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a b s t r a c t

Over the last decade, remarkable progress has been made in the field of endovascular treatment of

aneurysms. Technological advances continue to make it possible for a growing number of patients with

cerebral aneurysms to be treated with a variety of endovascular strategies, essentially using detachable

platinum coils. Yet, coil embolization remains a very complex medical procedure for which careful

planning must be combined with advanced technical skills in order to be successful. In this paper, we

describe a complete process for patient-specific simulations of coil embolization, from mesh generation

with medical datasets to computation of coil-flow bilateral influence. We propose a new method for

simulating the complex blood flow patterns that take place within the aneurysm, and for simulating the

interaction of coils with this flow. This interaction is twofold, first involving the impact of the flow on

the coil during the initial stages of its deployment, and second concerning the decrease of blood

velocity within the aneurysm, as a consequence of coil packing. We also propose an approach to achieve

real-time computation of coil-flow bilateral influence, necessary for interactive simulation. This in

turns allows to dynamically plan coil embolization for two key steps of the procedure: choice and

placement of the first coils, and assessment of the number of coils necessary to reduce aneurysmal

blood velocity and wall pressure. Finally, we provide the blood flow simulation results on several

aneurysms with interesting clinical characteristics both in 2D and 3D, as well as comparisons with a

commercial package for validation. The coil embolization procedure is simulated within an aneurysm,

and pre- and post-operative status is reported.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Detachable coil embolization is a recent interventional tech-
nique for treating aneurysms and other blood vessel malforma-
tions in the brain and other parts of the body. The procedure
(Fig. 1) uses the vascular network to reach the diseased vessel,
starting with the insertion of a catheter (a long, thin and flexible
tube) into the femoral artery. This catheter is then advanced
through the arterial system until the aneurysm location is
reached. Once in position, the physician places several coils
through a micro-catheter into the aneurysm. The presence of
coils reduces blood flow and wall pressure within the aneurysm,
thus creating a favorable hemodynamic environment for throm-
bus embolization. The formation of a blood clot around the coil
blocks off the aneurysm, thus considerably reducing the risk of

rupture. Although coil embolization is less invasive than open
surgery, such procedures are very difficult to perform and require
careful planning and a long experience to minimize the risks for
the patient. Yet, even in the case of a successfully performed
procedure, the choice of the coil (shape, length, diameter) plays a
key role in the long term success of the procedure.

In this context, the development of training and planning
systems can help decrease the risk of errors, in particular during
the learning curve of the physician, or when dealing with
complex, rare pathologies [12]. The computer aided system,
allowing interventional radiologists to select different coils and
test their behavior in a patient-specific environment, requires to
not only model the behavior of a coil in a patient-specific model
of the aneurysm, but also to compute the interaction between a
coil and the complex flow occurring within the aneurysm.

1.1. Previous work

Blood flow dynamics is starting to play an increasingly
important role in the assessment of vascular pathologies, as well
as in the evaluation of pre- and post-operative status. While
significant progress has been made in modeling the anatomy of
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vascular structures [25] or the mechanical behavior of medical
devices [7], there has been little work in the area of blood flow
simulation near aneurysms. Yet, blood flow simulation plays a key
role in interventional radiology procedures such as coil deploy-
ment. A few studies have focused on aneurysm-related haemo-
dynamics before and after endovascular coil embolization.
Groden et al. [13] constructed a simple geometrical model to
approximate an actual aneurysm, and evaluated the impact of
different levels of coil packing on the flow and wall pressure by
solving Navier–Stokes equations. Castro et al. [4] investigated the
effects of unequal physiologic flow conditions on the hemody-
namics of anterior communicating artery aneurysms. Kakalis
et al. [15] employed patient-specific data to get more realistic
flow patterns, and modeled the coiled part, from a static point of
view, as a porous medium. All of these studies assumed the blood
to be a Newtonian fluid with constant viscosity. Bernsdorf and
Wang [2] used a Lattice Boltzmann solver with a Carreua-Yasuda
model to capture non-Newtonian rheology of blood flow in
cerebral aneurysms. Cebral et al. [5] reported a sensitivity
analysis of hemodynamic characteristics with respect to varia-
tions of several variables, such as inflow, flow division, viscosity.
As these studies aimed at accurate Computational Fluid Dynamics
(CFD) simulation, they rely on commercial software, and the
computation times (dozens of hours in general) are incompatible
with interactive simulation or even clinical practice. In order to
reach fast computation in this application, another fast alternative
is to combine patient-specific measurement data and CFD [18],
which requires to set a large database of pre-computed flow fields
for a given anatomical location. In this paper, we aim at a
planning system for endovascular surgeries, which require much
faster computation of the blood flow, as well as the interaction
between the blood and the device.

