nous introduisons la méthode du calcul extérieur discret pour la simula-
tion hémodynamique. Nous avons amélioré la stabilité numérique en opti-
misant la qualité des maillages. Nous décrivons également un processus com-
plet de la simulation d’embolisation: la génération de maillages à l’aide d’images
médicales jusqu’au calcul de l’influence réciproque sang-coil. Nous proposons
une nouvelle approche en deux phases pour la simulation de ces interactions,
d’abord en prenant en compte l’influence du flux sanguin sur le déploiement du
coil, puis en diminuant la vitesse du sang dans l’anévrisme. Cette approche per-
met une planification interactive pour deux étapes clés de la procédure: choix et
placement du coil suivi d’une estimation du nombre de coils à introduire pour
réduire la vélocité du sang dans l’anévrisme. Nos résultats de simulations dé-
montrent que l’influence réciproque est essentielle. Enfin, nous proposons une
approche préliminaire pour la simulation de l’interaction sang-réseau vascu-
laire lors de la formation d’un anévrisme. Les résultats de la simulation 2D en
utilisant des données patients sont encourageants.

Mots-clés: simulation médicale en temps réel, l’embolisation d’un coil dans
un anévrisme, calcul extérieur discret, simulation de flux sanguin, l’interaction
fluide-structure
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1
INTRODUCTION

1.1 Thesis Organization

The thesis is composed of five chapters. Chapter 1 provides the background
of medical simulation, in particular the aneurysm related researches, then de-
scribes the main challenges in this field and our contributions. Chapter 2 dis-
cusses the problem of computational fluid dynamics and its numerical solu-
tions, particularly focuses on the theory of Discrete Exterior Calculus (DEC),
along with its implementation. Chapter 3 presents the DEC method for blood
flow simulation, including mesh generation, numerical solution and accelerat-
ing techniques, as well as a detailed analysis of the results and discussion of the
method. Chapter 4 describes the complete frameworks for patient-specific sim-
ulation of blood-coil interaction during aneurysm coil embolization, and blood-
vessel interaction during aneurysm growth, respectively. In the end, Chapter 5
offers the summary of our work, discusses the remaining limitations and fore-
casts the potential directions for further improvements.

1.2 Background in Medical Simulation

Medical care has been a branch of sciences for thousands of years, since it highly
relates to human being’s daily life, helping people to alleviate sufferings, to pre-
vent and cure diseases, as well as to fight death. These cares are required to
have minimal impact on patients, leaving little or no room for error. Yet, despite
the important development of medical science and related technologies over the
last few decades, patient safety remains a major objective of modern medicine.
The 1999 Institute of Medicine report, To Err is Human [Kohn et al. (1999)], high-
lighted the high prevalence of medical errors and their impacts on patient safety
in the USA. The report concluded that between 44,000 and 98,000 people died
each year as a result of preventable medical errors, costing nearly 9 billion dol-
lars in health care expense. Moreover, several novel and complicated treatments

1



2 Chapter 1. Introduction

have been developed during recent years, especially minimally invasive proce-
dures, where instruments are introduced into the patient’s body through small
incisions, such as laparoscopic surgery, interventional radiology, and therapeu-
tic endoscopy. Although the minimally invasive procedure presents several ad-
vantages compared to traditional surgery (e.g., a quick recovery of the patient), it
places an additionally burden upon the physicians. As a consequence, the need
for reducing the occurrence of medical error has been augmenting.

Medical simulations provide an elegant solution to the current need for bet-
ter medical treatments. Simulation is able to reproduce or represent the phe-
nomena, under test conditions, which are likely to occur in actual performance.
Medical simulation is attractive, since it allows trainees to experience realistic
patient situations which involve widely varying clinical contents, and to repeat-
edly practice without exposing patients to the risks inherent in trainee learning.
Even for professional surgeons, medical simulations are also helpful to provide
preoperative surgical practices aiming at individually patient-specific cases, and
the prediction and assessment of the patients’ situation after the operation. In
addition, simulated surgical operations might then be optimized by a stored
data set of movements and replicated with robotic assistance in the real oper-
ation [Krummel (1998)] [Chauhan et al. (2011)]. Furthermore, with innovative
haptic interface devices and virtual reality technologies, tele-medicine is realiz-
able.

The first idea of medical simulation dates back to as early as 200 AD,
which was a model of human body proposed by the Greek physician Galen.
Then Leonardo Da Vinci, Andreas Vesalius and other scientists followed him
to provide further clarification and refinement of human body models [Kunkler
(2006)]. Not until the 1980s, academic and research organizations started to fo-
cus on replicating body’s normal functioning in a more life-like manner. During
these ten years, several mannequins came out as man-made living bodies, in-
cluding the famous Harvey mannequin as a cardiology patient simulator, and
a computerized mannequin designed for anesthesia response by Michael Good
and his co-workers [Cooper and Taqueti (2008)]. Nowadays, mannequins were
not only physiologically precise, but near human likeness in skin, texture and so
on, such as the new iSTAN mannequin [Neil (2009)].

A few years after the introduction of virtual reality (VR) technology by Jaron
Lanier [Blanchard et al. (1990)] the first training systems for medicine were de-
veloped. Scott Delphand and Joseph Rosen created a representation of the lower
limb, which was used for practicing tendon repair and predicting the effect of
this procedure [Delp et al. (1990)]. This is also the earliest example of using a
surgical simulator for preoperative surgical rehearsal. Dr. Richard Satava and
Jaron Lanier then created a simulator based on a graphic drawing of the or-
gans of the upper abdomen [Satava (1993)]. Although it was extremely crude
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and simplified, and contained a very limited amount of interactivity, it leaded
the computer-based simulation to a wider range of applications, such as the
cholecystectomy simulator KISMET [Kuehnapfel and Neisius (1993)], the wound
simulator to teach debridement and suturing [Satava (2008)], the simulator for
minimally invasive surgery MIST-VR [Wilson et al. (1997)]. As a result of the de-
velopment of medical imaging techniques, such as Computerized Tomography
(CT) scan, Magnetic Resonance Imaging (MRI), the use of patient-specific model
became prevalent in the simulation. The hysteroscopy simulator developed by
Jeff Levy, could import actual patient data from CT scans, and allowed to prac-
tice multiple different surgical approaches and optimize each patient’s opera-
tive procedure [Levy (1996)]. The liver surgery simulation using patient-specific
data sets of liver lesions was designed for preoperative planning as an execution
of surgical technique [Marescaux et al. (1998)]. With the ongoing advances in
both computer and medical graphics, software design and hardware manufac-
ture, more and more functions have been added into medical simulators, such
as motion tracking of hands and eyes [Datta et al. (2001)].

Several commonly admitted benefits have brought increasing attention to
the area of medical simulation in recent years. Prior to the advent of medical
simulators, traditional alternatives for medical training and planning were an-
imals (which in some instances greatly differed in anatomy), cadavers (which
could not provide living reaction to physician’s movement), and patients (which
suffered potential risks). On the contrary, an ideal medical simulator offers con-
figurable and realistic training environments without exposing patients to even-
tual errors, and overcomes the problem of waiting for availability of suitable tra-
ditional training resources or real-life cases. Furthermore, They allow easy ac-
cess to a wide variety of clinical scenarios, including new techniques, procedures
and instruments. Nevertheless, the cost of using modern medical simulators is
often less than the cost entailed in the number of hours that instructors must
spend in training residents and the expense of supplies and resources required
in the training.

1.3 Aneurysm Related Research

In this PhD study, we do not cover all the aspects of medical simulation. Instead,
we concentrate on the computation-based simulation of physiological fluid and
its interaction with other structures (e.g., tissues or medical instruments). Cur-
rently, our research is focused on the issues related to the aneurysm disease.
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(a) AAA (b) IA

Figure 1.1: Locations and shapes of aneurysms. (a) An abdominal aortic aneurysm (AAA)
is when the large blood vessel, which supplies blood to the abdomen, pelvis, and legs, be-
comes abnormally large or balloons outward. (b) A common location of intracranial aneurysms
(IA) is in the arteries at the base of the brain, known as the Circle of Willis. (Images from
http://www.nlm.nih.gov)

1.3.1 Aneurysm

Aneurysm is abnormal widening or ballooning of a portion of blood vessel wall.
More precisely, aneurysm is defined by a permanent dilatation of 50% or more
compared with the expected normal diameter of the vessel [Johnston et al.
(1991)]. Aneurysms are usually found in the abdominal and thoracic portions
of the aorta, which are the largest artery in the body starting from the left ventri-
cle of the heart and extending down to the abdomen. And they also locate in the
cerebral arteries surrounding the Circle of Willis, which are rather small vessels
in the brain. The abdominal aortic aneurysm (AAA) is commonly in fusiform
shape, while the intracranial aneurysm (IA) is usually in saccular shape (Figure
1.1).

The health impact of AAA is not readily apparent. Because the majority of
patients suffer nothing over many years, while IA may cause fatigue, loss of per-
ception or balance, speech or vision problems, etc. Besides, another associated
problem is blockage in the blood circulation, since thrombus may form within
the dilated aneurysm, and a fragment of this blood clot may tear off and travel
with the blood stream. Nevertheless, the most serious symptom appears when
the aneurysm grows larger, thus the vessel gets thinner and finally leads to a sig-
nificant risk of rupture. If the rupture happens, the hemorrhage causes rapid
decrease of blood pressure, fainting, sense of an impending doom, and shock,
which could be fatal. The rupture of cerebral aneurysm causes the hemorrhage
in brain and severe headache, and leads to disability of senses, stroke (paralysis,
coma) and/or death.

The prevalence of aneurysms was approximately estimated to be 1% of the
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adult population, and it was reported that the prevalence increased with age
[Komotar et al. (2008)]. More precisely, AAA was found in 5.0% of men and 1.5%
of women older than 65 years of age [Ballard et al. (2008)]. In the UK and the
Netherlands the risk of rupture was estimated to be the order of 1/10,000 people
annually [Dillon et al. (2007)] [Boll (2008)]. The prevalence of IA ranged from 2%
to 6% in adults in Japan, and rupture rate was estimated to be 1%, subarachnoid
hemorrhage was presumed to occur in 20 to 60 patients per 100,000 people each
year [Akiyama et al. (2010)]. Although the rupture did not happen to most of the
patients, the mortality after rupture was considerably high; the death happened
to 80% of the patients reaching hospital and 50% of patients who were undergo-
ing surgery for emergency repair [Cosford and Leng (2007)].

The high mortality of aneurysm rupture has been at all times urging people
to explore the causes of aneurysm in order to prevent and treat this fatal dis-
ease. But it is not clearly enough what exactly induces aneurysm. It is proposed
that defects in some parts of the artery wall may be responsible. Among these
defects, some are believed to be the result of congenital or inherited weakness
in artery walls, while other risk factors include increasing age, male gender, hy-
pertension, atherosclerosis, high cholesterol, tobacco use, alcoholism, copper
deficiency and so on [Annambhotla et al. (2008)].

1.3.2 Treatment

The inadequately understood causes of aneurysms have left us lots of difficulties
in prevention and treatment of this disease. Generally, it is suggested to follow a
healthy diet, get regular exercise, control high blood pressure, maintain a healthy
level of cholesterol, and keep away from cigarette and alcohol. Once aneurysm
is diagnosed, there is no drug to shrink the ballooned out artery to the normal
state, since it is an anatomic or structural pathology. Instead, patients can resort
to different preventative treatments. The choice of treating strategies depends
on the risk assessment by the size, growth rate and location of aneurysm, as well
as status of the patient. Once aneurysm is ruptured, the patient needs to take the
emergency treatment immediately, which leaves so little room for teaching and
operative errors that only experts do this. Undoubtedly, preventative treatment
is a preferred option. Surgeries are merely recommended if the risk of rupture
is thought to be obviously higher than operation failure. They require careful
planning and extensive training, which simulation can greatly help.

The preventive treatment cannot absolutely cure all the patients, as rup-
ture may still happen several years after the surgery. In case of rupture, patient
should be rescued as soon as possible to stem bleeding and repair the aneurysm.
Usually, emergency operations are based on the same principles as preventative
operations.
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(a) open grafting (b) endovascular grafting

Figure 1.2: Grafting. (a) A sutured graft or (b) an endovascular stent graft is placed in an AAA.
(Images from http://www.stevens.edu and http://www.hearthealthywomen.org)

The most commonly used surgical intervention for aortic and peripheral
aneurysms is grafting (Figure 1.2). The weakened segment of the vessel is re-
moved, and replaced by a piece of synthetic tube, known as graft, which is
sutured at the vascular stumps and bridges the gap. Alternatively, instead of
sewing, the graft tube ends, made by rigid and expandable nitinol wireframe,
can be easily inserted into the vascular stumps in a reduced diameter, then ex-
pand up to the most appropriate diameter and be permanently fixed there by
external ligature [Nazari et al. (1996)]. There are other newly developed devices
to substitute the external ligature by expandable ring, which allows the use in
acute ascending aorta dissection, as well as provides airtight, easy and quick
anastomosis extended to the arch concavity [Nazari (2010)]. Grafting can be
done by either open surgery or endovascular surgery. In an open surgery, the
aorta is exposed and the graft is inserted through a large incision which is made
in patient’s abdomen, while endovascular surgery involves inserting a thin flex-
ible tube, called delivery catheter, into the femoral artery (in patient’s leg). Dye
flows through this catheter so that the artery can be seen on medical images,
which helps physicians to advance the catheter in the vascular network to reach
the position of aneurysm. The graft is then delivered through the catheter and
deployed at the site of aneurysm. Afterwards, the catheter is withdrawn from
the femoral artery. Obviously, endovascular surgery is minimally invasive, and
allows a quicker recovery time, especially suitable for those who are under other
unwell health conditions. Moreover, research also suggested that, compared to
the open surgery, it offered a slightly better chance of reducing the risk of death
caused by aneurysm rupture. Nevertheless, it is associated with more compli-
cations and needs for monitoring or even re-intervention. In an addition, it was
reported that long-term results after endovascular repair were worse for large
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(a) clipping (b) coiling

Figure 1.3: Clipping and coiling are two successful surgical strategies used for treating IAs. (Im-
ages from http://www.microvention.com and http://www.yalemedicalgroup.org)

aneurysms, which were most in need of repairs [Wilt et al. (2006)].

As for IAs, several surgical techniques has proved a great success: neurosur-
gical clipping, endovascular coiling and stenting (Figure 1.3). Clipping is carried
out under patient’s general anesthesia by craniotomy, which means an incision
is made in the scalp, and a small piece of skull is removed to reveal the brain un-
derneath. When the aneurysm is located, the surgeon seals the aneurysm from
the normal blood circulation by placing a tiny metal clip across the aneurysm
neck. After the bone is replaced at the initial position, the scalp is stitched to-
gether. Thus, the clip remains permanently on the artery, and prevent the blood
flow from entering the aneurysm. It is believed that surgical clipping remains
the best method to permanently eliminate aneurysms. But it is difficult to per-
form if the neck of aneurysm is wide. More importantly, because of its invasive-
ness, risk of complications and danger of death during or shortly after surgery,
people always resort to another alternative, endovascular embolization. Simi-
lar to the endovascular grafting, this procedure also starts with the insertion of
a catheter and advancement to the brain aneurysm. Instead of graft, physician
delivers some filling material through the catheter into the cerebral aneurysm,
such as small plastic particles, glue, metal coils, foam, or a balloon. The pres-
ence of obstructer in the aneurysm reduces blood flow into it, and decreases
the wall pressure against the aneurysmal wall, thus progressively creating a fa-
vorable hemodynamic environment for flow stasis and thrombus embolization.
Finally, the formation of a blood clot blocks off the aneurysm, thus consider-
ably reducing the risk of rupture. In the case of irregularly shaped or fusiform
aneurysms, or aneurysms with wide necks, stenting of the parent artery can be
used in combination with coils.
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1.3.3 Current Researches

Due to the high mortality of aneurysm rupture and the difficulties existing in the
treatments, great attention has been paid on the researches related to aneurysm
involving multiple disciplines, such as clinicopathology, pathophysiology, ge-
netics, biomechanics, and computer science.

1.3.3.1 Aneurysm Evolution

The formation and growth of aneurysm involve a series of extremely complex
pathological changes and biomechanical processes, and still remain poorly un-
derstood at present. It is generally believed that the process is associated with
local hemodynamic impact, degradation of arterial wall and the local environ-
ment.

Several clinical reports highlighted the pathogenic significance of hemody-
namic conditions on AAA progression. A number of studies meanwhile indi-
cated the close relationship between high wall shear stress (WSS) and the initia-
tion of cerebral aneurysm formation, growth and rupture [Shojima et al. (2004)].
The repeated trauma of a reflected arterial wave may contribute to pathologic
fragility of the wall, and cause the arterial wall to be incapable of resisting the
expansile force of each systolic contraction. Then continuous aneurysm expan-
sion leads to increasing arterial wall tension or stress, which, in turn, contributes
to more enlargement of the aneurysm dome.

Regarding the angioarchitecture, elastic fibers and fibrillar collagens are two
determining factors of arterial mechanical properties. Elastin and associated
proteins form a network of elastic fibers responsible for the viscoelastic prop-
erties, while collagens provide tensile strength and help maintain the structural
integrity of the vascular wall [Sakalihasan et al. (2005)]. The loss of elastic fibers
seems to be an early step in aneurysm formation. Ultimately, collagen degrada-
tion leads to the aneurysm rupture [Dobrin and Mrkvicka (1994)].

When expanding, aneurysm could touch the surrounding anatomical ele-
ments, such as cranial nerves, bridging and surface veins, small arteries. The
contact between growing aneurysms and other structures may cause not only
nerve symptoms by the adhesive compression, but also the deformation and
bleb formation of the aneurysm dome due to the limitation in spatial expansion.
These extrinsic factors also play a role in the growth and rupture of aneurysms
[San Millán et al. (2002)] [Satoh et al. (2005)]. In Section 4.3, our simulation of
aneurysm development not only considers the interaction between blood and
vessel, but also includes the surrounding tissues as an impact.

Rupture is a mechanical failure when the stress experienced by the vessel
wall exceeds wall strength. Not all aneurysms end in rupture; some of them grow
slowly and stop expanding when reaching a certain size. So far, it is still impossi-
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ble to accurately predict where and when the rupture will take place. Researches
only proposed several guidelines for rupture assessment, such as the morpho-
logical parameters, location, growth rate of aneurysm, and patient’s age, gender,
family history, and health conditions.

It has been universally recognized that the maximum diameter of aneurysm
is an important factor to forecast rupture since the 1960s [Szilagyi et al. (1966)].
Usually, an IA exceeding 10 mm in diameter is deemed to have higher possibility
of rupture [Dhar et al. (2008)]. Nevertheless, the real controversy exists in as-
sessing small aneurysms. Several reports demonstrated that some aneurysms
in fact ruptured at an unusually small size [Beck et al. (2003)]. The relation-
ship between the rupture risk and aneurysm size still remains to be elucidated.
Recently, instead of size metric, more comprehensive morphological character-
istics were applied to describe the dimension and shape of aneurysm, such as
non-spherical (both elliptical and multilobed) shape, size ratio, aneurysm angle,
parent vessel geometry [Dhar et al. (2008)]. Growth rate is another assistant met-
ric to predict rupture. Rapid expansion of aneurysm diameters preceding rup-
ture was observed in IAs independently of their initial sizes [Juvela et al. (2001)].
As a result, it is suggested that the size of aneurysm, whatever its practical sig-
nificance, is probably not the sole useful determinant for rupture assessment.
Since the rupture is the result of interaction between blood flow and wall ves-
sel, hemodynamics also plays a significant role in the assessment. Flow rate,
blood pressure, wave form, hemodynamic forces are usually observed to moni-
tor aneurysms. Some studies demonstrated that the ruptured IAs had unstable
flow patterns, smaller impinging jet diameters, and smaller impingement zones
[Cebral et al. (2005)]], as well as a higher average wall shear stress in the sac [Sho-
jima et al. (2004)], compared to the unruptured aneurysm.

1.3.3.2 Hemodynamics

Hemodynamic factors are thought to play an important role not only in all the
stages of aneurysm life cycle, i.e., initiation, growth, and rupture, but also in clin-
ical evaluation and treatment. The pathogenesis is highly relevant to the hemo-
dynamic forces, among which there are three major components associated with
aneurysm evolution: (1) hydrostatic pressure, the perpendicular force acting on
the vascular wall; (2) relative wall strain (RWS), the circumferential stretch of
the vessel wall caused by pressure changes due to cyclical systolic contractions
and the resulting tensile stress; (3) wall shear stress (WSS), the tangential force
exerted by moving blood along the axis of flow. The arteries and aneurysms pul-
sate under repetitive blood pressure over years, and the composition of the wall
and strength may degrade because of material fatigue. In recent years, great
progresses were made in studies of pressure and WSS obtained in vivo [Bieg-
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ing et al. (2011)], experimentally [Takeuchi and Karino (2010)] and theoretically
[Baek et al. (2010)].

Historically, a geometrical model of vessel and aneurysm was established,
and the hemodynamics within and around the aneurysm was studied by ex-
perimental flows [Strother et al. (1992)]. However, a better method for evalu-
ating aneurysmal flow would be in vivo analysis, and some novel techniques of
angiography made it possible to assess blood velocity in human arteries by us-
ing particle imaging velocimetry and laser Doppler velocimetry [Tateshima et al.
(2007)], or by ultrasound beams to achieve noninvasive and simultaneous as-
sessment in real time [Tortoli et al. (2006)]. Complex arterial flow patterns were
readily visible by flow-sensitized four-dimensional MRI and three-dimensional
phase-contrast MRI [Wetzel et al. (2007)]. But these velocity data was still far
away from the ideal information for aneurysm analysis, which required high
spatial and temporal details and complete three-dimensional coverage includ-
ing the adjacent arteries, particularly in intricate anatomical structures. This is
almost impossible for conventional angiography at present. As a result, compu-
tational simulation, combined with medical imaging techniques, becomes at-
tractive for studying patient-specific hemodynamic conditions. It allows very
detailed flow field representations, and provides any required flow quantities,
such as vorticity and wall shear stress. More detailed computational simulation
result has motivated lots of researches to investigate its use in the diagnosis and
treatment of aneurysm, and prediction of aneurysm evolution. Nevertheless,
computer-based method usually requires profound numerical knowledge, as
well as enormous computational power and time. The survey revealed that clin-
icians only showed an interest in computational simulation of blood flow, but
still lacked awareness concerning the role of computer simulation in aneurysm
related research [Singh et al. (2009)]. Consequently, computer-based simulation,
which has a great potential, has to be more deeply investigated for future clinical
use.

Cerebral aneurysms appear at different locations, such as carotid and basi-
lar artery. The hemodynamic quantities were speculated to be partially depen-
dent on aneurysm positions according to the comparison of values in cerebral
aneurysms at different positions [Chien et al. (2009)]. Another important effect
on hemodynamics is the geometry of either aneurysm or parent artery. For ex-
ample, faster flow velocity and higher WSS were observed in the relatively small
aneurysms and aneurysms with wider neck [Tateshima et al. (2010)]. Significant
increase of WSS was detected in the aneurysm lateral to the curve of the par-
ent artery compared to the one inside or outside the curve of the artery, even
with the same shape of the aneurysm [Sato et al. (2008)]. So it is important to
accurately define the patient-specific geometry of aneurysm and parent vessels.

Thanks to modern angiography techniques, patient-specific geometry
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model can be reconstructed, and used in simulations or experiments to ana-
lyze hemodynamic parameters in a cerebral artery before and after the forma-
tion of aneurysm (e.g., [Mantha et al. (2006)]), and to compare hemodynamic
characteristics qualitatively or quantitatively between unruptured and ruptured
aneurysms (e.g., [Cebral et al. (2011)]). These studies were aimed at learning the
association between the hemodynamics and the whole life cycle of aneurysm,
and finally discovering the pathogenesis of aneurysm. Besides, a significant con-
tribution of hemodynamics to the aid and assessment of surgeries can be ex-
pected. WSS and pressure distribution is useful to estimate the risk of rupture,
and to determine whether a preventive surgery is necessary and urgent for the
patient. Hemodynamic environment can be theoretically reproduced and then
applied to treatment planning (e.g., [Kakalis et al. (2008)]) or treatment rehearsal
(e.g., [Wei et al. (2009)]). After the treatment, the comparison between the post-
operative and pre-operative status of hemodynamics can be used to evaluate the
effect of the operation and the patient’s safety (e.g., [Fu et al. (2010)]).

1.3.3.3 Artery

It is being perennially debated among researchers whether aneurysm is initial-
ized by hemodynamic stimuli that could induce a degenerative response on the
arterial wall, or by degeneration of the vessel wall itself. The recent consensus is
inclined to believe that aneurysm evolves as a result of an extremely complex in-
terplay between hemodynamic factors and biomechanical process of artery de-
grading triggered by inherited biochemical and structural defects, aging, infec-
tion or diseases. Besides the studies on local hemodynamic environment in the
vessel or around the aneurysm, there has been a large amount of work devoted
to the biological and mechanical studies on the artery, as well as mathematical
and physical model of the vessel wall.

As a basis of further research on the underlying mechanism of artery defor-
mation, the biological structure of arterial wall represents a significant area to
be explored. The wall is usually composed of three layers [Fung (1993)], some
of which may be exceptionally very thin or absent in certain intracranial arteries
[Lee (1995)]. It is a complex biological structure of living cells, and a structural
network of sheets and fibers of polymerized proteins, whose compositions and
constructions (partially) control the degree of elasticity and stiffness. These cells
and fibers respond to the mechanical stimuli from the internal blood flow or ex-
ternal organs by actively modifying their mechanical properties. But more im-
portantly, they are responsible for permanent transformations (i.e., remodeling)
by adjusting their morphological characteristics, compositions or organization
as a result of biological processes. Actually, this is a feedback control system to
maintain the stability of the integral body. The mechanism of artery remodeling
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is one of key problems to study the association between aneurysm evolution and
biological processes, such as, degenerative processes, infection, aging, etc. The
biological factors responsible for aneurysm have been widely investigated from
cellular level to molecular level, from biomechanic field to genetic field.

The theoretical studies demonstrated the difference of hemodynamics be-
tween simulations using rigid and elastic wall models, and obviously the superi-
ority of elastic model regarding the reality [Zhao et al. (2008)] [Zhao et al. (2009)].
As a result, it is necessary to study the mechanics of the vessel wall not only for its
own deformation, but also for a more realistic local hemodynamic environment.