Generally speaking, accuracy and efficiency are two significant
pursuits in numerical calculation, but unfortunately always con-
tradictory. Lots of computationally efficient techniques have been
developed in the field of Computer Graphics, which essentially
required the simulations to be visually convincing, but not
physically accurate. The stable fluids approach [22] was a sig-
nificant milestone, as it brought in fluid advection and the
Helmholtz–Hodge decomposition to ensure the mass conserva-
tion law. However, this approach relies on a discretization of the
Eulerian space by a regular grid, thus making it inappropriate for
simulations requiring irregular boundaries, as it is the case in
medical applications. Recently, a vortex method for incompres-
sible fluid simulation, the Discrete Exterior Calculus (DEC) was

introduced [10]. It presents several benefits in terms of stability
and computational efficiency. This technique handles vortices
through a backtracking step which enforces the current circula-
tion to be identical to the one at the previous time step. This
makes the computation circulation-preserving at a discrete level,
i.e., the circulation around any loop remains constant as the loop
is advected by the fluid flow, thus complying with Kelvin’s
theorem. This enforces computational stability, making it possible
to use larger time steps, which result in faster simulations.
However, the context in which this method has been used
essentially required the simulations to be visually convincing. In
this paper, we aim at improving and assessing the accuracy of the
method, and we illustrate this though the simulation of a complex
phenomenon that requires both accurate results and minimal
computation times.

Vorticity plays an important role in fluid dynamics analysis, as
in many cases it is beneficial to describe flow dynamics in terms
of the evolution of the vorticity field. This is particularly true in
the case of flow in aneurysms, where the bulge along the artery
creates vortices which impact both the development of the
aneurysm and the embolization procedure. Vortex methods for
incompressible fluid simulation use vorticity-based formulations
of the Navier–Stokes equations, and translate the idea that
vorticity elements convect with the fluid velocity. Most of the
existing works rely on well-known numerical methods to deal
with the vorticity equation, for instance the finite volume method
(FVM) or finite difference method (FDM) (see Refs. [19,16] for
instance). Many approaches have been proposed on the basis of
the FVM or FDM method, but their main drawback in our case
remains their computation times, which are often in the order of
hours while we aim at a few seconds.

In the field of computer animation, various models have been
put forth to study the interaction between fluids and solids. For
instance, Carlson et al. [3] solved this problem by considering the
rigid objects as if they were made of fluid, and the rigidity was
maintained by constraining the velocity field in the object region.
Robinson-Mosher et al. [20] proposed a two-way solid/fluid
coupling method to compute mutual effects separately at each
time step. The effect of the solid on the fluid is modeled by taking
solid velocity as a boundary condition, while the effect of the fluid
on the solid is determined by integrating the fluid pressure along
the solid boundary. Considering the dimension of coils and their
nest-shaped distribution in an aneurysm, a different computa-
tional strategy is required in our case. Finally, previous work in
the area of real-time simulation of interventional radiology

Fig. 1. The endovascular treatment of cerebral aneurysm: insert a catheter into the femoral artery and use the vascular network to reach the diseased vessel,

place several coils into the aneurysm through the catheter, and withdraw the catheter.
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procedures has mainly focused on training rather planning
(besides the work of Ref. [7]) and has been limited to the
simulation of flexible devices (see Ref. [1], or Ref. [9] for instance).