Above all, the mechanical properties (for example, elasticity, viscoelasticity,
stiffness, contractility, wall thickness) of arteries should be measured in order
to establish the mechanical model. With present noninvasive medical imaging
techniques, it is still hampered to measure in vivo patient-specific mechanical
properties and the nonuniform distribution of wall thickness [Lasheras (2007)].
Thus, measurements were usually made by experiments on artery or aneurysm
samples from autopsy [MacDonald et al. (2000)]. These properties were also
studied with regard to the changes during the normal course of aging [Hayashi
et al. (1980)], since they varied as the vessel undergoes long-term remodeling
under the coupling between mechanical stimuli and the biological processes.
Mechanically, the formation of aneurysm is considered as a process of fatigue
failure. This is a typical problem in structural engineering, involving the plastic
deformation, permanent bulging, and subsequent rupture of a pipe under the
effect of an oscillatory internal pressure caused by periodic blood ejection from
heart into aorta. In mechanical field, the deformation is commonly explained
with the instability theory of structure, while the rupture is explained with the
strength theory of material. Among the diverse mechanical aspects of aneurysm
evolution, there are many clinical and laboratory researches focused on charac-
terizing the constitutive equation quantifying the relationship between the wall
stresses and the strain response of blood vessels, such as simple linear elastic
model, pseudoelastic model, randomly elastic model, poroelastic model, and
viscoelastic model [Vito and Dixon (2003)]. The response to the WSS within ves-
sel or aneurysm was widely recognized to be significant to control the aneurysm
evolution, except for IAs, where, rather than WSS, tensional stresses was thought
to be the determinant factor [Lasheras (2007)].

A lots of mathematical and physical models for aneurysm mechanics are
available in the literature, including hyperelastic model to examine the mechan-
ical response of the arterial wall under the combined action of inflation, axial
extension, and torsion [Ren and Yuan (2010)], an AAA failure model based on
the constitutive theory of softening hyperelasticity, coupled with a growth model
by phenomenological theory of soft tissue [Volokh and Vorp (2008)], a thin shell
model of a saccular aneurysm to describe the shape deformation when interact-
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ing with a viscous interior fluid [Calvisi et al. (2010)]. Finally, the mathematical
models are solved by numerical techniques which are implemented on com-
puter.

1.4 Challenges in Computer-Based Simulation

Although the rapid development has taken place in the area of medical simula-
tion for tens of years, it still remains lots of fundamental problems to be solved
for a wide and reliable use of computer-based simulation in clinical trails and
treatments. An ideal medical simulator is supposed to provide interaction be-
tween the physician and the patient’s anatomy in a clinically realistic manner.
The virtual tissues are supposed to move as they do in a living body, for exam-
ple, the heart beats, the blood flows. As well, the tools should be able to in-
teract with these moving tissues, but not simply move above them. So that the
physiological and physical responses of the body to interventions such as cut-
ting, suturing, probing, and dilating must be realistic. The realism means not
only in visual sense but also in haptic or even acoustical sense, which requires
the color, texture, physical properties to reflect the simulated tissues. As a re-
sult, a realistic medical simulator is an offspring of multiple disciplines, that
is, an integration of state-of-the-art solutions in areas, which are as diverse as
visualization, biomechanical modeling, haptic and contact modeling. Besides,
some other crucial challenges for now are not technical in the area of computer
science, but to understand the value and proper application of the new tech-
nology, to determine the metrics for validating and assessing medical simula-
tors, and to set standards for evaluating trainee’s performance as well. Here we
discuss some main challenges of computer-based medical simulations in gen-
eral, and more specifically, the difficulties in the simulations concerning cere-
bral aneurysm, such as blood flow around aneurysm, pulsatile deformation of
arterial wall, evolution of aneurysm, interaction between operative instruments
and patient’s tissue or organ. Such simulations are expected to understand the
pathogenesis and progression of aneurysm, to predict rupture, to train residents
or to rehearse medical procedures. However, lots of them are still far from be-
ing capable of functioning as a reliable tool to guide the clinical management of
aneurysm, despite multidisciplinary effort over years.

Geometry Modeling Although the patient-specific geometry model can be ob-
tained by reconstruction from medical images, these images can neither provide
a high resolution nor avoid the noises due to the current restrictions of imaging
techniques and image processing tools. Consequently, a precise description of
three-dimensional geometry is not always available. The fusiform AAA in large
size can be reconstructed with relatively good accuracy. But a precise geometri-
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cal model of IA is more difficult to obtain because of its small size and complex
network of surrounding arteries, especially when taking into account the exact
curvature and connectivity to parent and daughter arteries [Lasheras (2007)].

Physiological and Physical Modeling Human body is such a complicated system,
no matter in geometrical, physical or physiological aspect, that it still leaves
thousands of mysteries to current researchers. One of important technical chal-
lenges consists in acquiring accurate measurements in vivo, such as kinematics,
biochemical, and physiologic parameters, and physical properties. Even if some
parameters of individual organs and tissues are not too difficult to measure, it is
still an enormous labor to collect all the essential measurements to represent the
properties and physiologic processes accurately, and then to integrate them into
an overall simulation. A further complication is the case that each individual is
more or less alike, but still quite different in detail. For the purpose of realism,
patient-specific data becomes a necessary trend in medical simulation. More-
over, it is a task that could never be completed, since it will always be possible
to reach another level of fidelity: initially from the organ and tissue level, to the
glandular level, then to the cellular level, and finally to the molecular level and
beyond. With each level succeeded, the realism will be further improved.

To model the artery, the real deficiencies stem from the current difficulty
in obtaining personalized biological or mechanical properties of vessel wall in
vivo. It is a challenge to resolve the distribution of nonuniform wall thickness
throughout the entire aneurysm, and even more difficultly, the precise compo-
sition and structure of the wall at each location. And the results obtained from
experiments suggested that the estimation of the mechanical properties was
mainly influenced by the image spatial resolution and the chosen registration
configuration, thus the reliability of current measuring methods was doubtful
[Balocco et al. (2010)]. Furthermore, these characteristics not only differ in indi-
viduals, but also vary over time and position inside the identical body. The inad-
equacy of biomechanical parameters together with the complication of poorly
understood physiological processes makes it challenging to establish a physical
model including all important factors.

Data Acquisition Up-to-date imaging techniques are incompetent to provide
images with a high resolution either in space or in time. This brings about diffi-
culties in acquiring important hemodynamic information of living bodies, such
as blood flow pattern, velocity. Particularly, WSS is difficult to measure as it is
derived from the velocity close to the wall where most conventional imaging
techniques are least reliable [McGregor et al. (2009)]. The lack of actual hemo-
dynamic information in vivo hampers in vitro simulation from accurately ap-
proximating to the reality. For example, it is still controverted what proper initial
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and boundary conditions for simulations of blood flow and wall deformation
are. Acquiring such data, which is time-varying and transient, for each inlet and
outlet is impractical. As a result, physical and mathematical models are required
to established [Vignon-Clementel et al. (2010)].

Interaction Most simulations concern the computation of not only visual ren-
dering but also interactions between medical devices and anatomical structures.
Generally speaking, these interactions involve detection of collisions between
objects, and response to deformation and collision. Finally, the resulting state of
interactions is visually and haptically rendered. Usually these simulations target
at assisting in making a rapid decision or rehearsing in a virtual environment,
thus require fast or even real-time computation, which cannot always be guar-
anteed by modern computers with certain limitations both in memory and fre-
quency. Therefore, the need still remains to increase computing speed by both
optimizing algorithms and improving hardware.

Validation and Assessment Before put to wide clinical utilization, the medical
simulation should be validated and assessed to make sure that the simulation is
accurate and effective; otherwise, it is useless in a clinical sense. However, cur-
rent techniques (e.g., the difficulty in data acquisition) somehow hinder us from
comparing numerous simulations to the actual state on a real patient, some-
times also between pre-operative and post-operative statuses. In addition, stan-
dardized and reliable validation techniques are needed, and further efforts to
develop validation methodologies should be made.

Evaluation of Performance As a training tool for residents, it is important to eval-
uate their performance on the surgical procedure, and to determine whether
they are proficient and qualified in this specific operation. At present, we still
lack sufficient evidence to support the reliability of assessments of medical stu-
dent’s performance using the simulator as an evaluation tool. Developing the
metrics for evaluating performance is also a problem demanding prompt solu-
tion.

Visualization Efforts must be made to create high-quality visuals that effec-
tively convey the real world to the user. Realism could be achieved in the field
of data visualization by using appropriate rendering, including colors, textures,
brightness, shadows, refection, transparency, refraction, diffraction, etc. Addi-
tionally, speed (especially for the volume rendering) and interactivity are also
important issues, as the rendering speed of one image directly affects interac-
tivity of visualization, for example, zoom and rotation in real time, which could
happen in the navigation of medical instruments and other simulated processes.
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1.5 Our Contributions

In this thesis, we present a theoretical approach, Discrete Exterior Calculus
(DEC), initially developed in the field of computer graphics, along with its prac-
tical implementation. This new approach is introduced to hemodynamic simu-
lation for the first time, in order to achieve accurate and fast (real time or near
real time) computation of the blood flow and blood-structure interaction in spe-
cific applications. To this end, we introduce several improvements as well as a
much deeper analysis of the results, in the context of very different applications
than initially aimed by the DEC method.

• We improve the numerical stability of the method by using more advanced
backtracking schemes, and more importantly by optimizing quality of the
mesh used in the computation.

• A detailed analysis of the results and comparison with a reference software
are performed to understand the stability, accuracy and computational ef-
ficiency of the method, as well as the factors affecting these aspects.

• We add extra terms to the Navier-Stokes equations in order to describe the
interaction between blood and the deformable surgical instruments dur-
ing the procedure of aneurysm coil embolization.

• While the existing studies of aneurysm embolization only concerned the
impact of the deployed coil(s) on the blood flow, we also propose an effec-
tive way to compute the reverse effect of the blood flow on the coil during
the surgery, and provide higher reality for the simulation of placing coils
into the aneurysm compared to the case without considering the interac-
tion with blood flow.

• Our simulated results of blood-coil interaction show that our approach
permits to describe the influence between coils and blood flow during coil
embolization, and that an optimal trade-off between accuracy and com-
putational time can be obtained.

• We propose a new approach for modeling the development of aneurysm
based on computationally efficient numerical techniques for solving both
the fluid simulation and the soft tissue deformation problems. In addi-
tion, we consider the influence of the soft tissues surrounding the vessels
in aneurysm growth, and rely on a creep model for describing the interac-
tions between fluid and tissues as they involve very different time scales.
Our simulations in two-dimensional space using actual patients data sets
provide encouraging preliminary results.
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2
DISCRETE EXTERIOR CALCULUS APPROACH

In this chapter, after a brief historical review over the topic of computational
fluid dynamics in Section 2.1, we mainly introduce a newly developed numerical
tool for solving fluid equations, which is the discrete exterior calculus approach.
In Section 2.2, a differentiable manifold, where we do exterior calculus, is dis-
cretized as a manifold-like oriented simplicial complex (referred to as primal
mesh) and a corresponding dual mesh. In Section 2.3, discrete forms, which are
the objects to represent discrete physical variables, are presented. Afterwards
the transition between forms by two fundamental operators is explained in Sec-
tion 2.4. Finally, in Section 2.5, we show the implementation of the DEC theory
is quite understandable and approachable for engineers.

2.1 Computational Fluid Dynamics

In physics, fluid dynamics is a discipline that deals with fluid flow, and un-
derstands the physical events that occur in the flow of fluids (liquids or gases)
around and within designated objects. These events are related to the action
and interaction in the phenomena such as dissipation, diffusion, convection,
slip surfaces, turbulence. The solution to a fluid dynamics problem typically in-
volves calculating various characteristics of the fluid, such as velocity, pressure,
density, and temperature, as functions of space and time. The research of this
discipline was initially motivated by the development of aircraft industry in the
1930s. In the following years, the fluid dynamics has continuously made new
academic theories and new models, which have brought more and more appli-
cations in a number of various industrial fields.

Generally speaking, there are three basic approaches that can be employed
to solve fluid dynamics problems, experimental approach, analytical approach,
and computational approach. Traditionally, both experimental approach and
analytical approach are applied to study various aspects of fluid dynamics and
to assist engineers in the design of equipments and industrial processes involv-
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ing fluid flow. Thanks to the advent of digital computer in the early 1950s, the
modern computational fluid dynamics (CFD) provides another alternative to the
traditional approaches. Although experiments continue to be significant and the
analytical method is still practiced, the trend is obviously towards dependence
on CFD for industrial applications, especially in some complex cases.

CFD is a new branch of science integrating not only the disciplines of fluid
dynamics with mathematics but also the field of computer science. The physical
properties of the fluid motion are described through fundamental mathematical
equations, normally in a partial differential form. These equations which gov-
ern a flowing process of interest, are often called governing equations in CFD.
In many cases, the partial differential equations can be approximated by a se-
ries of discrete equations which are then converted by computer scientists using
high-level programming languages into computer programs or software pack-
ages. Finally, the results calculated by the computer, called numerical solutions,
are considered to be an approximate solution to the original equations.

CFD becomes more and more appealing in both fluid dynamics area and in-
dustrial design, since it offers a lot of outstanding benefits.

1. CFD is a method based on physical theoretical model (i.e., the governing
equations), and takes advantage of the academic findings which have been
developed for over a hundred year. On the other hand, computer science
then focuses on discretizing and solving the governing equations, and in-
vestigates various methods to approximate these equations.

2. CFD is a feasible alternative of simulating real fluid flows that completes
the traditional approaches.

• Experiments for the fluid simulation are usually time-costing and
money-consuming, while CFD reduces preparing time and design-
ing/producing cost, especially when the computing power of comput-
ers is increasing and the manufacturing cost of hardware is decreasing
rapidly. Moreover, CFD is able to reproduce almost any scenarios and
flow conditions, even a theoretically ideal situation, which is impossi-
ble for experiment-based methods.

• Analytical approach only provides solutions to a limited amount of
problems, while CFD has the capability of solving a wide range of
complicated flow problems which lack analytical solutions.

3. CFD offers an easier method to simulate the fluid under different condi-
tions by tuning the certain dimensionless parameters, such as, Reynolds
number, Mach number, Rayleigh number. This attribute is very useful in
the early periods of engineering design.
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4. Compared to experimental and analytical fluid dynamics, CFD provides
rather detailed and comprehensive results, which contain almost all the
characteristics of the flow during the overall process of the simulation.
Visualization of these results using vector fields, contours, and animated
movies is an effective way to display the huge amount of data generated by
numerical simulation.

Nevertheless, plentiful advantages that we benefit from CFD do not mean
that traditional methods are going to disappear forever. Some engineering
projects, especially in aircraft industry, are by far greatly dependent on exper-
iments, for instance, wind tunnel experiments. Furthermore, there are many
applications where CFD are relatively in its infancy of development, and the tra-
ditional approaches still remain as the primary source of information. For exam-
ple, some complex flows, such as high Reynolds flow, turbulent flow, multiphase
flows, boiling, and condensation, are governed by complicated nonlinear equa-
tions, and it is still difficult to numerically solve these governing equations using
the state-of-the-art mathematical tools. What’s more, numerical errors are irre-
sistible in computations, and there is always difference between the CFD result
and the reality. Last but not least, the difficulty for CFD also lies in setting bound-
ary conditions. Under many circumstances, the CFD solution is highly depen-
dent on the initial or boundary conditions, but there is no easy way to deal with
these conditions in some cases. Take the blood flow simulation in small vessels
for example, the flow distribution and pressure field in the modeled domain are
not impractical to obtain from patients, thus no prescribed inflow or outflow can
be used to set boundary conditions. An alternative approach is to couple the so-
lution at the boundaries of the domain with other models of the downstream
domain [Vignon-Clementel et al. (2010)] [Vignon and Taylor (2004)].

2.1.1 Physical Model: The Navier-Stokes Equations

As mentioned above, CFD approach is based on physical models, and rep-
resented by fundamental mathematical equations. Among these models, the
Navier-Stokes equations are usually regarded as the basic governing equations
of CFD, and widely used in researching and engineering. This set of equations is
derived from the Newton’s second law, that is, conservation of momentum, to-
gether with the assumption that the fluid stress is the sum of a diffusing viscous
term (proportional to the gradient of velocity), plus a pressure term. The equa-
tions, are a milestone in the field of fluid mechanics, and named after Claude-
Louis Navier and George Gabriel Stokes who made great contributions.

The standard Navier-Stokes equations given below (Equation 2.1) are used
to describe the incompressible flows of Newtonian fluids whose stress is directly
proportional to the velocity perpendicular to the direction of strain rate (@v/@t )



20 Chapter 2. Discrete Exterior Calculus Approach

[Batchelor (2000)].

Ω
@v

@t
+Ω(v ·r)v =°rp +µ¢v+f ,

rv = 0,
(2.1)

where v is the velocity vector, that is, (vx , vy ) in two dimensions or (vx , vy , vz)
in three dimensions, of the fluid with density Ω and viscosity µ, p is the pres-
sure, and f is the external force vector (such as buoyancy, gravity, stirring), rep-
resented as ( fx , fy ) or ( fx , fy , fz). The symbol r is the vector of spatial partial
derivatives, and we also use the notation ¢ = r ·r. More precisely, in two and
three dimensions, these symbols are respectively
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In almost all the real situations, the Navier-Stokes equations are nonlinear
partial differential equations; they can only be simplified to linear equations in a
few specific cases, such as one-dimensional flow and Stokes flow. The nonlinear-
ity is due to convective acceleration (v ·r)v, which is an acceleration associated
with the change in velocity over position. Generally speaking, the nonlinearity
makes most problems difficult or even impossible to be solved. Hence, dealing
with the term of convective acceleration is a key concern to solve the Navier-
Stokes equations. The solution of these equations is a velocity field, a descrip-
tion of the velocity of the fluid at any given point in space and time. Once the
velocity field is known, other properties of interest, such as pressure, flow rate,
or drag force, can be further calculated.

The Navier-Stokes equations can be used to model both laminar and turbu-
lent flow. Laminar flow occurs at relatively low velocities. Fluid tends to flow
without either lateral mix, eddies or swirls of fluids. The motion of the fluid par-
ticles is so orderly that all particles move in straight lines parallel to the pipe
walls, and adjacent layers slide past one another without cross currents perpen-
dicular to the direction of flow. When the velocities increase (usually, it is esti-
mated by Reynolds number, which goes over 2000 or 3000), the turbulent flow
with chaotic behavior can be observed. The numerical solution of the Navier-
Stokes equations for turbulent flow is extremely difficult, as a stable solution
usually requires such a fine mesh resolution that the computational time be-
comes significantly impracticable for simulation. To model the turbulent flow,
time-averaged equations (e.g., Reynolds-averaged Navier-Stokes equations) to-
gether with turbulence models are applied in practical CFD simulation.
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2.1.2 Numerical Approaches

Lots of numerical approaches have been developed to solve differential equa-
tions. Many of them are based on three classical numerical methods, which are
finite difference method (FDM), finite element method(FEM), and finite volume
method (FVM).

FDM was proposed as early as 1910 by Richardson for the stress analysis of
a masonry dam [Richardson (1911)]. This method is easy to understand and to
formulate, so it is widely used in engineering till nowadays. The differential is
approximated by forward, backward or central difference:

d v
d x

ØØØØ
x=xi

º vi+1 ° vi

xi+1 °xi
forward difference,

d v
d x

ØØØØ
x=xi

º vi ° vi°1

xi °xi°1
backward difference,

d v
d x

ØØØØ
x=xi

º vi+1 ° vi°1

xi+1 °xi°1
central difference.

Similarly, higher-order differential is written as, take forward difference as an
example,
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∏
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Historically, FDM has dominated the CFD community due to its simplicity
in formulations and computations. But for curved mesh, transformation into
orthogonal Cartesian coordinates is the prerequisite; otherwise, finite difference
equations cannot be written on structured Cartesian mesh. However, some new
methods have extended FDM to satisfy unstructured mesh. Among these meth-
ods, DEC is a newly developed tool for solving differential equations discretized
on triangular or tetrahedral mesh.

To compute on unstructured mesh, FEM is an alternative, first published in
the Journal of Aeronautical Science to analyze aircraft stress in 1956 [Turner et al.
(1956)]. Since then, both FDM and FEM have been widely applied in fluid dy-
namics, heat transfer, and other similar problems. In FEM, the problem domain
is divided and approximated by a set of elements. On each element, the un-
known variable u(x) is approximated by a known function dependent on the
geometrical location x, for example linear function or high-order polynomial
function. The governing equations are transformed into a weak form by inte-
grating over the whole domain, thus leading to a weak solution rather than a
strong solution that represents the analytical solution. However, the underlying
principles and formulations based on rigid mathematical theory are somehow a
barrier for practical use.

Because of the simple data structure and the ability to handle unstructured
mesh, FVM has become increasingly popular in recent years. Its formulations
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can be derived from either FDM or FEM. Finite volume refers to the small vol-
ume surrounding each node point on the mesh, and volume integrals are con-
verted to surface integrals, using the divergence theorem. These terms are then
evaluated as fluxes at all the surfaces of each finite volume. Because the flux en-
tering a given volume is supposed to be equal to the flux leaving the adjacent
volume, FVM is conservative.

Besides these general approaches to numerically solving differential equa-
tions, there are also other methods and techniques specifically aimed at the
computation of fluid flow. Hereby, we review some of them, including statistical
methods, particle-based methods, vortex methods and the DEC method.

2.1.2.1 Statistical Methods

The Navier-Stokes equations are derived from macroscopic continuum me-
chanical theory, while other numerical approaches that have been developed
lately model physics in fluids from a micro-scale or even nano-scale perspec-
tive. Among these approaches, we would like to briefly introduce two promis-
ing methods using statistical ideas to transfer micro-scale state to macro-scale
value, which are Lattice Boltzmann Method (LBM), and Direct Simulation Monte
Carlo (DSMC).

LBM is a simulation method based on the mesoscopic kinetic equations
[Chen and Doolen (1998)]. The fundamental idea behind LBM is to establish a
simple kinetic model that concerns only the essential physics of microscopic or
mesoscopic processes, meanwhile, the macroscopic averaged quantities obey
the desired macroscopic equations. The incompressible Navier-Stokes equa-
tions can be obtained in the nearly incompressible limit of LBM. This method
has proved a good candidate for many applications, such as interface dynamics,
boiling dynamics, and multiphase or multicomponent fluid flows, where tradi-
tional macroscopic methods cannot perfectly handle with.

DSMC is designed for some specialized flows with low-speed and high Knud-
sen number [Binder and Heermann (2010)]. Its basic idea is to track a large
amount of statistically representative particles, and record their positions and
velocities. In this method, particle motion is modeled deterministically, while
the collision is treated statistically. DSMC is able to overcome some difficulties
associated to the macroscopic methods in modeling unsteady flow, for instance,
applications in computing non-equilibrium structure of shocks and boundary
layers, as well as hypersonic viscous flows and high temperature rarefied gas dy-
namics.
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2.1.2.2 Particle-Based Methods

In particle-based methods, the governing equations of fluid motion (e.g., the
Navier-Stokes equations) are discretized using a set of moving particles and their
interactions. The trajectories of particles are obtained by solving ordinary dif-
ferential equations. Similarly, the evolution of properties carried by these parti-
cles, such as density, temperature, and vorticity, can also be calculated by solving
other governing equations.

Particle-based methods are implemented using the Lagrangian formulation,
usually without any mesh to describe the fluid space. This meshless strategy gets
rid of the tedious task in meshing and remeshing processes, and is very attractive
in lots of applications in the sense of simple description, easy implementation
and intuitive user interaction. Moreover, it is also appropriate for large scale
problems, multiphase flows, multiple fluids mixing and sedimentary flows. One
popular method in under this category is smooth particle hydrodynamics (SPH)
[Monaghan (2005)]).

2.1.2.3 Vortex Methods

Vorticity, in an intuitive sense, explains the tendency of the fluid spinning; it
measures the circulation per unit area at a point in fluid flow field. Mathe-
matically, vorticity is also a vector field, defined as the curl of velocity field,
! = r£v. The theorems of Helmholtz and Kelvin illuminate a natural fact that
vorticity moves with the local velocity in the inviscid motion of a fluid, leading to
a novel branch of methods for solving fluid flow problems, especially unsteady
flow problems. Vortex methods essentially represent a direct translation of this
fact into numerical algorithms, which formulate the Navier-Stokes equations in
terms of vorticity (Equation 2.2). Therefore, vorticity field, instead of velocity
field, is discretized as vortex elements, and the convection of each vortex ele-
ment is tracked to simulate time evolution of the flow. Finally, velocity field is,
in turn, converted from vorticity field by solving a Poisson equation, usually in
terms of the Green’s function or Biot-Savart integration.

@!

@t
+Lv! = µ

Ω
¢!+ 1

Ω
r£f ,

rv = 0 ! =r£v,
(2.2)

where ! is the vorticity, Lie derivative Lv! (in this case equals to v ·r!°! ·rv),
is the advection term. In two dimensions, the vorticity vector is perpendicular
to the plane spanned by the fluid domain, and can be represented by signed
scalars; the sign describes the either direction, while the magnitude measures
the amount of circulation. In three dimensions, the vorticity is also a vector field
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as velocity, (!x , !y , !z). The vorticity-based equations are deduced by taking
curl of the Equation 2.1, and the pressure term disappears.

Obviously, vortex methods offer an easy way to analyze and visualize the de-
velopment of vorticity field, and they get rid of the pressure term, which is only
required to be solved when and where force measurements are desired. This
feature simplifies the design of numerical algorithms to solve the Navier-Stokes
equations. Furthermore, compared to traditional methods, vortex methods, to
some degree, overcome the issues of numerical diffusion and instability by not
directly approximating the convection term, thus result in higher accuracy and
stability. More comprehensive introductions and reviews of the methods under
this category are presented in [Cottet and Koumoutsakos (2000)].

2.1.2.4 Discrete Exterior Calculus

As a matter of fact, numerous physical theories have strong underlying geomet-
rical structures, such as general relativity, electromagnetism (E & M), as well as
solid and fluid mechanics. The best way to formulate these theories is to use
simple geometric descriptions that formalize apparent symmetries and exper-
imental invariants. Unfortunately, this intrinsic geometric nature is often con-
cealed by the traditional formulations in coordinate system. On the contrary, the
Exterior Calculus of Differential Forms, first proposed by Cartan, offered a bet-
ter expression for plenty of physical and mathematical theories [Cartan (1947)].
The exterior calculus was extended and improved over the twentieth century,
and became the foundation of the modern theory of differential geometry. In
the end of last century, Sharpe stated that it was possible to express every dif-
ferential by exterior derivative of differential forms [Sharpe (1997)]. As a result,
several recent initiatives aimed at formulating the physical laws in terms of dif-
ferential forms [Frankel (2004)].

Regarding the representation of physical variables, line integrals, as well as
face and volume integrals are often used, for example, circulation along a closed
loop in fluid mechanics or the line integral of electric field intensity in electro-
magnetism. So it is not proper to evaluate or approximate all the quantities
uniquely pointwise, but more generally attached to a line, a surface or a volume.
At the same time, these quantities should be stored and manipulated at their ge-
ometrically meaningful locations. Differential form is a good choice for such a
geometrical description of physical quantities. The classical operations of gra-
dient, divergence and curl, as well as the theorems of Green, Gauss and Stokes
can be expressed concisely in terms of differential forms and operators on these
forms called exterior derivatives.

Obviously, the geometry-based calculus has several advantages compared to
the classical tensorial calculus. Firstly, it is the mother tongue of numerous phys-
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ical and mathematical theories based on geometrical structures. Secondly, it is
easier to discover invariants in the expression of differential forms by applying
Stokes’ theorem, Poincaré lemma, or by applying exterior differentiation.