In this paper, we present a novel technique for accurately
computing (in real-time or near real-time) the flow of blood
within an aneurysm, as well as the interaction between blood and
coils. We rely on the Discrete Exterior Calculus method to achieve
minimal computation times, but we introduce several improve-
ments as well as a much deeper analysis of the results, in the
context of a very different application than initially aimed by the
DEC method. First we add extra terms to the Navier–Stokes
equation in order to describe the interaction between blood and
the deformable solid that corresponds to the coil (Section 2.2). We
also improve the numerical stability of the method by using a
more advanced interpolation scheme, and more importantly by
optimizing the mesh quality used in the computation (Sec-
tion 2.1). A detailed analysis of the results and comparison with
a reference software is also performed to understand the accuracy
of the method and the link between accuracy and mesh resolution
(Section 3). Our results show that our approach permits to
describe the influence between coils and blood flow during coil
embolization, and that an optimal trade-off between accuracy and
computation time can be obtained (Section 4.2).

2. Modeling interactions between blood and coils

In this section, we first present the process used to extract and
mesh the aneurysm and adjacent vessels from patient-specific
data (Section 2.1). Then we describe the computational approach
for computing blood flow in and around an aneurysm (Sec-
tion 2.2). To model the impact of the coil onto the flow (as a
change of flow pattern and a decrease of velocity) we then
introduce the notion of porous media, where coils are described
from a statistical point of view, translating the idea that, after
deployment, coils are randomly distributed in the aneurysm.
We also show how the reverse effect, i.e., the drag force applied
onto the coil due to blood velocity, can be computed (Section 2.3).
This is particularly important during the first stage of coil
deployment.

2.1. Mesh generation and boundary conditions

Fig. 2 presents the patient-specific mesh generation process.
We start from a volumetric medical dataset where the brain

vessels are visible (such as CTA or 3D rotational angiography),
which is then segmented. From the segmented image, we recon-
struct a surface model. In our case, we rely on a combination of
techniques such as Marching Cubes algorithm followed by a small
deformation of the resulting mesh (relaxation) to smooth the
surface while adjusting the surface points location using the
original image data (and its gradient). As we are only interested
in creating a mesh for a region close to the aneurysm (and not for
the full vascular network) sometimes only an iso-surface from the
measured raw density is sufficient to obtain a surface mesh. Yet it
highly depends on the quality of the data, and in some instances
more robust algorithms can be necessary, see Ref. [14] for
example.

From this surface model, after a plane or a sphere is manually
positioned to define and cut the inlet and outlet vessels, a
tetrahedral mesh is created. To obtain accurate results, numerical
simulations require a high-quality mesh, as measured in our case
by the percentage of well-centered elements. While this is
relatively easy to obtain in 2D, it is a more challenging
problem in 3D.

In this work, we used an interleaved optimization algorithm
based on Delaunay refinement and Lloyd optimization [24], as
implemented by the CGAL library [6]. Each refinement step acts
on the size of the elements, while each optimization step acts on
the shape of the elements. With this method, we can also define a
size field according to our requirements, such as smaller elements
near the boundary. We also control the fidelity of the generated
mesh to the previously obtained surface, by specifying the
distance tolerance between the two. After several iterations, we
obtain 2D triangular meshes with over 98% well-centered ele-
ments, and 3D tetrahedral meshes with over 95% well-centered
elements.

To compute the blood motion, the flux through all the
boundaries must be formulated. In this paper, we assume the
vessel walls to be rigid, thus no-slip and no-penetration condi-
tions are applied, and flux and velocity are set zero at the vessel
walls. At the inlet and outlets, we have different conditions for
two experiments, i.e., a sinusoidally pulsatile flow for the simula-
tion of coil embolization, and non-varying flow (the mean value of
the pulsatile flow) for the validation against another numerical
solution. For the inlet, we choose these values based on the
measurements from magnetic resonance imaging [17]. As the
blood is assumed to be incompressible, the total flux at
the outlet(s) should be equal to inflow. If there are more than
one outlet, the distribution of the blood flow is calculated by

Fig. 2. Mesh generation: (left) patient-specific data, (middle) reconstructed vessels surface model, (right) tetrahedral mesh generated in the region of the aneurysm.
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Bernoulli’s principle in the assumption that the pressure is
identical at two outlets.