There is always a significant gap between mathematical theories and applied
sciences. Even though one has a comprehensive mathematical background, he
will meet other obstacles, such as, discretization of the mathematical descrip-
tion. Some conventional discretization methods ( for example, FDM or particle-
based methods), focusing on accurately discretizing the local laws, usually lose
important global structures and invariants. Later methods such as FEM, solved
this problem to some extent by satisfying local conservation laws on average
and preserving some important invariants. Although many important improve-
ments have been made in error control, convergence, and stability of these finite
approximations, the underlying structures of the simulated continuous systems
are mostly destroyed. Some phenomena, such as gain or loss momentum of
a moving rigid body, reveal that the discretization process usually fails to pre-
serve some fundamental geometric and topological structures of the underlying
continuous models. As a consequence, some recent scientists believed that we
should think from a geometric point of view, and introduced some new concepts
of DEC in a systematic way [Hirani (2003)].

Yet, the calculus of differential forms has not been widely applied in com-
putational fields till now, except computational E & M community [Bossavit
(2001)]. This community seems to have gone the furthest in the application of
DEC-like ideas, because differential forms provide a perfect description of all
Maxwell’s equations. Afterwards, Desbrun and his coworkers presented some
potential problems in the fields of computation vision and graphics, where DEC
was applicable [Desbrun et al. (2003)], and they were pioneers in several applica-
tions: by using 0-forms to describe the coordinates of the surface, Tong created
discrete harmonic forms for surface tiling [Tong et al. (2006)]; Fisher represented
tangent vector fields as discrete 1-forms, i.e., scalars on edges, and generated
such fields with user-assigned constraints over arbitrary triangle meshes [Fisher
et al. (2007)]; Wang interpreted vertex- and face-based subdivision schemes
as defining bases for 0- and 2-forms, and introduced edge-based subdivision
schemes to construct the missing bases for 1-forms [Wang et al. (2006)]; Elcott
described problem quantities, for example flux and vortex, as differential forms,
and developed a strategy to preserve circulation along discrete loops in the mesh
during the fluid simulation [Elcott et al. (2007)].

Although the theory of exterior calculus is not easy to manipulate for non-
specialists, the discrete counterpart is much simpler to define and more intu-
itive to understand. In the following sections of this chapter, we do not offer a
rigorous mathematical definition or deduction of the objects in DEC. Instead, we
try to simply recall the fundamental definitions and theories needed to develop
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a novel approach for fluid simulation. For more details about the DEC theory
please refer to [Hirani (2003)].

2.2 Primal and Dual Complexes

The fluid domain is formalized as an n-dimensional manifold M , which can
be discretized as an n-dimensional simplicial complex satisfying certain condi-
tions. In this section, we first review some fundamental definitions concerning
simplicial complex and its dual cell complex, as well as the notion of orientation.
Afterwards, discretization of the space is discussed.

2.2.1 Simplicial Complex

A p-simplex gives a general description of an element in the mesh (e.g., vertex,
edge). Let {v0, ..., vp } be a set of geometrically independent points in the space
RN , i.e., the vectors {v1 ° v0, ..., vp ° v0} are linearly independent.

Definition 2.1. A p-simplex æp is the convex hull of (p +1) geometrically inde-
pendent points v0, . . . , vp :

æp = v0...vp = {x 2RN |x =
pX

i=0
µi vi where µi ∏ 0 and

pX

i=0
µi = 1}.

p is the dimension of the simplex. Any simplex æq (0 ∑ q ∑ p °1) spanned by a
subset of {v0, ..., vp } is called a q-face of æp , denote æq ¡æp . The union of these
faces is called boundary of æp . |æp | is the notation for p-volume of æp in RN . ⌃

Considering the simplex æp = v0...vp (p   1), there are (p +1) faces of dimen-
sion (p ° 1). We can enumerate these faces by deleting one vertex each time,
represented as æp°1

i = v0...v̂i ...vp (i = 0, ..., p), where the hat means omitting that
vertex.

Definition 2.2. A simplicial complex K in RN is a set of simplices in RN satisfy-
ing:

1. Every face of a simplex of K is still in K .

2. The intersection of any two simplices of K is either a face of each of them,
or empty.

The dimension of K is the largest number of dimension among all the simplices
in K . Two p-simplices are called adjacent if they share a (p °1)-face. Two sim-
plices are called incident if they intersect. ⌃
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Definition 2.3. There are two equivalence classes of the vertex orderings in a
simplex æp (p ∏ 1). If two orderings differ from each other by an even permu-
tation, they are equivalent, thus in the same equivalence class. Either class is
called an orientation of æp . An oriented simplex is a simplex along with an ori-
entation. We use [v0...vp ] for an oriented simplex æp with the equivalence class
of the ordering (v0...vp ). Note that a 0-simplex has no orientation. ⌃

Definition 2.4. The orientation of æp = [v0...vp ](p ∏ 1) defines an induced ori-
entation for each (p°1)-dimensional faces as follow: if i is even, the induced ori-
entation of the faceæp°1 = [v0...v̂i ...vp ] is positive, written as sgn(æp ,æp°1) =+1;
otherwise, it is negative. ⌃

Definition 2.5. If two p-simplices æp
1 and æp

2 are adjacent with a shared (p °1)-
face æp°1, their orientations can be compared. We use relative orientation
sgn(æp

1 ,æp
2 ) of +1 or °1 to describe the comparison result. The positive means

sgn(æp
1 ,æp°1) =°sgn(æp

2 ,æp°1) (in this equation, sgn represents induced orien-
tation, which is not discriminated from the notation of relative orientation, since
they are not confusing in a given context). The negative is on the contrary. ⌃

Definition 2.6. In a manifold-like simplicial complex K of dimension n, all p-
simplices (0 ∑ p ∑ n °1) must be a face of some simplex of dimension n in the
complex. Also, each point in K has an n-simplex neighborhood (i.e., all the inci-
dent n-simplices on this vertex) that has all the same topological properties of n-
dimensional ball or half-ball. If the relative orientation of every pair of adjacent
n-simplices is positive, we call K oriented manifold-like simplicial complex. ⌃

From now on, we will only work with oriented manifold-like simplicial com-
plexes, referred to as primal mesh. In order to make the definitions above
straightforward, we give some concrete examples which will be used later.

In the two-dimensional space R2 or three-dimensional space R3, an oriented
triangular or tetrahedral mesh can be considered as a primal mesh. We denote
the the p-simplex set as follows:

0-simplex (vertex) set: V = {æ0
i = vi },

1-simplex (edge) set: E = {æ1
i j = ei j = [vi v j ]},

2-simplex (triangle) set: F = {æ2
i j k = fi j k = [vi v j vk ]},

3-simplex (tetrahedron) set: T = {æ3
i j ks = ti j ks = [vi v j vk vs]},

(0 ∑ i , j ,k, s ∑ |V |, where i , j ,k, s are serial numbers of vertices, and |V | is the to-
tal number of vertices). The p-volume (p = 0,1,2,3) is |vi | = 1, |ei j |( length of the
edge), | fi j k | (area of the triangle), or |ti j ks | (volume of the tetrahedron), respec-
tively. Note that we use the order of subscripts i , j ,k, s to indicate the orientation
of the simplex. 0-simplex vi only has one possible orientation, while the others
can be oriented in two opposite directions (Figure 2.1). The orientation of ei j is
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Figure 2.1: Orientation of simplices. (a) Two opposite directions of an edge; (b) clockwise and
counter-clockwise orientations of a triangle; (c) right-handed and left-handed orientations of a
tetrahedron.
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Figure 2.2: Induced orientation. (a) sgn(ei j , vi ) = °1, sgn(ei j , v j ) = +1; (b) sgn( fi j k ,ek j ) = °1,
sgn( fi j k ,ei j ) =+1; (c) sgn(ti j ks , fk j s ) =°1, sgn(ti j ks , fi j k ) =+1, here ti j ks has right-handed ori-
entation.

opposite to that of e j i . The two orientations of a triangle can be explained intu-
itively as clockwise ( fi j k , f j ki , fki j ) or counter-clockwise ( fk j i , fi k j , f j i k ). There
are 24 orderings of 4 vertices, which can be classified into two sets by right hand
rule: in ti j ks = [vi v j vk vs], we define three vectors °°°!vi v j , °°°!vi vk , °°!vi vs , which are
either right-handed or left-handed.

In Figure 2.2, the two 0-faces of edge ei j are vi with a negative induced orien-
tation and v j with a positive induced orientation. The three incident edges to a
triangle are 1-faces of the triangle, and the induced orientation is positive when
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the edge’s orientation coincides with the triangle’s orientation. The induced ori-
entation of a 2-face in a tetrahedron can be identified by whether the direction of
the triangle’s normal points inside or outside of the tetrahedron. Here the direc-
tion of the triangle’s normal is decided by right/left hand rule if the tetrahedron
has right/left-handed orientation.

When the two adjacent triangles both are clockwise or counter-clockwise, or
two tetrahedra adjacent both have right-handed or left-handed orientation, the
relative orientation is positive; otherwise, it is negative.

Definition 2.7. The barycenter of a p-simplex æp is the geometric center of all
its points v0, ..., vp , given by

bc(æp ) =
Pp

i=0 vi

p +1
.

Here vi represents the geometric location of the point. The p-circumsphere of
æp is the unique p-sphere on whose surface (p +1) vertices v0, ..., vp all locate,
and the center of this p-sphere is the circumcenter of æp , denoted c(æp ). Obvi-
ously, the distance between c(æp ) and vi is equivalent for each i = 0, ..., p. ⌃

The barycenter of a simplex is always inside the simplex, but this is not al-
ways true for circumcenter. So we define the following term to describe this
property of circumcenter.

Definition 2.8. If the circumcenter of a simplex lies in its interior we call it well-
centered (WC) simplex. If all the faces of a WC simplex are also WC, this WC sim-
plex is a completely well-centered (CWC) simplex; otherwise, we call it weakly
well-centered (WWC). A simplicial complex all of whose simplices (of all dimen-
sions) are CWC is called completely well-centered simplicial complex. ⌃

In two dimensions, a triangle with all acute angles is an example of WWC
2-simplex, equivalent to CWC in two dimensions, thus a triangular mesh with
only acute triangles is a CWC simplicial complex. In three dimensions, the re-
quirements of CWC tetrahedron is much stricter; not only the tetrahedron but
also all of its triangle faces should be (weakly) well-centered. The well-centered
property plays an important role in constructing dual complex. Furthermore, it
has an impact on stability and accuracy of the simulation, which we will further
discuss in Chapter 3.

2.2.2 Dual Complex

The dual complex of a simplicial complex is also a discretization of the same
space spanned by the primal simplicial complex, and is indispensable in DEC.
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Here we only introduce the circumcentric dual complex used in our approach,
but keep in mind there exists an alternative, that is, barycentric dual complex.

From a given CWC simplicial complex, we first generates another simplicial
complex with smaller simplices, which shares the same underlying spaces as
the original one, then combines some of the smaller simplices to give the dual
complex as introduced in [Hirani (2003)].

Definition 2.9. The circumcentric subdivision of a CWC simplicial complex K
of dimension n is denoted csdK , and it consists of subdivision simplices, which
are simplices in the form [c(æ1), ...,c(æp )] for 1 ∑ p ∑ n (note that the subscript is
not dimension). Here æi (i = 1, ..., p) are in K , and æ1 ¡ æ2 ¡ ... ¡ æp , i.e., æi is a
face of æ j for all i < j . A subdivision simplex æq in a given simplex æp (q ∑ p) is
called a subdivision q-simplex of æp . ⌃

The fact that all circumcenters lie inside their simplices make csdK satisfy
the requirements of simplicial complex. The underlying space of K can be parti-
tioned into dual cells, each of which is made by combination of certain simplices
belonging to csdK .

Definition 2.10. Let æp be one simplex of a CWC primal mesh K of dimension
n. The circumcentric dual cell of æp , D(æp ), is defined as

D(æp ) =
n°p[

r=0

[

æp¡æ1¡...¡ær

Int(c(æp )c(æ1)...c(ær )).

For r = 0, æp ¡æ1 ¡ ... ¡ær is interpreted as æp . Int(v0...vr ) denotes the interior
of the space spanned by the points {v0, ..., vr }, without boundary. The closure of
the dual cell with boundary is written as D(æp ), and called the closed dual cell.
Each (n °p)-simplex c(æp )c(æp+1)...c(æn) is called an elementary dual simplex
of æp . The collection of all dual cells is a cell complex, named dual cell complex
D(K ). ⌃

Consider a two-dimensional primal mesh K as an example. K has vertex,
edge and triangle subsets, which are V = {vi }, E = {ei j }, and F = { fi j k } respec-
tively. Let L be the circumcentric subdivision of K , consisting of three p-simplex
subsets, L(p), p = 0,1,2 (Figure 2.3):

• L(0) consists of circumcenter of each vertex, c(vi ) = vi ; midpoint of each
edge, c(ei j ) = ci j ; and circumcenter of each triangle, c( fi j k ) = ci j k (ci j k

refers to the circumcenter of vi v j vk ).

• L(1) consists of two halves of each edge ei j , vi ci j and v j ci j ; edges that con-
nect the circumcenter of each triangle ci j k to the vertices vi , v j , vk , and to
the midpoints of the edges ci j , c j k , cki .
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Figure 2.3: The circumcentric subdivision of a triangle, L = csdK , consists of (a) 0-simplex subset
L(0), (b) 1-simplex subset L(1), and (c) 2-simplex subset L(2).

Figure 2.4: Primal and dual meshes in two dimensions. The primal mesh is a triangular mesh
displayed in black lines, while the dual mesh is a cell complex in red dotted lines. Primal and
dual elements marked in the same color explain their duality.

• L(2) consists of triangles of the form vi ci j ci j k , and there are six such subdi-
vided triangles in a primal triangle.

When n = 2, by definition, the dual 0-cell of a triangle æ2 = fi j k is

D( fi j k ) = Int(c(æ2)) = ci j k ,

which is simply the circumcenter of the primal triangle. The dual 1-cell of an
edge æ1 = ei j is

D(ei j ) = ci j
[

ei j¡ fi j k

Int(ci j ci j k ),

which is its midpoint plus combined with open edge(s) connecting the midpoint
to the circumcenter(s) of incident triangle(s). Finally, the dual 2-cell of a vertex
æ0 = vi is

D(vi ) = vi
[

vi¡ei j

Int(vi ci j )
[

vi¡ fi j k

Int(vi ci j k )
[

vi¡ei j¡ fi j k

Int(vi ci j ci j k ),
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Figure 2.5: Primal and dual elements in three dimensions. The top row shows the primal mesh
with a highlighted p-simplex, p = 0,1,2,3, respectively; the bottom row shows the intersection
of ti j ks and dual cells corresponding to the primal simplices on top.

where the first term is the primal vertex itself, and the second and third term
is the all the open edges starting at vi and going to the circumcenters of the
primal edges and triangles incident on vi , and the last term is the union of all
the open subdivided 2-simplices containing vi . Therefore, by combining these
three terms, we get an open Voronoi cell around vi . The dual cells of several p-
simplices (p = 0,1,2) in a two-dimensional simplicial complex K are displayed
in Figure 2.4. Similarly, we can construct the dual cells in three dimensions as
depicted in Figure 2.5.

The dual cells described above are without orientation. Next we will discuss
how to orient these dual cells. Let æ0 ¡ æ1 ¡ ... ¡ æn be oriented simplices in an
n-dimensional primal mesh K , and æp be one of these simplices (1 ∑ p ∑ n °1).
We have to give the elementary dual simplex ø(n°p) = [c(æp )...c(æn)] an orienta-
tion s for each p, then we can decide the orientations of all (n ° p)° dual cells
by using relative orientation. Note that the orientations of ¥p = [c(æ0), ...,c(æp )]
and æp can be compared since they are on the same plane, and it is the same for
øn and æn . Then we define

s(ø(n°p)) = sgn(¥p ,æp )£ sgn(øn ,æn),

where sgn is the relative orientation. For p = n, the dual is of dimension 0, so
that has no orientation. For p = 0, we define s(øn) = sgn(øn ,æn).
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Figure 2.7: Induced orientation of dual cells in (a) two di-
mensions and (b) three dimensions.

Let’s start with a relatively simple example to understand the algorithm of
orienting dual cell. When n = 2, p = 1 (Figure 2.6), we have:

primal 1-simplex: æ1 = [v2v1];

æ0 ¡æ1 ¡æ2: for instance, v1 ¡ [v2v1] ¡ [v0v1v2];

elementary dual simplex: ø1 = [c(æ1)c(æ2)] = [c12c012];

subdivision simplex: ¥1 = [c(æ0)c(æ1)] = [v1c12].

s(ø1) = sgn(¥1,æ1)£ sgn(ø2,æ2)

= sgn([v1c12], [v2v1])£ sgn([v1c12c012], [v0v1v2])

= (°1)(+1) =°1,

which means D(æ1) should be oriented in the opposite orientation of [c12c012],
so D(æ1) = [c012c132].

Note that ¥1 = [v1c12] and æ1 = [v2v1] are on the same plane (here the line
containing both), similarly for ø2 = [v1c12c012] and æ2 = [v0v1v2]. We have an-
other direct way to see this algorithm for the case in n dimensions (n = 2,3). We
orient all dual n-cells in the same orientation as all primal n-simplices, counter-
clockwise (n = 2) or right-handed orientation (n = 3), and the ambient orien-
tation obeys right hand rule. Once the orientation of the primal p-simplex is
given, then positive induced orientation of its corresponding dual (n ° p)-cell
can be decided by right hand rule, as shown in Figure 2.7. In the following text,
if æp is an oriented primal p-simplex, ?æp means its dual (n ° p)-cell with the
positive induced orientation from æp , and its (n °p)-volume is denoted |?æp |.

2.2.3 Discretization of the Space

This section discusses how we discretize the space, and involves choosing a pri-
mal mesh K and its corresponding dual mesh D(K ) to describe the space, com-
paring barycentric and circumcentric dualities, and generating the meshes by
Delaunay triangulation scheme.
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The reason why we prefer simplicial complex to regular grid is that regu-
lar grid always lose more details in describing irregular boundaries, as it is the
case in most medical applications. In order to fix the boundary problem of reg-
ular grid, octree method has been applied to generate smaller elements near
the boundary. However, it raises other difficulties in the simulation caused by
T-junctions at the interface of two elements in different sizes. Firstly, it always
requires supplemental process to consider the interaction between elements at
T-junctions. Secondly, the line connecting the centers of two neighbor elements
at a T-junction, loses the orthogonality to the interface. The advantages of or-
thogonal property are presented in the next paragraph. By definition (Definition
2.2), simplicial complexes avoid T-junctions. Besides, the introduction of orien-
tation is also useful when defining variables. In DEC, variables are scalars at-
tached to simplices of different dimensions. Although we use scalar, vector can
be represented by the scalar plus the geometrical position and orientation of the
associated simplex. On the other hand, the use of a dual mesh is very common
in many computational fields and in physics to define operators and describe
theories. There are lots of properties of symmetry and duality between the pri-
mal and the dual. Such as, in n dimensions, a dual (n °p)-cell is associated to
a corresponding p-simplex. As a result, the total number of dual (n °p)-cell is
equal to that of primal p-simplex.

We have defined two different centers of a primal simplex (Definition 2.7),
leading to two types of dual meshes, barycentric or circumcentric dual. Both
types have their own advantages and disadvantages. Barycentric dual has a very
appealing property that barycentric subdivision (similar to circumcentric subdi-
vision in Definition 2.9), always produces a simplicial complex, since barycen-
ter always lies inside its simplex, which guarantees the convexity of dual sim-
plices. But this is not the case in circumcentric subdivision, and that is why
well-centered primal mesh is required in the definition of circumcentric sub-
division; otherwise, the dual cell may not be convex and consequently csdK
may not be a simplicial complex. Moreover, if the mesh is deformed during the
simulation, barycentric dual will still remain well-defined, while circumcentric
dual may soon become invalid if some circumcenters escape from the interior
of their simplices. Once the dual is invalid, remeshing is usually applied to solve
this problem, certainly causing extra computational cost. In spite of such re-
strictions, circumcentric dual provides convenience in building some operators
of the DEC theory, such as Hodge star. Furthermore, a primal 1-simplex is per-
pendicular to its dual (n °1)-cell, similarly, a dual 1-cell is perpendicular to its
primal (n ° 1)-simplex. This orthogonality offers simpler expressions for some
variables and theories. Take fluid dynamics for example, the line through neigh-
boring pressure locations (circumcenters) is perpendicular to the shared face of
their tetrahedra, and thus parallel to the flux stored at the face.
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Nevertheless, the construction of a well-centered primal mesh is computa-
tionally challenging, especially in high dimensions. Delaunay triangulation in n
dimensions only produces a simplicial complex in which no 0-simplex lies inside
the circumsphere of any n-simplex, and guarantees non-self-intersection of the
circumcentric dual mesh. The well-centered requirement is much stronger and
more difficult to satisfy when dimension n ∏ 3. Some efforts have been made
in this direction, see [Vanderzee et al. (2008)] as an example. In this chapter we
temporarily ignore all these computational difficulties and assume that we are
given a primal mesh satisfying the required conditions. We will proceed to build
exterior calculus objects and operators on such a mesh. The effort we made to
get a mesh as qualified as possible and the influence of non well-centered mesh
on simulation will be discussed in Chapter 3.

2.3 Discrete Forms

In the theory of the continuous domain, a differential form is informally ex-
plained as an integrand, and p-form can be integrated on a p-manifold. In other
words, it is a linear mapping from a p-manifold to R. In the discrete theory, the
counterpart of p-manifold is p-chain, roughly speaking a linear sum of all p-
simplices. As a result, the discrete p-form should be a linear mapping from a p-
chain to R, which is an evaluation operation on the p-chain. In this section, we
give the informal but intuitive definitions of primal chains and primal cochains
(i.e., discrete primal forms). Dual chains and dual cochains are similar.

Definition 2.11. K is a primal mesh, and we define Cp (K ;Z) to be the group
generated by a basis consisting of all the oriented p-simplices in K . Elements of
Cp (K ;Z) are called primal p-chains, denoted cp 2Cp (K ;Z), and we have

cp =
X

æp2K
c(æp ) ·æp ,

where c(æp ) 2Z. ⌃

Actually, p-chain can be seen as a series of integers, and each value corre-
sponds to a p-simplex. We define the notation K p as the subset consisting of all
primal p-simplices in K . Then cp can be simply thought as a column vector with
the size of |K p |: cp = [c(æp

0 ), ...,c(æp
|K p |°1)]T .

Definition 2.12. A primal p-cochain Æp is a homomorphism from the chain
group Cp (K ;Z) to R, which can be explained as a linear mapping from a primal
p-chain cp to a real number, Æp (cp ). The space of primal p-cochains denotes
C p (K ;R). Actually, p-cochain operating on a p-chain and resulting in a scalar, is
the discrete analogue to differential p-form, that is, a discrete primal p-form. ⌃
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Figure 2.8: Examples of discrete primal forms: (a) 0-form, (b) 1-form, and (c) 2-form. The value
marked on p-simplex æp is the discrete p-form Æp (æp ), a real number associated to each p-
simplex. Consider an example of 1-chain, the green curve in (b), c1 =°e7 + e4 + e1 ° e6, then we
have Æ1(c1) =°(°1)+5+3°4 = 5.

All the p-simplices form a basis for vector space Cp (K ;Z), and mappings of
the basis is sufficient to determine a linear mapping. So Æp can be represented
as a column vector, ↵p = [Æp (æp

0 ), ...,Æp (æp
|K p |°1)]T . ThusÆp (cp ) becomes simply

the vector multiplication of (↵p )T
cp . Examples of a discrete p-form (p = 0,1,2

in two dimensions) are given in Figure 2.8. In this example, each triangle of the
mesh is counter-clockwise oriented, and each edge has its own independent ori-
entation represented by the arrows. The primal p-form can be simply consid-
ered as a set of values, each of which corresponds to a p-simplex, so the p-form
is able to be evaluated at any point (p = 0), or on any curve (p = 1), or on any
surface (p = 2) by summing the values of these elements with the sign ±1.

Similarly, dual chains are linear combination of dual cells, and dual cochains
(dual forms) are defined in the same way. Either primal or dual p-form can be
considered as integrals of a physical quantity over all primal p-simplices or dual
p-cells.

2.4 Operators

There are two basic types of operators, Hodge stars ? and discrete exterior
derivatives d , from which we build discrete codifferential operator ±. Hodge
stars make the transitions between primal and dual forms, while the transitions
through the other two operators, d and ±, remain in the same set of either primal
or dual forms. Furthermore, in the next chapter, we will see that all the vector
calculus operators involved in our application can be derived from ? and d .

2.4.1 Hodge Star

Hodge star?p maps a p-form to a (n°p)-form, and the subscript which specifies
its dimension can be ignored since it is context-dependent. (Many operators de-
fined afterward have the same property, so the subscript is sometimes ignored.)
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The discrete counterpart is easier to construct if we choose the diagonal Hodge
stars, as we only need to define transition from a primal p-form Æp to a dual
(n °p)-form ?Æp , satisfying the equality of averages between the two:

1
|æp |

Z

æp
Æp = 1

|?æp |

Z

?æp
?Æp .

A diagonal matrix of dimension |K p |£ |K p | can be used to describe ?p , and the
i th diagonal element is:

?p [i ][i ] =
|?æp

i |
|æp

i |
.

Vice-versa, the transition from dual (n °p)-forms to primal p-forms ?dual (n°p)

can be represented as
?dual (n°p) =?

°1
pr i mal (p).

In the following text, the notation? always means the primal one, since the dual
one can be expressed simply by the inverse.

Based on hodge operators, we can define the inner product of p-formsÆ and
Ø as follow:

(Æ,Ø) =↵

T
?�.

2.4.2 Discrete Exterior Derivative

We first define boundary operator on chains and coboundary operator on
cochains. Then we will show that discrete exterior derivative is exactly the def-
inition of coboundary operator, which is the conclusion of the Stokes’ theorem.
Finally, we introduce discrete codifferential operators.

Definition 2.13. The boundary operator @p is a linear mapping from p-chain
2 Cp (K ;Z) to (p °1)-chain 2 Cp°1(K ;Z). The mapping on the basis of Cp (K ;Z),
{æp } is defined as:

@æp = @([v0...vp ]) =
pX

i=0
(°1)i [v0...v̂i ...vp ].

Note that @p ±@p+1 = 0. ⌃

In other words, the boundary of a p-simplex is the combination of all the
(p °1) faces with positive induce orientation.

Definition 2.14. The natural paring of a p-form Æp and a p-chain cp is defined
as

hÆp ,cpi=Æp (cp ).

⌃
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Definition 2.15. The coboundary operator µp is a linear mapping from p-
cochain 2 C p (K ;R) to (p + 1)-cochain 2 C p+1(K ;R), defined by duality to @p+1

through natural pairing. Specifically, for a p-cochainÆp 2C p (K ;R) and a (p+1)-
chain cp+1 2Cp+1(K ;Z), the coboundary operator is:

hµÆp ,cp+1i= hÆp ,@cp+1i,

that is,
µpÆ

p =Æp ±@p+1.

Note that µp+1 ±µp = 0. ⌃

We can use the Stokes’ theorem to prove that the discrete exterior derivative is
exactly the coboundary operator. Written in terms of form, the Stokes’ theorem
states that the integral of a (p+1)-form over a (p+1)-chain can be evaluated the
integral on the boundary of the (p +1)-chain:

Z

cp+1

dÆp =
Z

@cp+1

Æp ,

if written in terms of natural paring:

hdÆp ,cp+1i= hÆp ,@cp+1i. (2.3)

By comparing Equation 2.3 to the Definition 2.15, we know the discrete ex-
terior derivative dp equals to the coboundary operator µp .

To represent @p we use a matrix of dimension |K p°1|£ |K p |, which is sparse
and contains only the non-zero values of ±1. Similarly, dp is represented by a
matrix of dimension |K p+1|£ |K p |, dp = (@p+1)T , which describes the incident
relationship between (p +1)-simplices and p-simplices. Since the dual complex
inherits the incident property from the primal complex, we can easily derive the
discrete exterior derivatives on the dual mesh as the transpose of primal ones,
represented as:

ddual (n°p) =d

T
pr i mal (p).

So the notation d only refers to the primal discrete exterior derivative in the fol-
lowing text, and the dual one is represented by the transpose.

Based on ? and d operators, we can now create an adjoint operator ± of d ,
called discrete codifferential operator, to map a (p °1)-form to a p-form. Here
adjoint means that

(dÆp°1,Ø) = (Æ,±Øp ).

So we have
�p = (?p°1)°1

d

T
p°1 ?p .

The transitions between forms in three-dimensional space are illustrated in Fig-
ure 2.9.
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Figure 2.9: Transition between forms through Hodge stars ? and exterior derivatives d in three
dimensions.

Till now, we have developed the discretized space (primal and dual mesh),
variables (discrete forms), and fundamental operators (hodge stars and discrete
exterior derivatives). From now on, we will work within the discrete objects, and
the terms mentioned below are of discrete version by default.

2.5 Implementation

Although the mathematical definitions and algorithms seem complicated and
confusing, implementation of the objects in DEC is simple and straightforward.
First of all, we need to construct an appropriate data structure for primal mesh,
and derive its corresponding dual mesh. Then with the column vector repre-
sentation of discrete forms, the two basic operators are described as matrices
computed from topological and geometrical information of these meshes, re-
spectively.

2.5.1 Representation of Meshes

Most publicly available mesh formats only support unoriented elements and
limited incident information between elements (e.g., only triangle/tetrahedron-
vertex incidence). However, in order to represent an oriented manifold-like sim-
plicial complex, we require a data structure supporting orientation, local traver-
sal of elements and incident information for simplices of all dimensions.

We load the two-dimensional (three-dimensional) mesh in a common for-
mat with a list of positions of all vertices and a list of triangles (tetrahedra), each
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of which is represented by a set of the indices of its vertices. First of all, we use
a list V to store positions of all vertices, and this list provides a unique index for
each vertex. Then a p-simplex (p ∏ 1) is represented by a (p+1)-tuple composed
by indices of all vertices that bound the simplex. All the permutations of a given
tuple represent the same simplex. For example, (i , j ) and ( j , i ) are just different
expressions of the same edge. We create other lists E , F (and T ) to store only
a representative of different expressions for each edge, each triangle (and each
tetrahedron), respectively. Although different permutations of a tuple give the
same simplex, but perhaps oriented oppositely. From Definition 2.3, we know
that the permutations in the same equivalent class represent the same oriented
simplex, while permutations in different equivalent classes give two converse
orientations. For example, (i , j ,k) = ( j ,k, i ) = (k, i , j ) = °( j , i ,k) = °(i ,k, j ) =
°(k, j , i ). Each tuple stored in E , F (and T ) defines an intrinsic orientation for
each simplex by the order of vertex indices.

The combination of these lists V , E , F (and T ) is a representation of
n°dimensional (n = 2 or 3) simplicial complex. We orient all the n-simplices in
the same orientation, counter-clockwise (or right-handed). This is done before
storing an n-simplex in the list. Given any expression of the same n-simplex,
(i0, ..., in), we first compute its volume as

n = 2 : Vol(i0, i1, i2) = 1
2
°°°°!vi0 vi1 £

°°°°!vi0 vi2 ;

n = 3 : Vol(i0, i1, i2, i3) = 1
6

(°°°°!vi0 vi1 £
°°°°!vi0 vi2 ) ·°°°°!vi0 vi3 .

If it is positive, then we keep this orientation and store (i0, ..., in) in the list; other-
wise, we reverse the orientation by swapping i0 and i1 in the (n +1)-tuple, then
(i1, i0, i2..., in) is stored in the list. For p-simplex (1 ∑ p ∑ n ° 1), the intrinsic
orientation is chosen arbitrarily.

Dual mesh is more like a concept in the computation, consequently we sel-
dom actually create a data structure to store it. Once we need information of
dual meshes, we can easily generate from primal meshes. In the following sub-
section, implementation of operators is introduced, and we will also see how to
construct dual mesh when computing Hodge star operators.

2.5.2 Discrete Forms and Operators

A discrete form, either primal or dual, is simply represented as a column vector
stored in arrays of dimension of |V |, |E |, |F | or |T | (| · | means the length of the
list). The i th value in the array relates to the i th primal simplex or its dual cell.
We also use the notation of K p , where p = 0,1,2,3, corresponding to V , E , F and
T , respectively.

We first construct d operators of all dimensions, which is the transpose of
boundary operators, involving only topological information of the primal mesh,
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Figure 2.10: Example of a single tetrahedron. Edges and faces have their intrinsic orientations
as displayed by arrows.

see Algorithm 2.1. Using similar algorithms, we can also construct other incident
information of the mesh, such as edge-tetrahedron stored in the list ET , the i th

element of which contains indices of all tetrahedra incident on the i th edge in E .

Algorithm 2.1 Implementation of dp operator

set dp = 0
for j = 0 : |K p |°1 do

get the j th p-simplex in K p , (i0, ...ip )
for k = 0 : p do

determine the index m of the representative of (i0, ...îk ...ip ) in K p°1

if K p°1[m] =°(i0, ...îk ...ip ) then
sign√ (°1)(k+1)

else
sign√ (°1)k

end if
dp [ j ][m] √sign

end for
end for

As an example, simplex lists and d operators are illustrated in a simple case
of a single tetrahedron, shown in Figure 2.10. Three coordinates (x, y, z) of vi (0 ∑
i < 4) is stored at V [i ], and E , F , T are constructed as follows:

E = {e0 = (0,1),e1 = (0,2),e2 = (0,3),e3 = (1,2),e4 = (1,3),e5 = (2,3)},

F = { f0 = (0,1,2), f1 = (0,1,3), f2 = (0,2,3), f3 = (1,2,3)},

T = {t0 = (0,1,2,3)}.
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Figure 2.11: Different possibilities of dual edges in non well-centered meshes. (a) Both t1 and t2
are WWC, the dual edge and its volume falls into the identical description as in Algorithm 2.2. (b)
Both t1 and t2 locate the opposite side of f to their own circumcenters, leading to the negative
dual volume °||c2c||° ||cc1||. (c) Though being non-well centered, either t1 or t2 is at the same
side of f as its own circumcenter, which makes no difference with (a). (d)(e) Either c2 or c1 leaves
its tetrahedron beyond f plane, and the dual volume is ®||c2c||± ||cc1||.

Then the three d operators can be described by matrices as follows:

d0 =

0

BBBBBBBB@

°1 1
°1 1
°1 1

°1 1
°1 1

°1 1

1

CCCCCCCCA

d1 =

0

BBB@

1 °1 1
1 °1 1

1 °1 1
1 °1 1

1

CCCA

d2 =
°

1 °1 1 °1
¢

.

With incident information plus geometry of the mesh, we fill the diagonal of
Hodge star matrix by volume ratio of corresponding dual cell and primal sim-
plex. The computation of dual volume takes advantage of the orthogonality of
circumcentric dual, see Algorithm 2.2, which also gives an implementation of
constructing the dual mesh from the primal mesh.

Note that we have assumed the primal mesh to be CWC to develop all the
objects above. However, when the primal mesh is non well-centered, the im-
plementation only differs in handling dual edge. All the possibilities of a dual
edge are displayed in Figure 2.11. Consider the dual edge of triangle f that is
incident on two tetrahedra, t1 (at the upper side of f ) and t2 (at the bottom side
of f ), and denote circumcenters as c = c( f ), c1 = c(t1) and c2 = c(t2). The in-
trinsic orientation of f is shown in Figure 2.11(a), thus the induced orientations
of f are sgn( f , t1) = +1, sgn( f , t2) = °1. To be clear and simple, the projection
on a plane is shown in other sub-figures. The dual edge is uniformly defined
as °!c2c +°!cc1 = °°!c2c1 (remember that the three circumcenters are collinear), and
its volume is calculated by (°1)k2 ||c ° c2|| + (°1)k1 ||c1 ° c||, where k1 (k2) is odd
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Algorithm 2.2 Construction of the dual mesh

set all dual volumes to be zero
set all dual cells to be empty sets

//Dual vertices
for each primal tetrahedron t do

compute c(t ) //circumcenter of t
t .dualVolume √ 1
t .dual √ sp(c(t ))//space spanned by c(t )

end for

//Dual edges
for each primal triangle f do

compute c( f )
for each primal tetrahedron t f incident on f do

b √ t f .dualVolume
h √ ||c( f )° c(t f )|| //the distance between c( f ) and c(t f )
f .dualVolume √ f .dualVolume+bh
f .dual √ f .dual

S
sp(c( f ), sp(c(t f )))

end for
end for

//Dual faces
for each primal edge e do

compute c(e)
for each primal triangle fe incident on e do

b √ fe .dualVolume
h √ ||c(e)° c( fe )||
e.dualVolume √ e.dualVolume+ 1

2 bh
e.dual √ e.dual

S
sp(c(e), sp(c( fe )))

end for
end for

//Dual 3-cells
for each primal vertex v do

c(v) = v
for each primal edge ev incident on v do

b √ ev .dualVolume
h √ ||c(v)° c(ev )||
v.dualVolume √ v.dualVolume+ 1

3 bh
v.dual √ v.dual

S
sp(c(v), sp(c(ev )))

end for
end for
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when c1 (c2) and t1 (t2) is at different sides of the plane spanned by f ; otherwise,
it is even. If f only belongs to one tetrahedron, the items corresponding to the
other tetrahedron is omitted in the formulation. The dual volume is negative, if
the dual edge is not in the positive induced orientation from f (from bottom to
top in this case). As a consequence, some elements of Hodge stars may be neg-
ative in a non well-centered primal mesh, and the negative sign can be seen as a
correction of orientation for transition between primal and dual forms.
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BLOOD FLOW SIMULATION

In the beginning of this chapter, we provide a selective review of recent stud-
ies concerning blood flow simulation in vascular system (Section 3.1). Then
we present our method for fast simulating. Firstly, we describe the process of
generating the geometry model of aneurysm and adjacent vessels from patient-
specific data. The completely well-centered meshing techniques are also dis-
cussed (Section 3.2). Secondly, we describe the DEC approach for blood flow
simulation in and around aneurysm by solving the vorticity-based Navier-Stokes
equations (Section 3.3). Thirdly, advanced topics on acceleration of the simula-
tion are presented (Section 3.4). Finally, through a series of experiments, we
demonstrate the stability, accuracy and computational efficiency of the DEC
method compared to a widely used commercial software (Section 3.5), and dis-
cuss the limitation of the DEC method on mesh quality and the approaches to
further improvement of mesh quality and computational time (Section 3.6).

3.1 Physiological Fluid Dynamics

It is difficult to quantify physiological status by in vivo techniques. As a conse-
quence, computational models based on CFD methodologies play an important
role in many physiological phenomena throughout the human body, including
the cardiovascular system (e.g., global or local pulsatile blood flow [Paul et al.
(2009)], wave propagation [Ning et al. (2010)], the dynamics of natural and arti-
ficial heart valves [Weinberg et al. (2010)]), the respiratory system (e.g., phona-
tion [Larsson and Müller (2011)], the closure and reopening of airways [Wall and
Rabczuk (2008)]), and elsewhere in the body (e.g., transport driven by blood
flow or fluid-muscle interaction [Rappitsch and Perktold (1996)]). Especially
when combined with medical imaging techniques, the possibility of construct-
ing anatomical geometry models provides a new insight to airflow and blood
flow velocity and pressure fields in each individual patient.

45
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3.1.1 Geometry Model

Generally speaking, the mesh quality is essential to numerically solving the gov-
erning equations. Firstly, the surface mesh should be smooth; otherwise, the
boundary irregularities cause significant numerical problems, resulting in poor
convergence and non-smooth solution. Secondly, the quality and topology of
the volumetric mesh, which is the discretization of continuum domain, has an
important impact on stability and computational efficiency of the simulation.
One critical property is the mesh resolution and how the resolution distributes
throughout the mesh. Mesh resolution directly relates to two issues in the sim-
ulation: one is the total number of elements in the mesh, which plays a decisive
role in computational cost; the other is the size of each element, which limits
the size of time step because of the requirement of convergence (for example,
when solving hyperbolic partial differential equations, the Courant-Friedrichs-
Lewy condition is a necessary condition). Other quality measurements involve
geometrical regularity of the mesh elements; the extremely irregularity, such as
short edges, sharp angles, and flat cells, should be avoided.

Nowadays, it is possible to reconstruct three-dimensional geometrical rep-
resentations from computed tomography (CT), magnetic resonance imaging
(MRI), or ultrasonography. However, noises and resolution of the image slices
are two main limitations in medical imaging and image processing techniques.
Thus reconstruction of accurate and smooth geometry is still difficult, particu-
larly for the complex and small anatomical structures, which is the usual case for
cerebral aneurysm. Generally, there are two main approaches to reconstruction
of a patient-specific model. The first one is to segment the image, to identify
the aneurysm and surrounding vessels, then to generate and optimize the sur-
face mesh. Each step is non-trivial, and user interaction to some degree is often
required. So recent improvements aimed at minimizing manual intervention
[Auer and Gasser (2010)] [Shum et al. (2011)]. The other approach is to deform
the model already based on a mesh to fit the subject of interest. Barber et al.
started from an idealized template mesh, produced the patient-specific mesh
by using volumetric registration of pseudo-image [Barber et al. (2007)]. An ad-
vantage of this method was that segmentation was achieved automatically as
part of the image registration process.

Figure 3.1 presents our process of generating patient-specific mesh. We start
from a volumetric medical dataset where the brain vessels are visible (such as
three-dimensional rotational angiography), which is then segmented. From the
segmented image, we reconstruct a surface model. In our case, we rely on a
combination of several techniques, such as the Marching Cubes algorithm fol-
lowed by small deformation of the resulting mesh, i.e., relaxation, to smooth
the surface while adjusting the surface point location using the original image
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aneurysm
region

Figure 3.1: Mesh generation from patient-specific data. (Left) patient-specific data; (middle)
reconstructed vessel surface model; (right) tetrahedral mesh generated in the region of the
aneurysm.

data and its gradient. As we are only interested in creating a mesh for the region
near aneurysm, but not for the whole vascular network, sometimes only an iso-
surface from the measured raw density is sufficient to obtain the surface mesh.
Yet it highly depends on the quality of data; in some instances, more robust al-
gorithms are required, see [Hernandez and Frangi (2007)] for example. Finally,
planes or spheres are manually positioned to cut the vessels and define inlet(s)
and outlet(s).

The meshes generated by the approaches illustrated above are surface mod-
els. But volume meshes are required by numerical simulation. Structured
meshes are easy to obtain for some simple geometries [Long et al. (1998a)].
While unstructured meshes are more popular for anatomical structures in com-
plex shape. Arbitrary distributions of tetrahedral, hexahedral or prismatic ele-
ments can be generated by using a variety of sophisticated algorithms [Thomp-
son et al. (1999)]. Typically, tetrahedral mesh is produced through Delaunay tri-
angulation with diverse refinement and optimization schemes (e.g., [Si (2008)]).

3.1.2 Hemodynamic Simulation

Hemodynamics was studied in numerous experimental models and clinical
studies to investigate the relationship between hemodynamics and cardiovas-
cular diseases [Gonzalez et al. (1992)]. However, these methodologies were
restricted to idealized aneurysm geometries or surgically created anatomical
structures in animals, with a limited practical value in studying clinical events. In
vitro studies using idealized geometries allowed detailed measurement of hemo-
dynamics [Liou and Liou (1999)], but had little direct use to understand hemo-
dynamic information in a patient-specific clinical case.

In recent decades, CFD becomes an attractive tool because of its ability of
simulating on all possible geometries. Most CFD modeling approaches approx-
imated blood flow as a continuous incompressible Newtonian fluid, described
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by a corresponding mathematical model, that is, the unsteady incompressible
Navier-Stokes equations [Mazumdar (1992)]. A majority of these studies as-
sumed the blood to be a Newtonian fluid with constant viscosity, but this hy-
pothesis might not be justified under certain situations [Fisher and Rossmann
(2009)]. Wang and Bernsdorf used a Lattice Boltzmann solver with a Carreua-
Yasuda model to capture non-Newtonian rheology of blood flow in cerebral
aneurysms, which was much more complicated [Wang and Bernsdorf (2009)].

Until the late 1990s, a successful effort in the researches of combining image
processing and CFD made it possible to compute patient-specific hemodynamic
information in this community [Long et al. (1998b)] [Milner et al. (1998)] [Antiga
et al. (2008)].

The spread of CFD method is motivated not only by the improvements in the
computing ability of personal computers and parallel clusters, but also by the
increasing need in clinical applications. Qiao and Liu reviewed several medical
application related to blood flow simulations, such as hemodynamic simulation
of bypass graft for stenosed arteries, stented aneurysm at the aortic arch and so
on [Qiao and Liu (2008)]. Groden et al. constructed a simple geometrical model
by only straight cylinders and spheres to approximate an actual aneurysm, and
simulated the flow by solving the Navier-Stokes equations [Groden et al. (2001)].
The geometry model they used could not accurately describe the real patient’s
case, therefore, had little use in surgery planning for a specific case. Kakalis et
al. employed patient-specific data to get more realistic flow patterns [Kakalis
et al. (2008)]. However, both of their methods, as well as most similar studies,
relied on the CFD commercial software to simulate the flow, and the compu-
tational times (dozens of hours in general) were incompatible with interactive
simulation or even clinical practice. In order to reach fast computation, sev-
eral template-based methods were designed [McGregor et al. (2009)] [McLeod
et al. (2010)]. These methods pre-computed hemodynamics on a set of simi-
lar template geometries, and then interpolated on a patient-specific geometry
instead of fluid simulation. However, they required to set up a pre-computed
database, and were only tested on simple artery structures. But for the brain
vessels around intracranial aneurysm, the network and shape are much more
complicated, so the high accuracy cannot be expected.

The CFD can be a powerful tool for the computer-assisted intervention in
the future, but before it being widely used, the obstacles are multifold. Two of
these obstacles are accuracy of the computed results and efficiency of the com-
puting process, which are two significant pursuits in numerical calculation, but
unfortunately often contradictory. Lots of computationally efficient techniques
were developed in the field of computer graphics, which essentially required the
results to be visually convincing, but not physically accurate. The stable fluids
approach [Stam (1999)] was a significant milestone, as it introduced fluid ad-
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vection and the Helmholtz-Hodge decomposition, in order to ensure the mass
conservation law. However, this approach relied on a discretization of Eulerian
space by regular grid, thus making it inappropriate for simulations requiring ir-
regular boundaries. Recently, the DEC method based on unstructured mesh for
incompressible fluid simulation, was proposed in [Elcott et al. (2007)]. The DEC
method presented several benefits in terms of stability and computational effi-
ciency. However, the context, in which this method was applied, was not aimed
at the practical use in medical simulation. We further assess stability, accuracy
and computational time of this method, more importantly, improve the method
for medical applications in real-time or at least at an interactive rate.

3.2 Mesh Generation

The patient-specific geometry model reconstructed from medical images is a
surface model, from which tetrahedral mesh is then created. Meshing the do-
main is quite tricky, especially because the DEC approach is very sensitive to
mesh quality. An ideal mesh in our case is a completely well-centered (CWC) De-
launay triangular/tetrahedral mesh and its circumcentric (Voronoi) dual mesh
with non-uniform distribution of resolution. Additionally, each primal or dual
element in the mesh is supposed to be as regular as possible (each angle or each
edge in the element tends to be equal). Such a mesh possesses several favorable
properties. First of all, the orthogonality of primal and dual elements is use-
ful to describe physical quantities. For instance, the direction of flux through a
triangle is parallel to the triangle’s dual edge. Secondly, the CWC Delaunay tri-
angular/tetrahedral mesh avoids dual elements with conceptually negative vol-
umes, and guarantees the convexity and non self-intersection of the dual mesh,
thus allows generalized barycentric interpolation of velocities. Thirdly, multiple-
resolution mesh allows to decrease the total number of mesh elements but have
lower numerical errors caused by space discretization, by reducing resolution
only in some regions but keeping higher resolution in more interesting regions,
such as strips near boundary, the interior of aneurysms, small-vortex or high-
speed region. Finally, the regularity of each primal/dual element maintains the
system stable. The irregular elements, such as flat triangle/tetrahedron, usually
result in tiny or negative dual edge. Note that dual edge of zero length is not
allowed by the DEC method; otherwise, the star operator ?2 (a diagonal matrix)
contains zero diagonal element, and is not invertible. In practice, either negative
or tiny dual edge should be avoided, because they both increase the condition
number of the system, and might result in solutions that are not converged or
even unstable.

Practically, we are not always able to get a perfect mesh for all geome-
tries, and we measure mesh quality in terms of the percentage of CWC trian-
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(a) CWC tetrahedron (b) regular dual cell

Figure 3.2: BCC-based tiling strategy. (a) The CWC tetrahedron sample, used for tiling, consists
of the edge linking the centers of two incident cubes and one shared edge of these two cubes. (b)
The dual cell in the tiling mesh are regular; all the dual edges are equal in length.

gles/tetrahedra, the percentage of convex dual faces/3-cells, the length ratio of
dual edge to primal edge, and the number of tiny dual edges (i.e., the edges
whose length is below 1% or even lower percentage of the average length of pri-
mal edge). Generally speaking, a certain mesh resolution is necessary for a high
CWC percentage in n dimensions (n = 2,3), and 100% CWC primal mesh is a suf-
ficient (but not necessary) condition for the convexity of all interior dual n-cells
(all incident primal n-simplices form a topological sphere for interior vertex, but
only a hemisphere for boundary vertex, so the convexity of boundary Voronoi
cells also depends on the local boundary shape).

It is relatively easy to obtain a nearly ideal mesh in two dimensions, as an
acute triangle is CWC. But it is a much more challenging problem in three di-
mensions. Since a CWC tetrahedron requires not only its circumcenter to locate
inside the tetrahedron, but also all of its triangle faces to be acute; otherwise, it
is only weakly well-centered (WWC). For some simple geometries, CWC tetra-
hedral meshes are available. For instance, the BCC-based spatial tiling strategy
[VanderZee et al. (2008)] can create an entire family of triangulations of space
using copies of a CWC tetrahedron sample. In the infinite three-dimensional
tiling space by unit cubes, the tetrahedron, shown in Figure 3.2(a), consists of
the edge linking the centers of two incident cubes and one shared edge of these
two cubes. Such a tetrahedron is CWC, and the length of four shorter edges is
0.8660, while the other two longer edges have unit length. The tiling mesh have
all the tetrahedra in the same shape and size, and all the dual edges are of the
same length 0.3536, so all the dual cells are regular and in the same shape and
size as shown in Figure 3.2(b).

Using the tiling strategy described above, an infinite slab, [°a, a]£R2 (a 2R+),
can be tiled with this CWC tetrahedron sample. Then we remove the tetrahe-
dra with no intersection with the domain D = {(x, y, z) | |x| + |y | < a, z 2 R} (Fig-
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(a) (b)

Figure 3.3: Meshing a cuboid using the BCC-based tiling strategy. (a) Remove the tetrahedra
outside the domain D . (b) Truncate the infinite domain to get a tiling mesh of the cuboid with
two wedge-shaped ends.

ure 3.3(a) shows the projection of this domain on x y-plane). Since the bound-
ary B = {(x, y, z) | |x| + |y | = a, z 2 R} only intersects with the tiled tetrahedra on
tetrahedron boundaries (i.e., it does not split any tetrahedron), the combination
of all the remaining tetrahedra forms a squared tube of infinite length, that is,
D = D [B . Then we want to truncate the domain D to get a finite segment with
convex boundary; otherwise, some dual cells on the boundary are not convex,
and have an impact on the interpolation method based on convex vertex set,
which we use in the following simulation. Therefore, we design a cuboid geom-
etry with two wedge-shaped ends, E = {(x, y, z) | |x|+ |y |+ |z|∑ a +b, |z|∏ b} (see
in Figure 3.3(b)).

In order to describe a relatively complex boundary, deformation can be per-
formed after removing certain tetrahedra. This process will maintain the ma-
jority of tetrahedra to be CWC, and is useful to generate some relatively simple
geometries for our validation tests, such as cylinder. First, we start from a cube-
tiling space, S = [°a, a]2 £ [°b,b], and create the tetrahedra based on the BBC-
based tiling strategy. In the boundary cubes, centers of boundary faces are added
as well to create tetrahedra (see Figure 3.4(a)). Note that boundary tetrahedron
is not WWC, as the circumcenter lies outside the tetrahedron. Thus, adding
these boundary tetrahedra leads to negative dual edge and self-intersected dual
3-cells, because the triangulation does not meet the Delaunay conditions any
more. Second, we remove the tetrahedra which have empty intersection with
the cylinder domain, Dc = {(x, y, z) | x2 + y2 < a2, |z| ∑ b}, and we obtain an oc-

tagonal prism, Do = {(x, y, z) | |x| ∑ a, |y | ∑ a, |x| + |y | ∑ 2 · d
p

2
2 ae, |z| ∑ b}. The

boundaries of Dc and Do are displayed in blue and red respectively on the x y
projection plane in Figure 3.4(b). Third, we deform Do to Dc by moving all the
vertices towards the central axis (i.e, multiplying the scaling factors), and finally
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(a) boundary tetrahedron (b) remove

                                (a)                                                                  (b)(c) deform

Figure 3.4: Meshing a cylinder by the CWC tiling strategy. (a) On the boundary of the cube-
tiling space S, extra centers of boundary faces are added to generate tetrahedron. Note that the
boundary tetrahedron is not WWC, as the circumcenter (green point) is outside the tetrahedron.
(b) All tetrahedra without intersection with the cylinder domain Dc (inside the blue boundary)
are removed, and the rest form an octagonal prism Do (inside the red boundary). Then each
vertex V = (x, y, z) in Do is moved to a new position V 0 = (x 0, y 0, z 0), which is closer to the center
C = (0,0, z). The new position is computed as |CV 0| = |C B |

|C R| |̇CV |. (c) The deformation results in
the final cylinder mesh.
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(a) convex interior
dual 3-cell

(b) convex boundary dual 3-cell

(c) self-intersected interior
dual 3-cell

(d) self-intersected bound-
ary dual 3-cell

(e) tiny dual edge

Figure 3.5: Examples of dual elements in the cylinder model. (a)-(d) The incident tetrahedra (in
black dotted lines) of a vertex form a topological sphere in the interior, or only hemisphere on
the boundary. (e) The dual edge of the red primal face, defined as the line segment between the
tetrahedron circumcenters displayed by the crosses, is hardly visualizable in this scale.

we get a cylinder mesh as shown in Figure 3.4(c).

The deformed boundary tetrahedra and the scaled tetrahedra result in non
CWC tetrahedra, self-intersected dual 3-cells, as well as tiny and negative dual
edges. Some examples of dual elements in the mesh are shown in Figure 3.5.
However, the percentage of CWC tetrahedra can reach 90% (it also depends on
the mesh resolution), and such a mesh is relatively regular, as most of the tetra-
hedra in such a mesh are roughly the same.

Nevertheless, these are only solutions to a limited amount of simple ge-
ometries. For the complex patient-specific geometries, we use the interleaved
optimization algorithm based on Delaunay refinement and Lloyd optimization
[Tournois et al. (2009)], implemented using the CGAL library [CGAL]. Each re-
finement step acts on the size of elements, while each optimization step acts on
the shape of elements. Using this method, we can also define a size field to ob-
tain anisotropic and non-uniform mesh. We control the fidelity of the generated
mesh to the previously obtained surface model, by specifying the distance toler-
ance between the two surfaces. After several iterations, we are able to generate
two-dimensional meshes with over 99% CWC triangles and 100% convex dual
faces in most cases, and three-dimensional meshes with over 90% CWC tetra-
hedra but only about 70% convex dual 3-cells. Additionally, in the tetrahedral
mesh, the ratio of the minimum length of dual edge to the average length of pri-



54 Chapter 3. Blood Flow Simulation

(a) dual edge (b) dual edge on the boundary (c) dual face

Figure 3.6: Examples of low-quality dual elements in the aneurysm model. (a) (b) We can hardly
see the length of the dual edges, linking the circumcenters (displayed by crosses) of two incident
tetrahedra (in green and in blue), or the circumcenters of the unique incident tetrahedron (in
blue) and the primal face (in red) on the boundary. (c) The dual face (in blue), constructed by
the circumcenters of the non WWC tetrahedra (in black), does not intersect with its primal edge
(in red).

mal edges is less than 10°4 (100 times lower compared to the triangular mesh).
There are some extreme flat tetrahedra in the generated tetrahedral mesh, lead-
ing to the irregularity and abnormality of dual elements. Examples of low-quality
elements are illustrated in Figure 3.6.

3.3 Numerical Solution

To simplify the simulation, we model blood as an incompressible Newtonian
fluid of constant density, Ω = 1.069 £ 103kg /m3, and constant viscosity, µ =
3.5 £ 10°3kg /(m · s). According to Dr. Penney’s report [Penney (2002)], the
Reynolds number of blood flow varies with a wide range, from far smaller than
1.0 in capillary to larger than 3,000 in aorta. In this work, however, we just con-
sider the blood flow near intracranial aneurysms with relatively small Reynolds
number ranging from 100 to 1,000, which satisfies the laminar assumption. Thus
it is reasonable to describe the behavior of blood flow using the unsteady incom-
pressible Navier-Stokes equations (Equation 2.1). In this chapter, we focus on
fluid simulation, and ignore vessel deformation and its influence on the fluid.
Hence vessel walls are assumed to be rigid.

The DEC method for fluid simulation is a vortex method, first introduced in
the field of computer graphics [Elcott et al. (2007)]. It is based on unstructured
mesh which is more suitable to describe irregular boundary of anatomical ge-
ometries than regular gridx. As a matter of fact, vorticity plays an important role
in fluid dynamics analysis, as in many cases it is beneficial to describe flow dy-
namics in terms of the evolution of vorticity field. This is particularly true in
the case of aneurysm flow, where the bulge along the artery creates vortices, im-
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pacting both the expansion of aneurysm and coil embolization procedure. The
DEC approach is such a vortex method, using vorticity-based formulations of
the Navier-Stokes equations (Equation 2.2). We recall the equations here:

@!

@t
+Lv! = µ

Ω
¢!+ 1

Ω
r£f ,

rv = 0, ! =r£v,

where the second term Lv! is the advection term, translating the idea that vor-
ticity elements are pushed forward by the fluid velocity. The DEC approach han-
dles this term in a novel and particular way by the backtracking step, which
enforces conservation of circulation at a discrete level, as well as computa-
tional stability. Hence it reduces numerical diffusion because of the circulation-
preserving strategy, and makes it possible to use larger time steps and thus re-
sults in faster simulations.

In this section, we provide a numerical framework for solving the fluid equa-
tions based on the work of [Elcott et al. (2007)]. The fluid domain, state vari-
ables and several vector calculus operators are explained in the language of DEC.
At last, we illustrate how to combine all of these objects in DEC to solve the
vorticity-based Navier-Stokes equations.

3.3.1 Discretization

Although only three-dimensional fluid flows exist in reality, we also simulate
conceptional two-dimensional fluid for testing and validating our approach. In
this section, the DEC algorithm is illustrated in three dimensions, while the two-
dimensional framework can be built similarly. The fluid domain D is discretized
as a primal mesh, from which its dual mesh can be defined. These meshes are
established as presented in Section 2.5.

3.3.1.1 State Variables

State variables of fluid flow, such as pressure, velocity and vorticity, are con-
verted into discrete forms (i.e., integral values over either primal or dual ele-
ments) in accordance with their physical meanings.

• Pressure, in continuum fluid dynamics, is defined as the amount of force
acting on unit area, but unlike stress, it is a pointwise scalar quantity. Usu-
ally, absolute pressure at a point makes no sense; what plays an important
role in physics is pressure gradient, a vector field which reflects the value
and direction of the greatest rate of pressure change in space. Pressure gra-
dient is integrable along a line, and this line integral gives the pressure dif-
ference between its starting and ending point. Accordingly, in the discrete



56 Chapter 3. Blood Flow Simulation

setting, we define the pointwise pressure as a dual 0-form P , represented as
a vector of size |T |, denoted P , the i th element of which is the pressure on
the dual vertex ?ti of the i th tetrahedron ti , written as P [i ] = P (?ti ). And
discrete pressure gradient is defined as a dual 1-form GP , represented as a
vector of size |F |, denoted GP . GP [i ] (= GP (? fi )) equals to the pressure
difference between two ends of the dual edge? fi (Equation 3.1). Although
pressure gradient is described in the format of scalar, its direction is given
by the orientation of its corresponding dual edge.

GP [i ] =GP (? fi ) = P (?t f [1])°P (?t f [0]), (3.1)

where t f [0] and t f [1] are two incident tetrahedra on fi , and
°°°°°°°!
t f [0]t f [1] is in

the same orientation as ? fi , and also defines the direction of GP [i ]. One
of the terms on the right should be replaced by the P (c( fi )), if fi is on the
boundary.

• Flux is originally defined as the amount of fluid passing through unit area
per unit time, thus is an area density integrable on any surface. Conse-
quently, discrete flux is a primal 2-form U , represented as a vector of size
|F |, written as U . U [i ] (=U ( fi )) is the integral value over triangle fi , whose
orientation indicates whether the flux flows backward or forward, since the
direction of the dual edge ? fi defines the flux direction. In the algorithm,
U is used to describe the velocity field, we will see how to convert flux to
velocity vector field in Section 3.3.2.

• Vorticity is the physical term to describe the tendency of fluid element
spinning. More formally, it measures the local angular rate of rotation, and
is defined as the circulation per unit area at a point. Therefore, vorticity is
discretized by a dual 2-form,≠, represented as a vector of size |E |, denoted
⌦. ⌦[i ] (=≠(?ei )) is the integral over the dual face?ei , whose orientation
gives the circulating direction.

3.3.1.2 Operators

Two types of operators, Hodge stars ? and discrete exterior derivatives d , are
defined in the previous chapter. Here, we will explain how they operate on state
variables in fluid dynamics. Variables are transferred from primal p-simplex to
dual (n ° p)-cell or vice-versa through Hodge stars. Take the case of ?2U for
example, if triangle f is small enough, U ( f )/| f |, the averaged flux through f , is
an approximation of velocity perpendicular to f . If dual edge ? f is also small
enough, (U ( f )/| f |) · |? f | is an approximation of the integral value of velocity
field along ? f . So ?2 transfers the primal 2-form U to the dual 1-form ?2U , and
(?2U )[i ] = |? fi |

| fi | U [i ]. On the other hand, d maps p-forms to (p + 1)-forms on
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the primal mesh, while dp
T maps forms on the dual mesh similarly. Take d2U

for example, if d2[i ][ j ] =+1 or °1, f j is a triangle face of tetrahedron ti , and the
normal of fi points inside or outside of ti ; otherwise, d2[i ][ j ] = 0, which means
f j and ti are not incident. As a consequence, d2[i ]U accumulates signed values
of discrete flux on all triangle faces of ti (the directions are considered by the
signs in the meantime). For instance, the tetrahedron example in Figure 2.10,
d2U =U ( f0)°U ( f1)+U ( f2)°U ( f3). So d2U gives a primal 3-form, and (d2U )[i ]
equals to the amount of fluid flowing into ti .

All the vector calculus operators involved in our computation can be ex-
pressed by ? and d , such as gradient of pressure (rP ), divergence of velocity
(r ·U ), curl of velocity (r£U ), and Laplace operators (¢).

• Gradient of pressure is already given by Equation 3.1, which we can rewrite
as

GP =rP = d T
2 P.

• Divergence of velocity, in continuum theories, is the volume density of the
outward flux from an infinitesimal volume around a given point, while the
discrete counterpart r·U is a dual 0-form. Remember that (d2U )[i ] equals
to the amount of fluid flowing into the tetrahedron ti , therefore, r ·U can
be represented as

r ·U =°?3 d2U .

• Curl of velocity is the mathematical definition of vorticity. In DEC, we can
easily get ≠ from U as follows: ?2U gives an integral value of velocity field
along every dual edge, and then d T

1 makes a sum on each dual face ?e by
accumulating the signed?2U on all dual edges incident on?e, which gives
the circulation around the boundary of ?e. Hence we have

≠=r£U = d T
1 ?2 U .

• Laplace is defined as ±d +d± in [Elcott et al. (2007)], mapping p-forms to
p-forms on the primal mesh. In detail,

¢0 = ±1d0 =?°1
0 d T

0 ?1 d0,

¢1 = ±2d1 +d0±1 =?°1
1 d T

1 ?2 d1 +d0?
°1
0 d T

0 ?1,

¢2 = ±3d2 +d1±2 =?°1
2 d T

2 ?3 d2 +d1?
°1
1 d T

1 ?2,

¢3 = d2±3 = d2?
°1
2 d T

2 ?3 .

3.3.2 Solving Fluid Equations

In order to update vorticity for each time step h, derivative in Equation 2.2 is
approximated by finite difference, resulting in

!

0 =!°hLv!+ µh
Ω
¢!+ h

Ω
r£f ,
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the right side of which consists of the advection term, the viscous term and the
external force term:

• Simply speaking, the advection term describes the idea that the local spin
is pushed forward along the direction of the velocity. This is consistent
with Kelvin’s circulation theorem: the circulation around a closed curve
moving with the fluid remains constant with time. In the DEC approach,
the discrete vorticity is conserved by extending Kelvin’s theorem to the dis-
crete version: the circulation around the loop of each dual face’s boundary
keeps constant as the loop is advected by fluid flow. So we run the back-
tracking step to find out where the current dual face comes from, and accu-
mulate the circulation around the backtracked dual face, and then assign
this value to the current one (see Figure 3.7). This step makes the compu-
tation circulation-preserving at a discrete level, as well as stable, because
the maximum of the new field is never larger than that of the previous
field. Backtracking a point p at time t through velocity field over a time
step h can be implemented simply as p0 = p°vp£h (vp is velocity at p),
or using more advanced schemes, such as Runge-Kutta methods. Veloc-
ity at the backtracked point p0 is interpolated from the velocity samples at
tetrahedron circumcenters by computing the barycentric coordinates over
the dual 3-cells which contains p

0 based on the method of [Warren et al.
(2007)]. However, this method is only for convex sets. So if some of the dual
3-cells are not convex, there might be negative barycentric coordinates. We
modify the weight function by using a small positive value instead of nega-
tive value of n j · (v°x). Anyway, the modification only assigns reasonable
values for all barycentric coordinates, but does not really fix the problem
caused by non convex dual 3-cells.

• The viscous term can be translated into µh
Ω (¢1?

°1
1 )⌦, and added directly.

But an implicit scheme could be chosen for the purpose of stability, which
is implemented by solving ⌦

0 in the following linear system:

⌦

0 °⌦ = µh
Ω

(¢1?
°1
1 )⌦0. (3.2)

• When the external force is expressed through the vectorF of their resulting
fluxes on each triangle, the external force term is simply h

Ωd
T
1 ?2 F .

After updating the vorticity, the recovery of velocity field v from vorticity ⌦ is
needed for backtracking in the next iteration. Since U is divergence-free, it can
be expressed by a primal 1-form as U = d1© (note that d2d1 = 0). Thus we have
the linear system (dT

1 ?2 d1)� =⌦, yet which has infinitely many solutions. In
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( )t h! " ( )t!

Figure 3.7: Backtracking. At the current time step tn = t , given the velocity field, each dual vertex
(on the right) are backtracked to its position at the previous time step tn°1 = t °h (on the left).
The circulation around the loop of dual face boundary at time tn is forced to equal the circulation
of the backtracked loop at time tn°1, i.e., ≠(t ) =≠(t °h).

order to determine a certain solution of �, an extra requirement, d T
0 ?1 © = 0,

which means that © is divergence-free, gives a Poisson equation as follow:

¢1�= (?°1
1 d

T
1 ?2 d1 +d0 ?

°1
0 d

T
0 ?1)�=?

°1
1 ⌦.

In addition, boundary constraints are added into the equation by the Lagrange
multiplier method, leading to

√
?1¢1 d

0T
1

d

0
1 0

!µ
�

�

∂
=

µ
⌦

Ubd

∂
, (3.3)

where Ubd stores the flux on the boundary triangles, and d

0
1 is a sub-matrix of

d1 only with the lines corresponding to the boundary triangles. Once the flux U
is obtained from U = d1�, there exists a unique velocity vector vt at each dual
vertex ?t , whose projection along any incident dual edge ? ft is consistent with
the integral value of velocity along the dual edge? ft , that is (?2U )(? ft ). Let i be
the index of ft in the list F , then we have

1
?2[i ][i ]

°°!
? ft ·vt =U [i ].

For each dual vertex, by combining this equation of four incident dual edges, we
get a linear system:

Atvt =Ut,

where At is a 4£3 matrix. When the flux U is strictly divergence-free, this equa-
tion has a single unique solution of vt . But for numerical computation, we solve
the equation below instead:

(AT
t At )vt =A

T
t Ut.
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Last but not the least, we illustrate how to set boundary conditions. We per-
form iterations of evolving vorticity in time with given fluxes through all the
boundary triangles at time t . As we assume vessel wall to be rigid in this chap-
ter, thus no-slip and no-penetration conditions are applied at vessel walls; fluxes
and velocity are set zero at vessel walls. At the inlet(s) and outlet(s), we choose
two conditions for different experiments, i.e., a sinusoidally pulsatile flow and
non-varying flow (the mean value of the pulsatile flow). For the flow at inlet, we
use the mean and maximum velocities based on the measurements from MRI
[Marshall et al. (2004)]. As the blood is assumed to be incompressible, the total
flux at the outlet(s) should be equal to the inflow. If there are more than one out-
let, the distribution of the blood flow is estimated by Bernoulli’s principle in the
assumption that the pressure is identical at every outlet.

See Algorithm 3.1 for the overview of our computation process.

3.4 Accelerating Techniques

In order to achieve real-time simulation or at least at an interactive rate, often
required by practical use in medical training or surgery planning, we apply var-
ious techniques to accelerate the simulating process. It should be noted that
most of the computational time comes from the backtracking step. Because the
backtracked points should be located in the mesh, i.e., find which dual face/dual
3-cells contains this point. Then the neighboring triangle/tetrahedron centers
are used as sample points for interpolation. The computational time relates to
the number of triangles/tetrahedra in the mesh and the backtracking scheme as
well. The second most time-consuming steps are solving diffusion and Lapla-
cian linear sparse systems (Equation 3.2 and Equation 3.3) in each iteration. As
other numerical approaches such as FEM, matrix size of the system directly re-
lates to the number of elements in the mesh. Obviously, in order to reduce com-
putational time for each iteration, we need to limit mesh resolution, and rely on
optimized linear solvers as well as efficient backtracking algorithms. Addition-
ally, improvement of the system stability allows larger time step, which reduces
the number of iterations to simulate unit real time.

3.4.1 Limit Mesh Resolution

Generally speaking, a higher mesh resolution permits to achieve a higher level of
accuracy in the solution. However, when the error induced by a lower-resolution
mesh is acceptable, the objective is then to reach the best trade-off between ac-
curacy and computational time. We create a series of meshes describing the
same geometry but in different resolution, and simulate the blood flow by pro-
viding the same inflow and outflow for all the meshes. Afterwards, we compare
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Algorithm 3.1 Main steps of the fluid simulation using the DEC method

//Initialize
Load mesh and compute d and ? operators
C √d

T
1 ?2

L√?

°1
1 d

T
1 ?2 d1 +d0 ?

°1
0 d

T
0 ?1

L

0 √ LagrangeMultiplier(L,?1,d1)

//Time stepping t √ t +h
loop

//Advection term
for each tetrahedron ti do
ĉi √backtrack(c(ti ))
v̂i √interpolateVelocity(ĉi )

end for
for each dual face ?e do
≠(?e) √ 0
for each dual edge (ci ,c j ) incident on ?e do
≠(?e) √≠(?e)+ 1

2 (v̂i + v̂ j ) · (ĉi ° ĉ j )
end for

end for

//External force term
⌦√⌦+ h

ΩCF

//Viscous term
⌦√⌦

0 = linearSolver((1° µh
Ω L?

°1
1 )⌦0 =⌦)

//Recovery of velocity
Ubd √ setBoundaryConditions(t )
�√ linearSolver(L0(� |�) = (⌦ |Ubd ) )
U =d1�

for each tetrahedron t do
vt √ linearSolver((AT

t At )vt =A

T
t Ut)

end for
end loop

the results obtained on these meshes, and suggest a proper mesh resolution for
the blood flow simulation considering both accuracy of the result and computa-
tional time. Moreover, a multi-resolution mesh is also a feasible option to reduce
the total number of elements while maintaining high resolution in interesting
regions, such as strips near boundary and the interior of aneurysms where more
details of the flow are supposed to be preserved.
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3.4.2 Optimize Linear Solvers

Many numerical techniques can be used to improve the computational effi-
ciency of solving linear equations, especially sparse linear system, which is the
case in our computation. If vessel wall is assumed to be rigid, the mesh is static
(Eulerian approach). As a result, operators as well as diffusion and Laplacian
matrices are constant over time, and can be efficiently pre-computed due to
their sparsity. When dealing with relatively small systems, direct inversion of
the matrices is often the best approach, which can be performed offline and
stored for online computation. This ensures real-time or near real-time compu-
tation, which is typically the case when dealing with two-dimensional problems.
For larger systems, therefore, we rely on solvers which factorize the matrices
only once during initialization. Within each iteration, the solution to the equa-
tions is computed by efficient sparse triangular solve operations using the pre-
computed factorized matrices. In our experiments we use the multi-threaded
sparse symmetric indefinite solver in the Pardiso library [Schenk and Gärtner
(2006)] to factorize and solve the diffusion and Laplacian matrices.

3.4.3 Improve Backtracking Algorithms

In the backtracking step, given the coordinates of a point in n-dimensional space
(n = 2,3), we need to locate this point in the mesh (whether it is in the interior of
the mesh, and in which dual n-cell it lies). When n = 2 (n = 3), we use a quadtree
(an octree) structure to partition the bounding box of the mesh by recursively
subdividing it into four quadrants (eight octants), and each leaf, geometrically
being a square (cube), only intersects with a small number of dual faces (dual
3-cells). The construction of the quadtree (octree) is done only once during the
initialization.

3.4.4 Improve Stability

Besides reducing the computational time for each iteration, the ability to sup-
port large time steps while keeping the system stable is an advantage provided
by the DEC method, as a result of the backtracking strategy for computing the
advection term. Moreover, we use high-order Runge-Kutta methods to back-
trace points, and further improve the stability. However, the higher order we
apply, the more computational time we need. Therefore, we test different back-
tracking schemes and make a better compromise between the simulated results
and the computational time.
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3.5 Experiments and Results

We have made a series of experiments both in two and three dimensions, involv-
ing different geometry models to assess the DEC approach applied in the field of
blood flow simulation. Assuming that the blood is a Newtonian fluid, the density
and viscosity are set as constants, 1.069£103kg /m3 and 3.5£10°3kg /(m · s), re-
spectively. The viscosity is so strong, and a typical value of velocity is at the level
of 100mm/s, thus the corresponding Reynolds number is less than 1.0 £ 103,
small enough for the laminar assumption. As a result, laminar flow with flux
boundary conditions at both inlet and outlet sections is considered in our fol-
lowing experiments.

First of all, we have performed three groups of comparative tests against
FLUENT software 1 in two-dimensional and three-dimensional space. In this
case, we mostly aim at validating numerical accuracy of the DEC method rather
than the actual ability to precisely describe the actual blood flow features near
aneurysm, because such an analysis is very complex to achieve due to the
present difficulties in acquiring real velocity data in vivo, particularly in very
small vessels such as the ones in the brain. Each group of the comparison be-
tween DEC and FLUENT consists of blood flow simulation on several identical
meshes with the same geometry but different resolution. Secondly, we have
tested the convergence of the DEC method in these simulations. We calculate
the relative difference of velocity field between two iterations. If the relative dif-
ference is less than a given criterion, we believe the result is converged. If the
solution is not converged, but only oscillates in a certain range, we believe it
is stable. Thirdly, through the experiments on different sizes of one time step
and different backtracking schemes, we conclude a rough rule to set time step
as large as possible while the simulation remains converged (or at least stable)
and the error of the result remains in an acceptable tolerance. Finally, we have
counted the computational time of each iteration and each step in one iteration.

3.5.1 Experiments of Two-Dimensional Simulation

In two-dimensional experiments, we pick up three interesting geometries imi-
tating the profiles of a T-junction vessel without any pathological abnormality
(Figure 3.8(a)), an aneurysm of large neck (Figure 3.12(a)), and an aneurysm of
small neck (Figure 3.13(a)). We start with depicting the outline of vessels and
aneurysms, then truncate the vessels manually and define inlet(s) and outlet(s)
of a local region for the simulation. The boundary of this region is described by
a series of line segments, which is the input for generating triangular meshes by
interleaving Delaunay triangulation and Lloyd optimization.

1FLUENT is a commercial product of ANSYS (http://ansys.com), widely used in industries.
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(a) geometry (b) mesh 1 (c) mesh 2 (d) mesh 3

Figure 3.8: Geometry model of the T-junction vessel. (a) The wall, inlet and outlets are defined
by the boundary curve. (b)-(d) Three meshes (zoom-ins in the red rectangle) are generated in
different resolution.

mesh number of
triangles

average edge
length

CWC triangles convex dual
faces

(mm) (% ) (%)

mesh 1 7258 0.1957 97.88 100.00

mesh 2 3908 0.2755 99.67 100.00

mesh 3 1952 0.3893 93.85 100.00

Table 3.1: Mesh quality of the vessel model.

The first group of simulations using the vessel model is performed on twenty
meshes composed of different numbers of triangles, ranging from 1,952 to
7,258. Here we display a local region of three meshes in Figure 3.8, the finest
(mesh 1), the medium (mesh 2), and the coarsest (mesh 3) in the twenty meshes.
A varying size field is specified over the region to generate smaller triangles near
the boundary. The mesh resolution (described as the average length of all edges
in the mesh) and mesh quality of the three meshes are summarized in Table
3.1. In each mesh, the percentage of completely well-centered (CWC) triangles is
over 93%, and the dual faces are all convex. Generally speaking, a certain resolu-
tion of the mesh is necessary for a high CWC percentage. In the twenty meshes
we generated for the vessel geometry, when the number of the triangles goes
above 2,500, we can always obtain a mesh of over 97% CWC triangles after sev-
eral interleaved iterations. Moreover, most triangles in the mesh are nearly reg-
ular; the edges of each triangle are almost equal in length. As a result, the local
length ratio of dual edge and primal edge is around 0.577. A few short dual edges
(compare to the local primal edge) appear only near the boundary at the sharp
corners. For all the two-dimensional geometries, it is usually possible to gener-
ate such a high-quality mesh with high CWC and convex percentage, as well as
regular triangles.

We first compare the contours of velocity magnitude and the streamlines
computed by DEC and FLUENT in Figure 3.9. The unit of velocity displayed in all
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mesh 1 mesh 2 mesh 3

DEC

FLUENT

Figure 3.9: Comparison of velocity field on the vessel model. The contours of velocity magnitude
and streamlines are computed by DEC and FLUENT on the identical meshes, which are mesh 1
of 7,258 triangles, mesh 2 of 3,908 triangles, and mesh 3 of only 1,952 triangles.

the figures is mm/s by default. Secondly, we pick up three lines across the inlet
and the two outlets respectively (see Figure 3.10(a)), and plot the profiles of the
velocity magnitude over these three lines in Figure 3.10(b)-(d). Here we compare
the result computed by DEC on the three meshes (the curves in different colors)
to the result computed by FLUENT on mesh 1, the finest mesh (the dotted curve
in black). These comparisons show the similarity in the results of both meth-
ods. When using the coarsest mesh of 1,952 triangles, a small reduction of the
velocity magnitude can be found in both methods. But the main features of the
velocity field still remain the same, such as the flow pattern (characterized by the
streamlines) and the variation of the velocity field in space (characterized by the
profiles).

In order to further understand the numerical dissipation caused by the re-
duction of mesh resolution, we compare the kinetic energy computed by both
methods. If we approximately consider that the kinetic energy computed on the
finest mesh corresponds to zero numerical dissipation, the numerical dissipa-
tion can be measured by the loss of kinetic energy on coarser meshes compared
to the finest one. We list average edge length and kinetic energy of the twenty
meshes, and draw the energy variation as the reduction of mesh resolution in
Figure 3.11. As the mesh resolution decreases (i.e., the average edge length in-
creases), the energy computed by DEC (the blue curve) and by FLUENT (the
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(a) three lines (b) profiles over Line 1

(c) profiles over Line 2 (d) profiles over Line 3

Figure 3.10: Comparison of velocity profiles on the vessel model.

mesh number of
triangles

average edge
length

kinetic energy
by DEC

kinetic energy
by FLUENT

(mm) (J) (J)

1 7258 0.1957 4.879 4.928

2 6786 0.2027 4.905 4.910

3 6432 0.2085 4.902 4.908

4 5923 0.2175 4.889 4.904

5 5405 0.2302 4.901 4.877

6 4952 0.2423 4.891 4.881

7 4086 0.2697 4.880 4.853

8 3908 0.2755 4.888 4.855

9 3746 0.2814 4.876 4.856

10 3585 0.2878 4.848 4.835

11 3445 0.2934 4.850 4.828

12 3304 0.2998 4.836 4.811

13 3086 0.3105 4.803 4.794

14 2992 0.3154 4.800 4.809

15 2884 0.3214 4.817 4.810

16 2592 0.3391 4.804 4.771

17 2452 0.3485 4.786 4.758

18 2342 0.3564 4.737 4.735

19 2258 0.3627 4.723 4.734

20 1952 0.3893 4.695 4.710

Figure 3.11: Mesh resolution and kinetic energy of the vessel model. The kinetic energy variation
as the reduction of mesh resolution is drawn on the left for both DEC (in blue) and FLUENT (in
green), while the figures are given in the table on the right.
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(a) geometry (b) mesh 1 (c) mesh 2 (d) mesh 3

Figure 3.12: Geometry model of the large-neck aneurysm. (a) The wall, inlet and outlets are de-
fined by the boundary curve. (b)-(d) Three meshes (zoom-ins in the red rectangle) are generated
in different resolution.

(a) geometry (b) mesh 1 (c) mesh 2

Figure 3.13: Geometry model of the small-neck aneurysm. (a) The wall, inlet and outlets are
defined by the boundary curve. (b) (c) Two meshes (zoom-ins in the red rectangle) are generated
in different resolution.

green curve) both diminishes, and almost in the same rate. Although the DEC
method does not have higher order accuracy compared to FLUENT, we do not
find any additional numerical dissipation in this experiment.

Similarly, the other two groups of two-dimensional comparative tests are
performed on two or three meshes of different resolution for each geometry
model. The meshes of the large-neck and the small-neck aneurysm model are
displayed in Figure 3.12 and Figure 3.13, while mesh quality is summarized in
Table 3.2 and Table 3.3 respectively. Triangles are nearly regular and uniform in
each mesh, which guarantees high quality in terms of CWC triangles and convex
dual faces.

Figure 3.14 and Figure 3.16 display the velocity results not only over the
whole region, but also in the local region of aneurysm sac using a logarithmic
scale for velocity magnitude, since the flow is much slower there. Two lines, one
across the inlet and the other across the aneurysm sac, are chosen to plot the
profiles for each geometry model (see Figure 3.15 and Figure 3.17). Even when
the mesh resolution decreases by 10 times for the large-neck model and 4 times
for the small-neck model, the contours and profiles are almost the same, and
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mesh 1 mesh 2 mesh 3

DEC

FLUENT

DEC

FLUENT

Figure 3.14: Comparison of velocity field on the large-neck aneurysm model. The contours of
velocity magnitude and streamlines in the whole region and in the sac are computed by DEC
and FLUENT on the identical meshes, which are mesh 1 of 210,177 triangles, mesh 2 of 19,753
triangles, and mesh 3 of only 2,160 triangles.
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(a) two lines (b) profiles over Line 1 (c) profiles over Line 2

Figure 3.15: Comparison of velocity profiles on the large-neck aneurysm model.

mesh 1 mesh 2

DEC

FLUENT

Figure 3.16: Comparison of velocity field on the small-neck aneurysm model. The contours of
velocity magnitude and streamlines in the whole region and in the sac are computed by DEC
and FLUENT on the identical meshes, which are mesh 1 of 35,688 triangles and mesh 2 of 8,944
triangles.
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mesh number of
triangles

average edge
length

CWC triangles convex dual faces

(mm) (% ) (%)

mesh 1 210177 0.04682 99.95 100.00

mesh 2 19753 0.1544 99.84 100.00

mesh 3 2160 0.4626 99.58 99.83

Table 3.2: Mesh quality of the large-neck aneurysm model.

mesh number of
triangles

average edge
length

CWC triangles convex dual faces

(mm) (% ) (%)

mesh 1 35688 0.1522 99.97 100.00

mesh 2 8944 0.3041 99.92 100.00

Table 3.3: Mesh quality of the small-neck aneurysm model.

(a) two lines (b) profiles over Line 1 (c) profiles over Line 2

Figure 3.17: Comparison of velocity profiles on the small-neck aneurysm model.

show the similarity between the two methods. In addition, the streamlines show
a strong agreement for flow patterns and vortex structures in terms of the posi-
tions of vortex centers. Only when we reduce the mesh resolution by 100 times
(in the experiment of the large-neck model), the result computed by DEC loses
some detail information inside the sac; less fluid flows into the sac, and the vor-
tex inside the sac is missing.

From the results of these three comparative experiments, the mesh resolu-
tion is suggested to be chosen as the average edge length is around 0.3mm, in
view of the blood flow velocity near cerebral aneurysm (at the level of 100mm/s)
and the diameter of intracranial vessel (4°7mm) in our experiments. For an ac-
ceptable tolerance, the simulation on such a mesh provides adequately accurate
results, and can achieve faster computational time as well, since the number of
the triangles in the mesh can be less than 10,000.

We use the explicit Euler scheme in the backtracking step and the identical
time step (0.1ms) in all the simulations mentioned above. All of them get con-
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verged after a certain number of iterations using a criterion of 1£ 10°6 (which
means that the relative difference of the velocity between two consequent it-
erations is less than 0.0001%). In the following experiment, we intend to test
the impact of different backtracking schemes and different sizes of time step on
the convergence of the result. For the backtracking step, we use four different
schemes, the Euler scheme, the second order to the fourth order Runge-Kutta
schemes (denoted EUL, RK2, RK3 and RK4 in the following). We enlarge the
time step for each backtracking scheme until the simulation does not get con-
verged any more. We pick up mesh 2 of the three geometry models to do this
experiment.

In this experiment, we find out that the larger time step is used, the less it-
erations are needed to get a converged result. The overall trend of the average
vorticity magnitude is going downward, as the time step size is inclining. This
is because larger time step brings in larger numerical diffusion, The kinetic en-
ergy either gains (in the vessel model and the large-neck aneurysm model) or
loses (in the small-neck aneurysm model) due to larger numerical errors caused
by larger time step. The variation of these three values as the time step size in-
creases is displayed in Figure 3.18 for each geometry model (RK3 or RK4 back-
tracking scheme is applied).

We compare the velocity contours of each model displayed in Figure 3.19,
Figure 3.20 and Figure 3.21, respectively. The velocity is much slower within the
aneurysm, the backtracking scheme and time step we test here have little im-
pact on this region. As a result, we only draw the bifurcation area (and the neck
area) where the relatively obvious difference is observed. From these results, we
can conclude that larger time step causes more numerical diffusion. Take Figure
3.19 for example, when the time step size goes from h = 0.1 to h = 5, the gra-
dient of velocity magnitude in space becomes smaller at the bifurcation to the
bigger branch. Generally speaking, when the time step size h satisfies vmax ·h < l
(vmax is the maximum of the velocity magnitude over the whole region, l is the
average edge length), the different backtracking schemes and different h values
make only a little difference on the result. This means we can use EUL backtrack-
ing method to require less computational time if h is less than l /vmax . When the
time step gets larger, more advanced backtracking schemes are required to re-
duce the numerical error and to make the simulation converged. Using RK3 or
RK4 backtracking scheme, while the simulation is still converged, h can be in-
creased to 5-10 times of l /vmax , which is 50 to 100 times larger than most of the
traditional methods.
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(a) the result of the vessel model (3,908 triangles)

(b) the result of the large-neck aneurysm model (19,753 triangles)

(c) the result of the small-neck aneurysm model (8,944 triangles)

Figure 3.18: The variation as the time step size increases. The number of converged iterations
(the left column), kinetic energy (blue curve in the right column) and vorticity (green curve in
the right column) are obtained on mesh 2 of (a) the vessel model, (b) the large-neck aneurysm
model, and (c) the small-neck aneurysm model.
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h(ms) EUL RK2 RK3 RK4

0.1

0.5

1

5

10 unconverged unconverged unconverged

Figure 3.19: Comparison on the vessel model (the region at the bifurcation) between different
backtracking schemes and different time step sizes(h).
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h(ms) EUL RK2 RK3 RK4

0.1

0.5

1

5

8 unconverged unconverged unconverged

Figure 3.20: Comparison on the large-neck aneurysm model (the region at the bifurcation and
the neck) between different backtracking schemes and different time step sizes(h).
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h(ms) EUL RK2 RK3 RK4

0.1

0.5

1

2

4 unconverged unconverged unconverged

Figure 3.21: Comparison on the small-neck aneurysm model (the region at the bifurcation) be-
tween different backtracking schemes and different time step sizes(h).
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mesh number of
tetrahedra

average
edge

length

CWC
tetrahedra

convex
dual

3-cells

negative
dual edge

minimum
dual edge

length

kinetic
energy by

DEC

kinetic
energy by
FLUENT

(mm) (% ) (%) (%) (mm) (J) (J)

mesh 1 14612 0.5007 88.56 81.21 1.232 0.003051 1.699 1.682

mesh 2 6092 0.6680 78.73 62.79 3.158 0.02019 1.666 1.536

Table 3.4: Mesh quality and kinetic energy of the cylinder model.

3.5.2 Experiments of Three-Dimensional Simulation

In three-dimensional experiments, we first used two simple geometries, cuboid
and cylinder, to approximate straight vessel, since we can generate more regu-
lar meshes with relative high quality for such simple geometries as describe in
Section 3.2. Then a patient-specific aneurysm model is considered.

We first test the method on the cuboid model displayed in Figure 3.3(b),
which allows us to generate a family of absolutely high-quality meshes. In these
meshes, all the tetrahedra are CWC, and dual 3-cells are convex not only for all
interior primal vertices but also for all boundary primal vertices. Moreover, both
tetrahedra and dual 3-cells are (nearly) regular, and the length ratio of dual edge
to primal edge is over 0.3536 inside and over 0.1718 on the boundary (because of
only half dual edge on the boundary face). All the tetrahedra in one mesh are ex-
actly identical both in shape and in size, while the tetrahedra in different meshes
are the same in shape but only differ in size. The resolution of four meshes we
use in the experiment is presented in Figure 3.24. In the second group of three-
dimensional experiments, we compromise mesh quality with a curved bound-
ary surface. Two meshes in different resolution of a cylinder model are gener-
ated by the deformation process described in Section 3.2. However, the defor-
mation process results in non well-centered tetrahedra, short and negative dual
edges, as well as non Delaunay triangulation, which are unfavorable for DEC.
Mesh quality of the two meshes we use in the experiment is summarized in the
Table 3.4. There are roughly 10%ª20% non CWC tetrahedra, and 20%ª40% self-
intersected dual 3-cells and 1%ª3% negative dual edges. The ratio of minimum
dual edge length to average edge length is only 0.61%ª3.0%, which means some
dual edges are nearly of zero length compared to primal edge. The two ends of
the geometry are defined as inlet and outlet of the flow respectively.

The results computed by DEC and FLUENT on the meshes in different reso-
lution with the same geometry are similar. Figure 3.22 displays the contours of
velocity magnitude and streamlines on a slice which contains the central axis of
the geometry model. Figure 3.23 shows the profiles over the line in the middle of
the slice and perpendicular to the axis. Finally, we studied the relationship be-
tween mesh resolution and numerical dissipation caused by the two numerical
solutions (see Figure 3.24 and Table 3.4). In Figure 3.24, the results on the cuboid
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DEC FLUENT

mesh 1

mesh 2

mesh 3

mesh 4

(a) the results of the cuboid model

DEC FLUENT

mesh 1

mesh 2

(b) the results of the cylinder model

Figure 3.22: Comparison of velocity field on two simple geometries. The contours of the veloc-
ity magnitude and streamlines are compared on a slice, which contains the central axis of the
geometry, between DEC and FLUENT on the identical meshes, whose resolution decreases from
the top row to the bottom row in each sub-figure.
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(a) the results on the cuboid model (b) the results on the cylinder model

Figure 3.23: Comparison of velocity profiles on two simple geometries. The profiles of velocity
magnitude are plotted over the central line which is perpendicular to the axis of the geometry.
The results computed by DEC (color curves) on all the meshes are compared to the result com-
puted by FLUENT (black dotted curve) on the finest mesh of each geometry model.

mesh number of
tetrahedra

average edge
length

kinetic energy by
DEC

kinetic energy by
FLUENT

(mm) (J) (J)

mesh 1 28000 0.3690 2.452 2.740

mesh 2 14336 0.4611 2.334 2.605

mesh 3 6048 0.6147 2.115 2.341

mesh 4 1792 0.9216 1.656 1.776

Figure 3.24: Mesh resolution and kinetic energy of the cuboid model. The kinetic energy varia-
tion as the reduction of mesh resolution is drawn on the left for both DEC (in blue) and FLUENT
(in green), while the figures are given in the table on the right.

model show that kinetic energy declines nearly in a straight line as edge length
increases for both DEC and FLUENT, and the declining rate of DEC is a slightly
slower than FLUENT. From these two experiments on high-quality meshes, we
have similar conclusion as in two dimensions: (1) the results of DEC and FLU-
ENT are similar; (2) when the mesh resolution reduces, no more numerical dis-
sipation is brought in by DEC compared to FLUENT; (3) all the results computed
by DEC get converged after a certain number of iterations(using RK2 backtrack-
ing scheme and the time step of 0.1ms).

In the following experiment, we performed the simulation on mesh 1 of the
two simple geometries using different backtracking schemes and larger time
steps. When the time step size is less than 4ms, the velocity field get converged
after a certain number of iterations, and different backtracking schemes only
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h(ms) EUL RK2 RK3 RK4

0.1
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4 unconverged unconverged unconverged

(a) the results of the cuboid model

h(ms) EUL RK2 RK3 RK4

0.1

1

4 unconverged unconverged

(b) the results of the cylinder model

Figure 3.25: Comparison on two simple geometries between different backtracking schemes
and different time step sizes (h).

have a limited impact on the converged velocity field as we compare the mag-
nitude contours in Figure 3.25. The largest time step h we can use is 3.469 and
1.678 times l/vmax for the cuboid and cylinder mesh respectively. The ratio is
about 50% less on the lower-quality mesh of the cylinder model compared to
the absolutely high-quality mesh of the cuboid model, so we believe the DEC
method is less stable on lower-quality meshes, and the instability is mainly
caused by negative and tiny dual edges. As the time step gets larger, the num-
ber of necessary iterations to get a converged result declines, and the vorticity
magnitude has a similar declining tendency as the two-dimensional conclusion.

In the third experiment, we use a patient-specific aneurysm model. For such
a complex geometry (see Figure 3.26), it is quite challenging to generate a high-
quality mesh. Using the algorithm in Section 3.2, we can obtain the meshes with
over 90% CWC tetrahedra, but with only about 70% convex dual 3-cells. Addi-
tionally, the length ratio of the shortest dual edge to the average edge is less than
10°4. Mesh quality of the two meshes we use for the simulation is summarized
in Table 3.5.

The velocity field computed by DEC does not get converged (using the crite-
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streamlines slice 1 slice 2

DEC
mesh 1

FLUENT
mesh 1

DEC
mesh 2

FLUENT
mesh 2

Figure 3.26: Comparison of velocity field on the patient-specific aneurysm model. The first row
displays the geometry of the model and the position of two slices chosen for comparing velocity
magnitude contours. In the following rows, streamlines and contours of velocity magnitude are
computed by DEC and FLUENT on the identical meshes, which are mesh 1 of 55,711 tetrahedra
and mesh 2 of 34,029 tetrahedra.
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mesh number of
tetrahedra

average
edge

length

CWC
tetrahedra

convex
dual

3-cells

negative
dual edge

minimum
dual edge

length

kinetic
energy by

DEC

kinetic
energy by
FLUENT

(mm) (% ) (%) (%) (10°5mm) (J) (J)

mesh 1 55711 0.5098 91.08 70.12 0.04675 4.580 14.38 16.90

mesh 2 34029 0.5995 90.18 66.32 0.07767 5.640 14.05 15.63

Table 3.5: Mesh quality and kinetic energy of the patient-specific aneurysm model.

rion of 0.01%) even if we use much smaller time steps compared to the first two
groups of three dimensional experiments. However, if the time step is smaller
than 4ms (3ª4l /vmax), the velocity magnitude only oscillate within 3%, so the
result is still thought to be stable. We used this stable result to compare with
the result of FLUENT. Although the mesh is very coarse compared with the two-
dimensional case, similar flow structures are still captured. In Figure 3.26, the
streamlines show similar blood movement. In both cases there is a low-speed
region surrounded by high-speed flows observed on slice 1, which represents
a local vortex in this region. There are two obvious vortices in the FLUENT re-
sult, reflected both by the low-speed regions observed on slice 2 and the swirls of
streamlines, but in the DEC result on the coarser mesh, the smaller vortex is not
that obvious. Moreover, in the DEC result we found less quantity of blood flows
into the aneurysm sac per unit time, and the kinetic energy is lower (see Table
3.5). These results show that the DEC method can capture large-scale flow struc-
tures, while small-scale differences exist between the two approaches, which
may principally stem from numerical dissipation and numerical errors caused
by mesh quality.

3.5.3 Computational Time

number of
the triangles

Advection term Viscous term Recovery of velocity
backtrack compute

vorticity
solving diffusion

equation
solving Laplacian

equation
compute

flux
compute
velocityEUL RK2 RK3 RK4

3908 3.4104 5.8749 8.1510 10.8281 0.2529 0.6887 0.7718 0.4455 0.2260
8944 5.8894 11.1526 15.6978 21.2026 0.5178 1.5210 1.6603 0.9647 0.5013

19753 14.1261 26.3627 37.5455 50.7205 1.3480 4.1402 4.3738 2.2069 1.1528

(a) two dimensions

number of
the tetrahedra

Advection term Viscous term Recovery of velocity
backtrack compute

vorticity
solving diffusion

equation
solving Laplacian

equation
compute

flux
compute
velocityEUL RK2 RK3 RK4

14612 21.7982 39.7624 57.3646 73.8814 1.5629 23.7546 25.5720 2.5636 2.5967
28000 41.6165 74.5783 109.3307 142.3083 2.9704 46.9293 50.5692 4.8724 5.1542
34029 99.9749 143.5345 190.2840 227.0987 5.4674 63.1981 66.5237 6.0910 6.9671

(b) three dimensions

Table 3.6: The average computational time (ms) of each step in the DEC algorithm.

We measured the average computational time of each step in one iteration
of the DEC algorithm for both two- and three-dimensional simulations on an
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number of
the triangles

FPS
EUL RK2 RK3 RK4 FLUENT

3908 172.5385 121.0974 95.2859 75.8303 50.0
8944 87.7367 60.1842 47.9303 37.4054 5.0

19753 36.5648 25.1037 19.6370 15.6082 9.1

(a) two dimensions

number of
the tetrahedra

FPS
EUL RK2 RK3 RK4 FLUENT

14612 172.5385 121.0974 95.2859 75.8303 /
28000 87.7367 60.1842 47.9303 37.4054 /
34029 36.5648 25.1037 19.6370 15.6082 2.0

(b) three dimensions

Table 3.7: The average FPS of DEC using different backtracking schemes and FLUENT.

Intel 3.0G H z processor (see Table 3.6). The backtracking step is the most time-
consuming, and obviously more advanced backtracking schemes require even
more computational time. This step takes about half computational time while
solving the two linear systems roughly takes the other half. Table 3.7 gives the
frames computed per second (FPS) by DEC when using different backtrack-
ing schemes, and by FLUENT. The results of DEC and FLUENT are obtained
on an Intel 3.00G H z processor and an Intel 2.40G H z processor, respectively.
The processors are different, but still comparable; the big difference in FPS be-
tween DEC and FLUENT is not mainly attributed to the processors. When us-
ing DEC and the largest time step mentioned above, the simulation time of 1s
requires 1.0495s, 5.2159s and 8.0086s on average to compute on a mesh of re-
spectively 3,908, 8,944 and 19,753 triangles in two dimensions. And in three
dimensions, we need 32.48s, 63.20s, 93.84s to simulate the real time of 1s by
DEC on the meshes of 14,612, 28,000, and 34,029 tetrahedra respectively. On
the other hand, the simulation process of FLUENT was observed between 40
and 250 times slower than DEC in our experiments. Not only because FLUENT
takes longer time to compute each iteration, but also the time step FLUENT uses
should be significantly smaller. FLUENT does not explicitly provide the time
step size it uses in these experiments. Nevertheless, according to the Courant
Friedrichs Lewy (CFL) condition, a necessary condition for convergence while
solving hyperbolic partial differential equations, the time step h should be less
than C ·¢x/v , where¢x is length interval, v is the velocity, and C is CFL constant
(typically C equals to 0.1 for solving Navier-Stokes equations). If we use the av-
erage length and maximum velocity to approximately estimate h, then we have
h < 0.1·l /vmax . Compared to DEC, h can be 3ª10·l/vmax , which is 30ª100 times
larger. Take the aneurysm model with 34,029 tetrahedra for example, FLUENT



3.6. Discussion 83

requires 4170s, nearly 44 times more than DEC, to simulate the real time of 1s.
Finally, It is also worth of mentioning that the processors used in these exper-

iments are quite standard. When using recent high-end processor, the computa-
tional time can be reduced by as much as 50%. For example, the computational
time of 93.84s on the patient-specific aneurysm in three dimensions can be re-
duced to 44s on an Intel i7 3.33G H z processor.

3.6 Discussion

From the results of the previous section, we have identified two main limitations
of our current method: the impact of mesh quality and the computational time.

3.6.1 Mesh Quality

We notice that mesh quality has a significant impact on the DEC approach in the
aspects of convergence and accuracy. These issues of mesh quality were either
not mentioned or underestimated by Elcott [Elcott et al. (2007)], who initially
employed the DEC theory for numerically solving the Navier-Stokes Equations.
Since their objective was to simulate the fluid motion for appealing visual ef-
fects, convergence and accuracy of the solution were not their main concerns.
Besides, although they aimed at fast computation, to generate a video of fluid
flow in tens of minutes was still acceptable for them. (They reported the com-
putational time of 0.47s per frame on a mesh of 32K tetrahedra using a Pentium
4.3G H z processor, compared to our result of 0.25s °0.41s per frame on a mesh
of 34K tetrahedra using an Intel 3.0G H z processor.) But in our case, interactive
medical simulation highly depends on real-time computation, as well as more
reliable results. So we have payed a great attention to what may affect the sta-
bility and accuracy of this new method, and find that low mesh quality is one
of the most important factors when we simulate the fluid on three-dimensional
meshes. Actually, the criterion of defining high or low mesh quality for the DEC
method is not clear yet, and has not been stated in any literature as far as we
know. Although we measure mesh quality by CWC percentage, tiny dual edge,
etc., there is no quantitive relationship between these measurements and the
stability or accuracy of simulated results. At present, defining and generating
high-quality tetrahedral mesh for complex patient-specific geometry is the main
restriction for us to further improve the results.

In some three-dimensional cases, Delaunay tetrahedral mesh cannot be
achieved by the interleaved optimization algorithm, and it results in the self-
intersected dual 3-cells. Additionally, the mesh contains some extremely irregu-
lar elements (e.g., flat tetrahedron, tiny dual edge, small dual face deviated from
the primal edge’s position in Figure 3.6). As a consequence, the results only re-
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main in stable, but cannot get converged even when we use much smaller time
steps. Moreover, the difference of velocity field computed by DEC and FLU-
ENT shown in Figure 3.26 is more obvious than what we observe in the two-
dimensional cases, for which high-quality meshes can be computed using state-
of-the art mesh optimization techniques (such as the centroidal voronoi tessel-
lation, Lloyd in the CGAL library [CGAL]). Generally speaking, the low-quality
mesh causes several problems for the DEC approach: (1) the flat tetrahedra may
create a dual face which does not intersect with its primal edge, so the transfer
of physical quantities between dual 2-form and primal 1-form has a deviation
caused by the position offset; (2) tiny dual edges or faces make some diagonal
elements of?2 or?1 matrix near zero, thus have an influence on the accuracy of
the discretization and the stability of the linear system; (3) self-intersected dual
3-cells bring errors in the interpolation step. Even higher resolution of the mesh
does not improve mesh quality any more by our meshing algorithm, and we do
not observe any obvious improvement in the simulation results when we use the
mesh with higher resolution but similar quality.

In our numerical method, the linear system is mainly based on the Laplace
operators, which are expressed by the basic derivative operators d and Hodge
operators ?. The d operators only rely on mesh topology, thus are exact ex-
pressions. The loss of accuracy and the cause of instability only rise from the
discretization of the ? operators, which relates to mesh geometry. A controlled
experiment can be designed to further quantify the impact of mesh quality on
the DEC method. We need to create a series of meshes with the same boundary
and topology, but different geometrical positions of the interior vertices. Thus
the d operators are the same for these meshes, while the ? operators have dif-
ferent diagonal values. Then we solve a problem which has analytical solution,
and measure the error of results obtained on these meshes compared to the ana-
lytical solution. Furthermore, the condition number of the Laplace operator can
be used as a measurement of the stability of the system. At present, we have de-
veloped an interactive tool to manually move the interior vertices in two dimen-
sions while maintaining the same topology and Delaunay triangulation, and will
continue to work on this controlled experiment in the near future.

As to improve the precision of the ? operators, we can either use higher-
order discretization of ? operators or optimize the primal mesh and/or dual
mesh by minimizing the numerical error of discrete ? operators. The former
solution not only increases the difficulty to compute the operators during the
initialization step, but also decreases the sparsity of the? operators and Laplace
operators, thus make inversion of the matrices more difficult and decrease the
computational efficiency. In order to keep in line with our objective of real-
time simulation, we prefer the latter option. Generation of the primal and dual
meshes should only be done once before the simulation, and adds no extra
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cost to each iteration during the simulation, unless a great refinement of the
mesh has been performed, and increases the system size. Most previous work
usually chooses barycentric or circumcentric duals; barycentric duals are pre-
ferred due to the CWC property (the barycenter is always inside the simplex),
while circumcentric duals guarantee the induced orthogonality between pri-
mal and dual elements. In the fluid simulation, the orthogonality is highly rec-
ommended for the purpose of describing physical quantities. As a result, De-
launay/Voronoi duality is commonly employed in lots of work, as well as our
method. However, we found that circumcentric dual vertices can be moved to
new positions in order to achieve more regular dual cells (e.g., make the rela-
tively short dual edge longer) while keeping primal-dual orthogonality. The reg-
ular triangulation and power diagram (also called weighted Delaunay triangu-
lation and weighted Voronoi diagram) [Glickenstein (2005)] provide such a du-
ality we desire. The i th weighted point is defined as a pair (xi , wi ), where xi

is the position of the point, and wi is the weight. The weighted Voronoi region,
Vi = {x 2Rn | ||x°xi ||°wi ∑ ||x°x j ||°w j ,8 j }, is the dual of the i th point. The dual
vertices of the primal simplices are called weighted circumcenters. The dual
edge linking incident dual vertices is perpendicular to its primal edge/triangle.
When the weights on all points are equal, regular/power pairs degenerate to De-
launay/Voronoi pairs. Except for computing the ? operators using weighted cir-
cumcenters instead of circumcenters, other steps of our method can be directly
applied. From the same primal triangular/tetrahedral mesh, we have a flexibility
to choose different dual mesh by just tuning the weights. And the key problem
is how to properly set the weights.

Only recently, a paper addressing the problem of optimizing triangu-
lar/tetrahedral mesh presented a similar idea and could improve the accuracy
of the DEC method. Mullen proposed energy functions to estimate the error
induced by diagonal Hodge stars, and concluded that the minimizers of these
functions, called Hodge-Optimized Triangulation (HOT) meshes, provided in-
creased accuracy and flexibility for a variety of computational purposes [Mullen
et al. (2011)]. They updated the mesh in each iteration by optimizing both the
positions and weights of vertices. We followed their idea to implement only the
weight optimization, because the position optimization, involving recomputing
the primal Delaunay triangulation, is more complicated to implement. Our pre-
liminary two-dimensional result in Figure 3.27 shows that the optimization of
weights {wi } (even with no optimization of the points {xi }) can improve mesh
quality; as it makes the relatively short dual edge longer. The interleaved po-
sition optimization and weight optimization, as well as further investigation in
three dimensions is our work in the next step. Besides, we are also considering to
modify the HOT algorithm to deal with the mesh which (nearly) does not meet
the Delaunay criteria. Take the mesh in Figure 3.27(a) for example, the short
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(a) Delaunay/Voronoi pairs (b) regular/power pairs with optimized weights

Figure 3.27: Hodge-Optimized Triangulation (HOT). (a) We create a primal mesh whose Voronoi
dual mesh contains several artificial short dual edges, and use zero weights (Delaunay/Voronoi
pairs) as the initial state. (b) After optimization of the weights by HOT algorithm, the optimized
regular/power pairs are more favorable for the DEC approach, as the short dual edges get longer.

dual edges are associated to the fact that there are four points almost locate on
the same circle. In the meantime of minimizing the energy function, extra con-
straints on the weights of these four points can be added, then the constrained
optimization method is applied to compute the optimized weights under certain
conditions.

Besides the improvement of mesh quality, the DEC method could be made
more robust to complex geometries. For example, other interpolation applicable
to the sets which are not convex should be investigated in the case of non convex
dual cells. Furthermore, the immersed boundary method (IBM) can be consid-
ered to combined with the DEC method, so the absolutely high-quality regular
mesh containing the fluid region but not conforming to the exact boundary can
be used.

3.6.2 Computational Efficiency

For most of the three-dimensional cases in our experiments, the simulation is
only near real-time. We want to more deeply investigate various computational
strategies to obtain real-time computation by using more advanced numerical
schemes.

Firstly, the backtracking step, accounting for nearly half of the total computa-
tional time, is the most time-consuming step. In this step, each dual vertex of the
mesh is traced backwards using the velocity field defined on the dual vertices of
the current time step. The reason why it is computationally expensive is that the
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interpolation of the velocity at a backtracked point requires to locate this point
in the mesh in order to find a set of neighbor samples (dual vertices). The higher-
order backtracking scheme we use, the higher-frequency interpolation we need
to trace one point. For instance, the EUL scheme interpolates once per point,
while the RK2 scheme interpolates twice per point. Nevertheless, the computa-
tion of backtracking each dual vertex is independent of the others, thus can be
performed at the same time. Moreover, it only depends on topological neigh-
bors, which benefits the parallel implementation on GPU. Take the aneurysm
mesh of 34,029 tetrahedra for example, the GPU implementation can possibly
reduce the computational time by 35 to 45 times [Comas et al. (2008)].

Secondly, solving the two linear equations take nearly the other half compu-
tational time. The preconditioning technique coupled with a GPU-based con-
jugate gradient implementation [Courtecuisse et al. (2011)] can be used for this
step to provide significant acceleration of the simulation process. For a system
over the size of 30K , it can speed up by 6.7 times.

Finally, adaptive refinement techniques for generating multi-resolution
mesh [Prakash and Ethier (2001)] are worth of considering. These techniques
are able to automatically subdivide the mesh elements only where the predicted
solution error is the greatest. A certain iterations of the subdivision result in a
mesh that is highly resolved only where it is needed, thus maximizing the solu-
tion accuracy while minimizing the computational effort.
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4
THE SIMULATION OF BLOOD-STRUCTURE

INTERACTION

With the success in the area of hemodynamics, more and more physics-based
methods have been introduced to the aneurysm related researches. In the previ-
ous chapter, we only simulate the fluid motion, but ignore the influence of other
objects which interact with the fluid, such as surgical instruments and blood
vessels. In this chapter, we consider the complicated physical and physiological
processes encountered in the area of aneurysmal hemodynamics, involving the
interactions between blood and coils during aneurysm embolization, and the in-
teraction between blood and vessels during aneurysm development. In Section
4.1, we first provide a concise background of fluid-structure interaction model-
ing in the general context, then introduce two applications in medical simula-
tion, aneurysm coil embolization and aneurysm growth. Our methods to sim-
ulate blood-coil interaction and blood-vessel interaction for these two medical
applications are presented in Section 4.2 and Section 4.3 respectively. Finally,
perspectives on clinical use of these simulation methods are discussed in Sec-
tion 4.4.

4.1 Introduction

In this section, we provide the background for solving fluid-structure interaction
problems, and review some applications in physiological phenomena, specif-
ically during the procedure of aneurysm coil embolization and the process of
aneurysm growth.

4.1.1 Fluid-Structure Interaction

The numerical solution to Fluid-Structure Interaction (FSI) problem poses great
challenges since it involves computing fluid dynamics and structure mechanics,
as well as modeling their interactions and handling the interface. A straight-
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forward strategy is to separate the domain into fluid and solid subdomains. In
each subdomain, solution is obtained independently, and the interaction be-
tween fluid and solid is considered as external boundary conditions. This strat-
egy, named loosely coupled approach, has the advantage that many well devel-
oped numerical solutions can be used directly in each independent system. But
the interface and interaction between two systems require to be treated carefully
because of high stiffness and sensitivity. In contrast, fully coupled approach,
treating the fluid and solid as a single continuum, is more proper for large de-
formations of fluid and solid domains. A comparison of the most important FSI
coupling strategies in the context of biomechanical problems was made by Küt-
tler [Küttler et al. (2010)].

Usually, the fluid or solid motion can be described in Eulerian formula-
tion, or Lagrangian formulation, or their combination, i.e., Arbitrary Lagrangian-
Eulerian (ALE) formulation. These three descriptions differ in reference mesh.
Eulerian method, mainly used in fluid dynamics, uses a fixed reference mesh,
where the object moves. This method usually does not need remeshing oper-
ations even when handling large distortions of the object, but generally at the
expense of the definition of precise interface and the resolution of flow details
along the moving boundary. Lagrangian method, widely used in structural me-
chanics, uses a moving reference mesh, each node of which is moving with the
associated material during motion. This method allows easy tracking of free sur-
faces and boundaries of materials, but is unable to follow large deformations
of the computational domain without frequently remeshing. ALE has been de-
veloped with the purpose of combining advantages of the two methods, while
minimizing their respective drawbacks as far as possible. ALE method uses a
reference mesh with freedom, the nodes of which may be moved with the ma-
terial as Lagrangian manner, or be fixed as Eulerian fashion, or be moved in an
arbitrarily specified way. Thus, it can handle with greater deformations of the
object than purely Lagrangian method, and is more favorable for dealing with
the moving interface than purely Eulerian method.

An important technique in FSI approach is to describe the moving interface.
Using the Lagrangian formulation is a boundary fitting strategy; the boundary
of the mesh is moving with the material, and always conforms to the updated
material shape. It is one of the most widely used methods because of its sim-
ple implementation, low computational cost and accuracy to track the moving
interface. However, frequent remeshing is necessary to get accurate solution
on the mesh when large deformation happens, and this process could be very
troublesome and time consuming. Once the remeshing process takes place, the
transfer of variables from the old mesh to the new mesh is also required, which
is also tricky, costs extra computational time, and may cause artificial effects,
resulting in loss of the accuracy of variables.



4.1.2. Aneurysm Coil Embolization 91

On the other hand, another different strategy, non boundary fitting method,
does not use such an exact and direct description to handle the interface. One of
the most well-known methods in this category is Immersed Boundary Method
(IBM), firstly proposed by Peskin [Peskin (1972)]. The original method carried
out the entire simulation on the fixed finite difference grid which did not con-
form to the geometry of fluid domain. But a set of immersed points was used to
define the interface. This immersed solid boundary interacted with the fluid by
applying local body forces. Then lots of followers further developed this method
by introducing these body forces differently for various problems. Another sim-
ilar method, fictitious domain method [Glowinski et al. (1997)], based on the
finite element framework, established fluid-solid coupling by constraining the
fluid and rigid body at their interface using a (distributed) Lagrange multiplier
and extending this constraint to the inner body. Generally speaking, while these
non boundary fitting methods take the advantage of Eulerian manner, they sac-
rifice certain accuracy of the solution near the interface due to interpolation
errors. A more deep comparison of these boundary handling methods for de-
formable bodies was made by Van Loon [Van Loon et al. (2007)]. These meth-
ods can be combined with each others to minimize their own drawbacks, see
[Van Loon et al. (2004)] as an example.

The fluid simulation with rigid boundaries sometimes fails to predict essen-
tial characteristics of the physiological flow (such as pressure wave propaga-
tion on the vessel), and is unable to provide interactions with other structures.
Therefore, FSI method is a useful tool for understanding the causes of diseases
in human circulatory system and respiratory system, evaluating new surgery
techniques, and providing surgical planning. For example, Immersed Bound-
ary Method was originally introduced to study flow patterns around heart valves
[Peskin (1972)]. Actually, the main propelling force to develop this field is the in-
creasing demand from medical community for scientifically rigorous and quan-
titative investigations of cardiovascular and respiratory diseases. As a result, lots
of physiological phenomena were studied, such as the function of cardiac and
venous valves [Van Loon et al. (2004)], pulse wave propagation in the arteries
[van de Vosse and Stergiopulos (2011)], flow in the microcirculation [Popel and
Johnson (2005)], pulmonary airway closure and reopening, phonation and snor-
ing [Grotberg and Jensen (2004)]. In the following two sections, we will review
two FSI problems related to the aneurysm disease.

4.1.2 Aneurysm Coil Embolization

Over the last decade, remarkable progress has been made in the field of endovas-
cular treatment, which uses the vascular network to carry a micro-catheter to
the diseased part in human body. Technological advances continue to make it



92 Chapter 4. The Simulation of Blood-Structure Interaction

possible for a growing number of patients with cerebral aneurysms to be treated
with a variety of endovascular strategies, essentially coiling. Detachable coil em-
bolization is a recent interventional technique for treating aneurysms and other
blood vessel malformations in the brain and other parts of the body. The coils
are made of soft platinum wire in different diameters (smaller than a strand of
hair) and lengths. The physician places several coils through the catheter into
the aneurysm. The presence of coils reduces blood flow and wall pressure within
the aneurysm, thus creating a favorable hemodynamic environment for throm-
bus embolization. The formation of blood clot around the coil blocks off the
aneurysm, thus considerably reducing the risk of rupture. Although coil em-
bolization is less invasive than open surgery, it remains a very complex medical
procedure, which is very difficult to perform and requires careful planning and a
long experience to minimize the risks for patient. Yet, even in the case of a suc-
cessfully performed procedure, the choice of coil (shape, length, diameter) plays
a key role in the long-term success of the procedure.

In this context, the development of training and planning systems can help
decrease the risk of errors, in particular during the learning curve of the physi-
cian, or when dealing with complex, rare pathologies [Gould (2007)]. However,
the computer aided system, allowing interventional radiologists to select differ-
ent coils and test their behavior in a patient-specific environment, requires not
only to model the behavior of a coil in patient-specific aneurysm model, but
also to compute the interaction between coil(s) and the complex flow occurring
within aneurysm.

Although the hemodynamics of aneurysms before the procedure of coil
embolization have been extensively studied, a few studies have focused on
aneurysm-related hemodynamics after endovascular coil embolization. Some
follow-up studies were made by clinical review with angiographic performed
post-treatment [Byrne et al. (1999)]. Boecher-Schwarz et al. investigated the
physical effect of coils on pressure and flow dynamics in aneurysms by an ex-
vivo study on aneurysms created in rabbits and then exposed to pulsatile flow
before and after coil embolization [Boecher-Schwarz et al. (2000)]. By experi-
mental approach, Canton et al. measured the changes in blood pressure of the
aneurysm and flow characteristics of the parent vessel resulting from packing
the aneurysm sac with hydrogel-coated coils [Canton et al. (2005)].

Besides these studies based on clinical review and experiments, Groden et
al. evaluated the impact of different levels of coil packing on the flow and wall
pressure in the aneurysm sac and parent vessels by solving the Navier-Stokes
equations [Groden et al. (2001)]. The filling of the aneurysm with platinum coils
was simulated by a set of randomly distributed blocked cells. They concluded
that the inserted platinum coils occupying up to 20% volume of the aneurysm
sac immediately and decisively relieved the influx of pulsating blood and al-
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lowed for initial clotting. However, their conclusion was based on a simple and
idealized geometrical model, but not an actual aneurysm model. Kakalis et al.
employed patient-specific geometrical model to get more realistic flow patterns,
and modeled the coiled part, from a static point of view, as a porous medium
[Kakalis et al. (2008)]. They reported that inserted coils rapidly changed the flow
patterns in aneurysm and caused reduction in mural pressure and blood veloc-
ity, providing favorable conditions for the thrombus formation and obliteration
of aneurysm. But their simulation was relied on the commercial software, and
was not aimed at real-time simulation for interactively surgery planning. Be-
sides, Morales et al. carried out the CFD analyses in patient-specific aneurysm
geometries both before and after treatment for evaluating the relative effect of
coil configuration on local hemodynamics [Morales et al. (2011)]. Schirmer and
Malek modeled hemodynamics in the aneurysm treated with helical coils to in-
vestigate the influence of framing coil orientation on the embolization outcome
[Schirmer and Malek (2010)]. In order to evaluate the long-term aneurysm oc-
clusion outcome after coil embolization, Cha et al. used a semiheuristic porous
medium set of equations to describe the aneurysm flow, plus the Navier-Stokes
equations to govern the dynamics of the flow around the aneurysm [Cha et al.
(2007)]. They estimated the total force on the overall mass of coils to predict
coil compaction in long term. All of these studies based on computational ap-
proach relied on commercial software or traditional numerical techniques, and
the computational times (dozens of hours in general) were incompatible with
interactive simulation or even clinical practice. Besides, most of them (except
[Cha et al. (2007)]) only considered the influence of coil(s) on the blood flow af-
ter coil(s) being placed into the aneurysm, but the reverse influence of blood
flow on coil has not been studied yet. Cha et al. studied the reverse effect but
only computed the total force applied on the coils in the global view to predict
long-term outcome [Cha et al. (2007)].

As for simulating coil motion, Dequidt et al. proposed an original model to
obtain interactive and accurate simulations of coil deployment [Dequidt et al.
(2008)]. The model took geometric nonlinearities into account and used a shape
memory formulation to describe its complex geometry. But they did not include
the influence of the blood flow onto the coil. We followed this work to com-
pute the coil behavior in the blood flow within and around the aneurysm [Wei
et al. (2009)]. Finally, previous work in the area of real-time simulation of inter-
ventional radiology procedures has mainly focused on training rather planning
(besides the work of [Dequidt et al. (2008)]), and has been limited to the simu-
lation of flexible devices (see [Alderliesten et al. (2004)], or [Duriez et al. (2006)]
for instance).

In our work, we add extra terms to the Navier-Stokes equations to describe
the impact of inserted coil(s) on the blood flow, requiring little additional com-
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putational cost compared to the pure fluid simulation in the previous chapter.
On the other hand, we also considered the reciprocal effect, i.e., the impact of
the flow onto the coil, during the procedure of coil embolization. Our simulated
results demonstrated that the reverse effect ignored by previous works is essen-
tial in the context of planning the coil embolization surgery. More importantly,
the results showed that our approach permits real-time simulation of the inter-
action between coils and blood flow during coil embolization.

4.1.3 Aneurysm Growth

Several theories were proposed regarding the causes of aneurysm formation,
growth and rupture, but with few clear results. There are two relatively sepa-
rate processes in aneurysm development. The first relates to the initial stage
of aneurysm formation. Current researches believed that aneurysm initially re-
sulted from congenital diseases, together with some possible additional factors
such as injuries to the arterial walls which effect blood circulation, or deficiency
in collagen or elastin which alters the elastic properties of arterial wall. While the
exact causes for the creation of aneurysm remain unclear, the second process of
the expansion and possible rupture of aneurysm has received more focus and
remains a somewhat easier problem to address.

Blood flow dynamics is thought to be one of the primary causes of aneurysm
development, along with arterial wall elasticity and stress. In addition, it is also
the influence of time that leads to the development and rupture of aneurysm.
Actually, it is particularly complicated to incorporate wall compliance into the
vascular CFD models, because it requires knowledge about the distribution of
wall thickness and elasticity, and intra-arterial pressure waveform. Moreover,
the coupling between blood and vascular tissue is highly nonlinear due to the
fact that the ratio between the densities of blood and tissue is roughly equal
to one, which makes the structure is relatively sensitive to the small variations
of interaction force, and therefore results in instabilities. Scientific and clinical
researchers introduced several methods for characterizing the development of
intracranial aneurysms, through artificial (phantom) models and animal exper-
iments. It is only recently that detailed analysis of blood flow was considered
as a mean to study aneurysm development or to assess aneurysm treatment
procedures. For instance, Cebral et al. studied the local hemodynamics (flow
and WSS) and the formation of blebs in cerebral aneurysm by CFD simulation of
the aneurysm flow before and after bleb formation under pulsatile flows [Cebral
et al. (2010)]. Their findings implied that locally elevated WSS could contribute
to the focalized wall damage that formed the aneurysm. They revealed the im-
portance of the hemodynamic impact on the aneurysm development, but did
not studied the how this impact led to vessel deformation.
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Regarding the biomechanical modeling of blood vessels, several models and
approaches were proposed in the literature (for a comprehensive overview of
constitutive models of blood vessels, the reader can refer to [Vito and Dixon
(2003)]). The simplest one is linearly elastic wall model, possessing the greatest
advantage of low computational cost. At present, this model is still successful in
some applications (see [Figueroa et al. (2006)] for example). Hyper-elastic ma-
terial model offers better incompressible and stiffening behavior of the arterial
wall under high strain. This model is neither too complicated nor too compu-
tationally expensive in general, thus it is widely used in cardiovascular FSI sim-
ulations (e.g., [Tezduyar et al. (2008)]). More sophisticated characteristics are
also added into the wall model, such as viscoelastic, anisotropic and inhomoge-
neous characteristics, owing to collagen fibre and other multiple compositions
(e.g., [Humphrey and Na (2002)]). Nevertheless, there is few models based on
patient-specific geometries and mechanical properties in practical applications
due to the difficulty in fetching all these patient-specific datum in vivo.

To predict the aneurysm growth in long term, blood vessels were often de-
scribed as viscoelastic soft tissues, which exhibited hysteresis for the stress-
strain relationship, and creeped under constant load and relaxation under con-
stant strain. A popular framework was proposed by Fung to model materials
with a viscoelastic behavior [Fung (1993)]. This framework, named Quasi-Linear
Viscoelasticity (QLV), expressed stress at any time as a function of the instanta-
neous strain and a reduced relaxation function. This approach was applied to
many soft tissues such as muscles, ligaments [Lakes and Vanderby (1999)] and
brain tissue [Drapaca et al. (2006)]. However QLV suffered from several draw-
backs, in particular it relied on extensive experiments to fit the model with ac-
quired data [Provenzano et al. (2001)]. Dedicated vessel models were used to
take into account the interaction between blood flow and arterial wall: both two-
dimensional linear elastic FEM models [Bathe (1998)] and three-dimensional
models [Ivankovic et al. (2002)] were proposed to estimate blood flow pressure,
compressive stress and wall shear stress of the vessel wall. These works, how-
ever, did not model irreversible (plastic) deformations caused by the long ex-
posure to stress which was probably the predominant phenomenon that led to
aneurysm generation. To evaluate the long-term mechanical properties of a ma-
terial, different approaches were applied. For example, Aklonis et al. relied on a
modified version of the Boltzmann superposition principle to simulate the aging
process of polymers [Alkonis et al. (1983)]. Other approaches modeled the creep
phenomenon [Hadid et al. (2002)] to reproduce the long-term evolution of the
deformation of certain materials.

Our objective is fast simulation of blood-structure interaction during the
process of aneurysm development which usually lasts for hundreds of days. We
propose a computationally efficient approach for solving both the problems of
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fluid simulation and the soft tissue deformation, and consider the influence of
soft tissues surrounding the vessels on the growth of aneurysm. Although this
work is only preliminary, it will eventually permit to study the influence of dif-
ferent mechanical factors, and to evaluate the size of aneurysm after a certain
period of time.

4.2 Blood-Coil Interaction

In this application, we aim at a planning system for the endovascular surgery of
coil embolization, which allows to dynamically plan coil embolization for two
key steps of the procedure: choice and placement of the first coil, and assess-
ment of the number of coils necessary to reduce aneurysmal blood velocity. This
computer aided system requires not only fast computation of the blood flow be-
fore and after implanting the coil(s), but also real-time simulation of the inter-
action between a coil and the complex flow during the surgery.

In Section 4.2.1, we first introduce the notion of porous media to model the
impact of the inserted coil(s) onto the flow (as a change of flow pattern and a
decrease of velocity), then we show how the reverse effect, i.e., the drag force
applied onto the coil due to blood velocity, can be computed. In Section 4.2.2,
we propose an approach to achieve real-time computation of coil-flow bilateral
influence, necessary for interactive rehearsal of the procedure on computer. Fi-
nally, we provide the blood flow simulation results on the aneurysm models with
interesting clinical characteristics both before and after placing the coil(s), and a
simulation result of coil deployment without and with the influence of the blood
flow respectively in Section 4.2.3.

4.2.1 Modeling Blood-Coil Interaction

4.2.1.1 Porous Media Model

Usually, the diameter of cerebral aneurysms treated by coil embolization ranges
from 3.5mm to 10mm, while the typical diameter of coils chosen for cerebral
aneurysms ranges from 0.2mm to 0.4mm, which is quite small compared to the
aneurysm size (0.02 to 0.11 times of the cerebral aneurysm diameter). Most of
the coils have a curly or spiral shape (the circular memory is between 2mm and
16mm), and after inserted into the sac of aneurysms, they are always randomly
distributed, forming the shape of a twisted nest (Figure 4.1). Considering the
relatively tiny dimension of coils and their random distribution in aneurysm,
coils are modeled, from a statistical point of view, as porous media in the sac of
aneurysm.

We divide the fluid domain D into 3 sub-domains, a coil-free and a coil-filled
sub-domain, as well as a transitory sub-domain between them which allows the
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(a) curly coil (b) spiral coil (c) nest shape

Figure 4.1: The shape of detachable coils before and after deployment. (a)-(b) Curly-shape and
spiral-shape coils before deployment; (c) nest shape after deployment.

porous parameters to vary smoothly between the first two sub-domains. How-
ever, blood motion in all sub-domains is described uniformly by the Navier-
Stokes equations (vorticity-based) of Brinkmann type:
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where ! is vorticity, and b equals to velocity v multiplied by its magnitude. In
addition to density Ω and viscosity µ, which are two parameters characterizing
the fluid, three more parameters are used to describe the properties of porous
media: porosity ', permeability k and drag factor CD . Porosity ' describes
the volume ratio of pores to the total coil-filled sub-domain, ' = 1°Vcoi l /Vsac ,
where Vcoi l is the accumulated volume of all coils, and Vsac is the volume of
the aneurysm sac. The permeability k measures the fluid conductivity through
porous media, k = '3/ cS2, where c is the Kozeny coefficient related to the
micro-shape of the porous media (for coils, the value for cylinders is chosen,
c = 2), and S is the ratio of the surface area of all coils to the volume of porous
region Vsac . The drag factor CD can be derived from the computation of the lo-
cal Reynolds number. In Equation 4.1, the advection term Lv! and the viscous
term ¢! are exactly the same as the standard Navier-Stokes Equations (Equa-
tion 2.2). The only difference is the last two porous terms being added to con-
sider the influence of the porous media. Note that when ' ! 1 and k ! 1,
these porous terms disappear, therefore, Equation 4.1 is identical to the stan-
dard Navier-Stokes equations, within the coil-free region.

By solving this equation of the uniform presentation for the whole domain,
we can simulate the blood flow without coils or with different coil packing den-
sity (expressed as the volume ratio of Vcoi l /Vsac ). Still using the DEC framework,
we only need to add the computation of two porous terms to the numerical im-
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plementation presented in Section 3.3. The curl of b (r£v

|
v

|) is discretized as
a dual 2-form B , represented as a vector of size |E |. The calculation of B is simi-
lar to that of the circulation around the loop of each dual face’s boundary in the
backtracking step. The discrete version of the last two terms in Equation 4.1,
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is added to the vorticity ≠ at each time step.

4.2.1.2 Coil Model and Drag Force

The mechanical model of coil is based on the work of Dequidt et al. [Dequidt
et al. (2008)] where coil was modeled as serially linked beam elements. The fol-
lowing equilibrium equation governs the movement and deformation of these
beam elements:

Mẍ+Dẋ+Kx= f ,

where ẍ, ẋ, and x represent respectively the vector of acceleration, velocity and
node position of the beam element, and f is the external force applied to the
coil (such as interaction force generated by blood flow). In this equation, M is a
diagonal matrix describing the lumped masses at nodes. D is the damping ma-
trix. The global stiffness matrix K is a band matrix due to the serial structure of
the model. The coil motion is obtained by solving the governing equation using
the finite element approach, which can be optimized for real-time computation
by taking advantage of the structure (tri-diagonal band) of its stiffness matrix.

In the existing simulations of aneurysm embolization, the interaction force
between blood and coil was only studied for the blood from a global view, while
the local reacting force on coils during the implanting process was ignored. In
fact, the last term of equation 4.1 is a description of the interaction force, but
treated as an averaged quantity. When computing the reaction on the coil, we
apply its local version, which is the drag force of flow over cylinder (the coil is
considered to consist of serially linked cylinder segments):

FD = 1
2

CDΩv? |
v?| Al ,

wherev? is the velocity orthogonal to the coil, A is the cross-sectional area of the
coil, l is the length of one short cylinder segment, and FD is the drag force ap-
plied on this segment. The velocity parallel to the coil is neglected, since it only
produces shear force on the coil, which is insignificant compared to the drag
force, and have little impact on the movement of the coil in the blood. Hence,
the reacting force on the coil only depends on local fluid velocity.



4.2.2. Real-Time Simulation of Coil Embolization 99

4.2.2 Real-Time Simulation of Coil Embolization

In this section, we show how the two models described above can be combined
in one single framework, and used for real-time simulation of coil embolization.
Given periodically time-varying boundary conditions at the inlet and outlet ves-
sels around aneurysm, we solve the Navier-Stokes equations of Brinkmann type
with a constant coil packing density by the DEC approach, and obtain the veloc-
ity at each tetrahedron center of the mesh at each time step. Then these velocity
values are used to interpolate the velocity at the positions of coil segments and
apply appropriate drag forces on the coil. The coil can provide real-time feed-
back inside the aneurysm at any time step during embolization. After a certain
amount of coil(s) being deployed in the aneurysm, the velocity of blood flow is
recomputed at the new level of coil packing density. We choose this loosely cou-
pled approach and update the porous parameters (porosity ' and permeability
k) only after coil packing density increasing notably, because a small segment
of coil is quite tiny compared to aneurysm, and has little significant influence
on the blood flow, in particular on the main flow structures. In fact, the loosely
coupled approach we propose allows to relatively independently compute the
blood and coil motion. As a consequence, it is easier to develop accelerating
strategies for both systems separately. Moreover, computation of blood flow and
coil can be parallelized. Because the impact of the flow onto a coil is local, while
the reverse impact of the coil(s) onto the flow is global. In our case, blood flow
simulation requires smaller time steps and more computational time. Thanks
to the loosely coupled approach, the coil motion does not need to updated as
frequently as the blood simulation, and the velocity field of blood can be pre-
computed if necessary.

The extra time induced by computing porous terms is less than 1% of the
computational time to simulate the pure blood flow. As a result, the analysis of
computational time and the accelerating techniques discussed in Chapter 3 are
also applicable here. For the purpose of real-time refresh rate, we consider using
relatively coarse mesh to reduce the size of the linear systems to be solved, and
using large time steps to lessen the iterations necessary to simulate one second.
As in other applications where real-time computation is sought, the objective
is then to reach the best trade-off between accuracy and computational time.
From the results of Section 3.5, we can see that the error induced by a lower
resolution of the mesh and a large time step is limited and acceptable for the
simulation of coil embolization. It is possible to achieve real-time simulation
when relying on relatively coarse meshes (i.e., meshes with less than 8,000 ele-
ments). But this is not always sufficient for three-dimensional simulation when
high accuracy is needed.

In order to achieve interactivity in three-dimensional simulation, we set up
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Figure 4.2: Partition of the aneurysm volume. A transitory stripe (in green) of 1mm is defined
between the porous region (in red) and the pure fluid region (in blue).

a database of velocity filed for one cardiac period as we assume the simulation
is performed over a series of identical cardiac cycles. Periodically time-varying
boundary conditions are set for a duration covering a complete cardiac cycle
(usually one cardiac cycle lasts about 1s), and the velocity field is computed and
stored for multiple time steps (20 to 30 steps in our application). This process
is repeated for different coil packing density in the aneurysm, and the database
of velocity fields (typically 100 sets) of the blood flow with several levels of coil
packing density and at multiple time steps covering one cardiac period is built,
and then is used in the simulation of coil motion to compute the drag force on
coils.

4.2.3 Results

We choose two patient-specific models of aneurysms with large necks, which
are of interesting clinical characteristics, because successfully placing the first
coil in such aneurysms is more tricky as the coil may be pushed out of the sac
by the blood flow. We provide the blood flow simulation results both before and
after placing the coil(s), and a simulation result of coil deployment respectively
without and with the influence of the blood flow.

We performed simulations on the cerebral aneurysm with a small sac
of volume 132.1mm3 (usually the sac volume of a cerebral aneurysm varies
from 100 to 1000mm3) and a wide neck of dimension 7.0mm. The typical
Guglielmi detachable coils (GDCs) used for embolization of cerebral aneurysms
are GDC18 (0.385mm), GDC18-soft (0.346mm), GDC10 (0.254mm) and GDC10-
soft (0.244mm). The mean velocity inside the aneurysm sac is about 50mm/s,
and the corresponding local Reynolds number is around 4. It can be derived
that the drag factor CD is between 2 and 4 both from the experimental and the-
oretical study on the flow past a cylinder (see [Tritton (1959)] for example), and
in our simulation, we use the value CD = 2.2. A transitory strip of 1mm is de-
fined between the coil-filled and the coil-free sub-domain (Figure 4.2). The coil
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(a) two sections (b)'= 100% (c)'= 90% (d)'= 75%

Figure 4.3: Coil embolization of a small aneurysm. The velocity magnitude on two sections
(displayed in (a)) (b) before the embolization, (c) after the first coil deployed, and (d) after the
final coil deployed.

(a)'= 100% (b)'= 83.2%

Figure 4.4: Coil embolization of a large aneurysm. The contour of velocity magnitude (a) with
no coil, (b) with 16.8% volume filled with coils.

of length between 40 to 300mm can be chosen. From the clinical experience,
the final coil packing density is around 25% (i.e., the porosity ' is around 75%).
In Figure 4.3, we show the blood flow without coils, with 10% and 25% volume
filled with coil(s) of type GDC10, which are approximately the cases after the
first and the final coil deployed respectively. The velocity magnitude contours
are compared on two sections, crossing the neck and the sac respectively. From
the comparison on the neck section, we can see that every incremental increase
in coil packing density is accompanied by a decrease in cross-neck flow rate. Ad-
ditionally on the sac section, after inserting the first coil, the velocity magnitude
over the whole sac region has been reduced, which creates a favorable hemody-
namic environment for the deployment of the following coils.

The simulation is also performed on another aneurysm with a large sac of
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(a) (b) (c)

(d) (e) (f )

Figure 4.5: Simulation of coil embolization: (a) The catheter (black) reaches at the aneurysm
neck through vessels. (b)-(f) The first coil (silver) is delivered by the catheter and inserted into
the aneurysm. The colorful volume displays the periodically varying velocity field.

volume 897.6mm3 and a wide neck of dimension 8.2mm. Figure 4.4 shows the
velocity magnitude contours before and after placement of a GDC18 of length
30mm (' = 83.2%). Our results are in accordance with recent studies based on
in vitro experiments and on CFD simulations (see [Kakalis et al. (2008)] for in-
stance). Such aneurysms are difficult to treat, as the velocity in the large sac is
much higher than small ones, and the coil might be pushed out of the wide neck
by the blood flow during deployment.

Figure 4.5 displays the simulated process of placing the first coil into the
small aneurysm. After the catheter is advanced in the vascular network to reach
the position of the aneurysm, the coil is delivered through the catheter and in-
serted into the aneurysm. The contact among the catheter, the coil and the ves-
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(a) without blood flow (b) with blood flow

Figure 4.6: The influence the blood flow on coil deployment: Simulation of coil deployment (a)
without and (b) with the influence of blood flow.

sel wall, as well as the interaction with the blood flow are all included in this
simulation. Figure 4.6 presents the simulation of coil deployment on the large
aneurysm without and with the influence of the blood flow. The difference be-
tween the two cases is quite obvious, and suggests that the impact of the blood
flow on the coil cannot be ignored during the embolization procedure, especially
when placing the first coil into an aneurysm with large neck. While the simula-
tion without flow is unrealistic, the supplement of blood flow influence provides
a simulation and overall behavior much closer to what takes place in an actual
procedure (e.g., if the diameter of circular memory is too small compared to the
aneurysm size, it gets pushed out of the aneurysm by the flow). By combining
patient-specific aneurysm geometry with accurate coil and flow models, we be-
lieve such coupled simulation has the potential to become accurate enough to
support medical planning applications.

4.3 Blood-Vessel Interaction

In this section, we explore the complex problem of the development of cerebral
aneurysms with an emphasis on the interaction between arterial flow and soft
tissue deformations. To simulate the interaction in this physiological process,
the method is based on three models, all of which must be compatible with fast
computation requirements. We provide overview of the method (Section 4.3.1)
and then describe our choices of these models and our motivations. Firstly,
blood pressure in the vascular structures around the diseased vessel should be
derived from the blood flow simulation. We rely on the DEC method to simu-
late the flow and then compute the pressure along the interface between fluid
and structure (Section 4.3.2). Secondly, a constitutive model needs to be chosen
to describe soft tissue deformation. We also take into account the surrounding
tissues (such as brain tissues and other anatomical structures), not only the arte-
rial wall, in the computation of the interaction (Section 4.3.3). Thirdly, a method
for computing the long-term effect of blood pressure onto the arterial wall is re-
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Segmentation Aneurysm Removal Meshing

Figure 4.7: Mesh acquisition process. The medical image is segmented, then the existing
aneurysm is manually removed, and meshes are generated using CGAL library.

quired. In our method, the very different time scales that exist between the flow
evolution and soft tissue deformation process are handled using creep formula-
tion (Section 4.3.4). Our preliminary results based on patient-specific data sets
show a good correlation between our simulations and the actual data. They also
highlight the relationship between the shape of aneurysm and the heterogeneity
in the brain tissues surrounding the aneurysm (Section 4.3.5).

4.3.1 Overview of the Method

Our approach focuses on the coupling between fluid simulation and soft tis-
sue deformation that leads to the occurrence of aneurysm in a damaged vessel.
However, it is a complex, computationally expensive problem when including
flow computation and soft tissue deformation in a single simulation using FSI
methods, and it would typically fail to provide results in a reasonable time for
clinical use. We choose an alternative strategy, based on the concepts of inter-
leaved simulation and creep modeling. Interleaved simulation was proposed by
Baraff and Witkin to solve a coupled systems successively assuming the coupling
constraints were constant over the resolution step [Baraff and Witkin (1997)]. To
simulate the influence of blood flow onto aneurysm and surrounding soft tis-
sues, we also need to model the long term exposure of soft tissues to the pres-
sure exerted by the fluid. This is achieved by using a creep model for blood pres-
sure. Starting from a segmented vascular network, the aneurysm is manually
removed (Figure 4.7), while the remaining vessels are supposed to define the re-
gion around the diseased vessel before vessel expanding to form an aneurysm,
and serve as an input to generate a triangulated mesh using the CGAL library
[CGAL].

Figure 4.8 illustrates the two stages in the interleaved iteration of our method.
Firstly, the blood flow simulation is performed on the current mesh using
boundary conditions defined by the vessel geometry and time-averaged veloc-
ities found in the literature [Marshall et al. (2004)]. The simulation runs for a
certain number of time steps in order to reach a stable flow (to simplify the
problem, we ignore the pulsation of blood pressure and simulate the flow based
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Fluid Simulation

Soft Tissue Simulation

Pressure, Wall Shear Stress

New Fluid Domain

Interleaved Simulation Final Mesh

t = 5s t = 10 days

Initial Mesh

Figure 4.8: Overview of the approach. Starting from an initial mesh of the vessel, the simulations
of blood flow and deforming soft tissues are performed successively for a predefined number of
iterations, thus leading to the final shape of the aneurysm.

on static time-averaged boundary conditions), from which the resulting blood
pressure is derived (time scale of this simulation ranges from 1 to 5s). During
this stage, the vessel wall is supposed to be rigid, since little plastic deformation
(the elastic deformation due to the pulsation is neglected) takes place in such
a short period. Secondly, the external forces applied on the vessel and emerg-
ing aneurysm boundaries are computed from blood pressure on the vessel wall,
and extrapolated in time (over a couple of weeks). Exposed to the forces caused
by blood pressure, the soft tissues start to deform until an equilibrium state is
reached (time scale ranges from 5 to 10 days). During this stage, blood pressure
is considered as constant, since the deformation of vessel is small, and has lim-
ited influence onto the flow. Once large deformation takes place, the deformed
vessel defines a new fluid domain. The blood flow simulation and the soft tis-
sue simulation are performed repeatedly in this interleaved manner for several
iterations, thus leading to the development of aneurysm.

4.3.2 Blood Pressure Computation

Usually the absolute pressure value does not mean anything, while the pres-
sure difference plays an important role. Therefore, we explain how we use the
DEC method to compute the pressure gradient along the interface, which is re-
quired to simulate the interaction with soft tissues. With the assumption of no-
slip boundary conditions (v = 0 on the vessel wall), and after the flow reaches a
stable status (@v/@t = 0), the pressure gradient on the boundary can be simply
derived from the Navier-Stokes Equation (Equation 2.1).

rp =µ¢v.
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The discrete pressure gradient is defined as dual 1-form GP , and the flux U is
divergence-free (dU = 0), so we have

GP =µ?¢U =?d ?°1 d T ?U .

In two dimensions, the gradient can be transferred from dual edge to the cor-
responding primal edge as ?°1

1 GP , with the direction of the dual edge (perpen-
dicular to the primal edge). Then we compute the pressure gradient on each
boundary vertex by averaging the pressure gradient on its incident edges. In
three dimensions, the pressure gradient can be similarly computed.

4.3.3 Brain and Vessel Tissues Modeling

In our approach, brain tissues and vessels are considered as a single but hetero-
geneous domain. This is mainly motivated by the lack of information regard-
ing the interaction (in particular the friction) at the interface between the exter-
nal vessel layer and the surrounding tissues. Consequently we assume a non-
slip condition at the interface, and we rely on a unique mesh of the soft tissue
domain. To simulate the deformation of the soft tissues while aiming at com-
putationally efficiency, we developed a corotational FEM formulation [Felippa
(2000)] based on triangular elements, with non-homogeneous material proper-
ties. Typically, three different sub-domains are considered: arterial wall, brain
tissues and surrounding anatomical structures of different stiffness than brain
tissues (e.g., other vessels, bones).

4.3.4 Creep Modeling

As the occurrence of aneurysm is usually a process lasting for months or years,
we assumed that transient or small oscillatory motion of vessel wall due to the
pulsatile nature of blood flow can be neglected. On the other hand, we con-
sider the influence of neighboring tissues, which contain not only arterial wall
but also brain tissues and other structures present in the neighborhood of the
emerging aneurysm. These structures are therefore included in the soft tissue
deformation model. To compute the long-term effect of blood pressure, exper-
imental approaches such as proposed in [Lakes and Vanderby (1999)] are not
applicable since experimental data on aneurysms in vivo is very difficult to ac-
quire. Alternatively, we propose to a computational approach derived from clas-
sical three-step creep models [Hadid et al. (2002)]. However, we only consider
the secondary creep (permanent creep that leads to material dilation), governed
by the equations as follows:

≤̇= A(
æ°æ0

E
)n ,

where ≤̇ is the creep strain rate, E is the Young modulus of material, æ0 is the
initial stress, æ is the applied stress, A and n are constants dependent on the
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Figure 4.9: Simulation of aneurysm growth on two patient data sets. The rightmost images are
extracted from patient data, other images are from our simulation. The color scale represents
fluid velocities and curves represent streamlines.

material. Solving this first-order equation leads to an expression of the strain as
a function of time and the applied stress. As we use the principle of interleaved
simulation, we consider that the applied stress is constant during the soft tissue
deformation, thus the creep strain linearly scales with time and highly depends
on E .

4.3.5 Results

To assess our method, we perform the simulations using two different patient
data sets. In Figure 4.9, the rightmost images are extracted from real patient
data. Then the aneurysms are manually removed and meshes of about 11K tri-
angles are generated as shown in the leftmost images, where the iterations (each
consisting of flow simulation and soft tissue deformation) starts. A time of 10
days is used in the creep model. During this period, simulation of aneurysm
growth is based on a constant pressure field. The various material parameters
were obtained from the literature (arterial wall stiffness: E = 2MPa, ∫ = 0.45;
brain tissues E = 5kPa, ∫= 0.35). As aneurysm develops, the volume of the fluid
domain increases. Therefore it is necessary to remesh the domain after each iter-
ation. The second image of each row displays the status during the development
of aneurysm, while the third image is the final status (after 30 iterations) where
the simulated aneurysm has similar shape as the real one.

On an Intel i7 3.33G H z processor, each iteration takes about 30 seconds to
compute, and the remeshing also takes about 30 seconds, thus a total time of 30
minutes is needed to simulate the equivalent actual time of 300 days. Although
these results are obtained from two-dimensional simulations, the similarity be-
tween simulated and real profiles shows that our method is promising.
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4.4 Discussion

Simulation of blood flow and its interaction with therapeutic devices (e.g.,
catheters, coils) or surrounding soft tissues (e.g., vessels, brain tissues) is a chal-
lenging problem, as it requires not only to faithfully represent the real physical
processes, but also to perform in real time or at interactive rate. Before the two
simulation methods described in this chapter can go into clinical service, it is
necessary to make further efforts to improve the reality of the simulation.

Using our pre-computed strategy, the blood and coil motion can be simu-
lated in real time. However, the simulated results should be further validated
for the behaviors of both blood flow and coil within aneurysm during and after
the procedure of coil embolization. The comparison between simulated results
and in vivo data would be difficult, because current imaging techniques are not
competent to provide images with a high resolution either in space or in time,
and some of them can provide only two-dimensional data. Additionally, it is
also not practicable to expose patients to the radiation over a long time due to
safety reason. Yet, the real flow data obtained from the noisy images in a coarse
time/space resolution provides interesting insights. These values can be regular-
ized by the mathematical and CFD models. The combination of noisy real flow
and simulated flow will provide more reliable hemodynamic characteristics and
a more feasible operation to get three-dimensional flow with higher space/time
resolution. Furthermore, the regularized real flow data is useful to set bound-
ary conditions for the simulation. We set uniform boundary conditions in our
simulation for now, which may have an impact on the reality of simulated re-
sults, especially when the inlet and outlet vessels are too short to obtain a fully-
developed flow profile near the aneurysm.

In the simulation of aneurysm growth, the arterial wall is simply described as
a linear elastic model, which is not sufficient to represent the complex motion
and deformation. When large deformation takes place, remeshing of both the
fluid region and the tissue region is required, but the latter one is ignored in our
current method. In addition to geometry changes, the physical and physiologi-
cal properties of the arterial wall are also changing and leading to the final stable
configuration. As a result, we need more profound understanding of this physi-
ological process to generate an advanced model. Moreover, the simulation from
two dimensions to three dimensions and the validation should be undertaken.

In the future, we will aim at including multiple interactions in a single frame-
work. The artery or aneurysm pulsation due to the pulsatile blood flow was ob-
served over one cardiac cycle in some studies [Schwartz et al. (2009)] [Valencia
et al. (2009)]. As a result, the simulation of the interactions among blood, surgical
device, and vessels will provide valuable information for assisting physicians in
planning and evaluating surgical procedures of repairing the vascular diseases.
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More applications in medical simulation are in our consideration. In the
simulation of blood-coil interaction, we only provided the results during coil
embolization. Regarding the long term results, clinical data reported that
aneurysm recanalization and coil compaction after coil embolization of in-
tracranial aneurysms had occurred in as many as 40% cases [Raymond et al.
(2003)], and revealed that the neck and sac dimension was crucial for the long-
term success of coil embolization [Hope et al. (1999)]. But the patient-specific
prediction of the long-term outcome on aneurysm occlusion is not available un-
til today, due to the complex interactions of coils with the local blood flow and
surrounding tissues. Thus it is promising to model the interaction among blood
flow, coils and surrounding tissues and to predict the changes in long term us-
ing patient-specific data. Besides, the simulation of fluids other than blood flow,
such as the air in the respiratory system, is also interesting for us.
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CONCLUSION AND PERSPECTIVES

5.1 Conclusion

The objective of my work during this PhD study was to model the blood flow for
accurate and real-time simulation in the context of coil embolization of cere-
bral aneurysms. Most of the previous works in this field relied on established
physics-based models in order to obtain accurate hemodynamic characteris-
tics around the aneurysm, and the computational times were generally several
hours. On the other hand, many computationally efficient approaches for fluid
simulation were proposed in the field of computer graphics, aiming at visually
convincing simulations, but not physical accuracy. Generally speaking, these
two significant pursuits, accuracy and computational efficiency, are often con-
tradictory. In this work, we strived to achieve real-time simulation of blood flow
on patient-specific model, which can lead to results accurate enough for medi-
cal planning applications.

First of all, we introduced the DEC method, initially applied in the field of
computer graphics, into hemodynamics simulation for the purpose of fast com-
putation. However, a much deeper analysis of this new method applied in the
blood flow simulation was performed through various experiments both in two
and three dimensions, and several solutions were proposed to overcome the
limitations of the method. We validated the DEC method by comparing with a
widely used commercial software, and the comparative results not only showed
the similarity of the results, but also revealed that the numerical error introduced
by using a coarser mesh was limited, thus an appropriate mesh resolution, al-
lowing fast computation while minimizing the impact on the accuracy, was sug-
gested for medical simulation. Furthermore, we also examined the stability of
the DEC method, and demonstrated that more advanced backtracking schemes
improved the numerical stability of the method and allowed larger time steps,
which, in turn, contributed to real-time computation. More importantly, we
identified the impact of mesh quality on the convergence and accuracy, which
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had been ignored or underestimated in previous works because of their differ-
ent objectives. And we provided several solutions to generate higher-quality
meshes. Due to these improvements, our method was significantly faster than
previous approaches for blood flow simulation around aneurysm while provid-
ing similar results to that of the reference software.

Secondly, we extended the fast simulation of pure blood flow to blood-coil
interaction during aneurysm embolization. Porous media model was used to
describe the presence of coils in the aneurysm, and was modeled by adding ex-
tra terms to the Navier-Stokes equations to consider the impact of the coil onto
the blood flow. Such modification of the equation required little additional com-
putation to be handled. On the other hand, we also modeled the reciprocal ef-
fect, i.e., the impact of the flow onto the coil. This effect had been ignored by
previous works, but our simulated results demonstrated that the bilateral influ-
ence was essential in the context of planning the coil embolization training and
planning. More importantly, the results showed that our approach permitted
real-time simulation of the interaction between coils and blood flow during coil
embolization, due to the fast computation of both fluid and structure, as well as
the loosely coupled strategy we proposed.

Finally, we targeted simulating the process leading to the development of
aneurysms. Since the overall process was extremely complex, and involved nu-
merous factors, we only considered a small but important part of the process,
starting from part of the vessel wall being degenerated. We proposed a computa-
tionally efficient approach for solving both the fluid and the soft tissue deforma-
tion problems. Moreover, we also considered the influence of other anatomical
structures surrounding the vessels in the growth of aneurysm. By using our ap-
proach in two dimensions, we could simulate in a few minutes a process which
took normally hundreds of days. This eventually permitted to study the influ-
ence of different mechanical factors, and to evaluate the size of an aneurysm
after a certain period of time. Our preliminary results were very encouraging, as
they showed a good correlation with existing patient data.

5.2 Perpectives

5.2.1 Accuracy and Stability

The DEC method, based on unstructured meshes, is in favor of describing irreg-
ular boundary of patient-specific anatomical geometries. Generally speaking,
when a mesh of simplicial elements (triangles or tetrahedra) is used to approxi-
mate a continuous domain, the accuracy of numerical solution depends on the
sizes and shapes of the elements. Moreover, the stability of the DEC method
also depends on mesh geometry, as the other numerical methods (for instance,
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the conditioning of the stiffness matrices in FEM are related to mesh geome-
try). However, the impact of mesh quality had not been studied for the DEC
method in previous works; even a quantitive definition of mesh quality has not
been mentioned. We are now focusing on investigating the connection between
mesh quality and the accuracy, the convergence of the DEC method. We propose
to quantitively measure mesh quality by the error of numerical solution com-
pared to analytical solution of a specified equation in terms of accuracy, and the
condition number of the Laplace operators in terms of convergence. Further-
more, our objective is to further improve mesh quality with the purpose of lower
errors and higher stability. Hodge-Optimized Triangulation (HOT) [Mullen et al.
(2011)] is a good starting point for improving mesh quality. Using metrics which
are specific to the DEC method, we have seen improvements in the results in the
two-dimensional case. In particular, it results in increase of the dual edge length,
which has a positive outcome on the numerical accuracy of the method. Further
investigation should be made, in particular extending the optimization method
to the three-dimensional case, where important improvements can be expected.

On the other hand, modification of the DEC method could be an alterna-
tive solution to the problems caused by low-quality meshes. For example, the
immersed boundary method (IBM) and the DEC method can be combined, so
that the absolutely high-quality regular mesh containing the fluid region but not
conforming to the exact boundary can be used. In addition, the interpolation
error and the discretization error are required to be further studied and reduced.
As for the simulation of aneurysm growth, more advanced and complex model
of the vascular wall and the remeshing process are required to reach higher fi-
delity. Finally, the combination of simulated results and real data obtained from
imaging techniques is an interesting direction in our future work, as it not only
provides more accurate results, but also is a more feasible approach to the acqui-
sition of three-dimensional hemodynamic data in real time compared to medi-
cal imaging methods.

5.2.2 Boundary Conditions

We payed attention to the importance of patient-specific anatomical geometry
in simulating the blood flow, but used simplified boundary conditions for the in-
flow and outflow. We set a sinusoidally pulsatile flux at inlet, and the mean and
maximum values were based on the measurements from MRI [Marshall et al.
(2004)]. The total flux at the outlet(s) was set to be equal to the influx. If there
were more than one outlet, the distribution of the blood flow was estimated by
Bernoulli’s principle in the assumption that the pressure is identical at every out-
let. However, we acknowledge that these boundary conditions are not either re-
alistic or patient-specific. A better strategy is to use a multi-dimensional method
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by combining one-dimensional model of the global vascular systems (which
has already been established in our framework SOFA1) and three-dimensional
model of the local vessels in interest. So upstream and downstream of the local
vessels can be computed in one dimension and provide boundary conditions for
three-dimensional simulation [Vignon and Taylor (2004)]. Yet, blood flow is not
always periodic in time, more advanced models can be applied, such as [Vignon-
Clementel et al. (2010)].

In addition, other techniques could also help to obtain more realistic bound-
ary conditions. Although the medical images obtained by current techniques
(e.g., phase contrast magnetic resonance imaging and Doppler ultrasound) are
noisy and cannot provide the velocity data in high space or time resolution, a
better velocity profile can be fitted by combining CFD simulated results. Be-
sides, we could also benefit from the state-of-the-art medical instruments to ob-
tain patient-specific data, such as the ultra-miniature pressure catheter2, which
is a so small sensor on the catheter that it does not significantly change the blood
flow.

5.2.3 Computational Efficiency

A prominent advantage of the DEC method is the computational efficiency. Not
only because large time steps can be used due to the backward advection strat-
egy, but also the accelerating techniques we employed reduce the computational
time for each iteration. Yet, real-time simulation has not been achieved when
performed on a mesh consisting of over 8,000 elements. We still want to more
deeply investigate various computational strategies to obtain real-time compu-
tation by using more advanced numerical schemes, such as parallel implemen-
tation on GPU of the backtracking step, optimization of linear solvers by the pre-
conditioning technique coupled with a GPU-based conjugate gradient imple-
mentation [Courtecuisse et al. (2011)]. Additionally, more advanced techniques
to generate a multi-resolution mesh, such as adaptive refinement [Prakash and
Ethier (2001)], could also be a solution, as it maximizes the result accuracy while
minimizing the computational effort.

5.2.4 Validation

We acknowledge that further validation is required, both on the DEC method
and the medical simulation. The three-dimensional simulation of aneurysm
growth and the validation should be undertaken. Working on a comparison be-
tween the simulated results and the in vivo data would be difficult yet provide
interesting insights. In addition, an advanced three-dimensional visualization

1
http://www.sofa-framework.org/

2
http://scisense.cn/bpcatheter.html

http://www.sofa-framework.org/
http://scisense.cn/bpcatheter.html
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(e.g., [Gasteiger et al. (2010)] and [Gasteiger et al. (2011)]) of flow data could also
be interesting and helpful in the clinical context.

5.2.5 Other Applications

In a long term perspective, we aim at more promising applications of the DEC
method in medical simulation. First of all, it is necessary to consider multiple
interactions in a single framework, such as the interactions among blood, surgi-
cal devices, and blood vessels, in order to improve the realism of the simulation.
Secondly, the patient-specific prediction of the long-term aneurysm occlusion
outcome after coil embolization is very helpful for surgery planning. Finally, the
simulation of fluids other than blood flow, such as the air in the respiratory sys-
tem, could also be investigated.
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