2.2. Blood motion

2.2.1. Porous media model

We divide the fluid domain D (2D or 3D) into 3 sub-domains, a
coil-free, a coil-filled sub-domain and a transitory part between
them, which allows the porous parameters variate smoothly
across the first two sub-domains. However, blood motion in all
sub-domains is described uniformly by a Navier–Stokes equation
of Brinkmann type:

rðjuÞ ¼ 0,

@ðjruÞ

@t
þrðu � rÞðjuÞ ¼jrpþmDðjuÞ�

j2m
k

u�
j3CDr

ffiffiffi

k
p ujuj ð1Þ

where u is the velocity of the fluid with density r and viscosity m, and
p is the pressure. The symbol r is the vector of spatial partial
derivatives, more precisely, r¼ ð@=@x,@=@yÞ in 2D or ð@=@x,@=@y,@=@zÞ

in 3D. We also use the notation D¼r � r. The porosity j and the
permeability k are constitutive characteristics of the porous media,
and CD is the drag factor. The porosity j describes the volume ratio of
pores to the total coil-filled sub-domain, j¼ 1�Vcoil= Van, where Vcoil

is the accumulated volume of all coils, and Van is the volume of the
aneurysm. The permeability k measures the fluid conductivity
through porous media, k¼j3=cS2, where c is the Kozeny coefficient
(for cylinders, c¼2), and S is the ratio of the surface area of all coils to
the volume of the aneurysm. The drag factor CD can be derived from
the computation of a local Reynolds number. Note that when j-1
and k-1, the last two terms, related to porous media, disappear,
therefore, (1) is the standard Navier–Stokes equation, corresponding
to coil-free region.

In order to get rid of the pressure term, we take the curl of (1).
As density and porosity remain constant in each sub-domain, we
have

@x
@t
þLux¼

m
r
Dx�

mj
rk

x�
j2CD
ffiffiffi

k
p r � b

rðjuÞ ¼ 0 x¼r � u b¼ ujuj ð2Þ

where x is the vorticity, Lie derivative Lux, equal in our case to
u � rx�x � ru, is the advection term, and b is the porous term.

2.2.2. Numerical solution

As mentioned previously, the complex shape of aneurysms
requires an unstructured grid to describe the geometry. We rely
on the DEC method to provide a numerical framework for solving
the fluid equations, by discretizing the space as a simplicial
complex, and computing its dual complex (Fig. 3). State variables
are defined as discrete forms, i.e., integral values over elements of
these two meshes, complying with conservation laws at a discrete
level, which is a key point to get accurate and stable results. Since
the mesh is static (Eulerian approach), computation efficiency is
obtained by pre-computing several vector calculus operators such
as curl and Laplace, which are defined using basic topological and
geometrical operations (see [8] or [10] for details).

Discretization: The 3D domain D is discretized as an oriented
simplicial complex, i.e., an oriented tetrahedral mesh, referred to
as primal mesh. We denote the vertex (0-simplex) set V ¼ fvig, the
edge (1-simplex) set E¼ feijg, the triangle (2-simplex) set F ¼ ffijkg,
and the tetrahedron set (3-simplex) T ¼ ffijksg (0r i,j,k,sr jV j,
where i, j, k, s are the serial numbers of vertices). Note that
the order of subscripts i, j, k, s indicates the orientation of the
simplex.

The dual mesh is constructed as follows: dual vertices corre-
spond to the circumcenters of primal tetrahedra, dual edges link
dual vertices located on neighbor tetrahedra, and dual faces are
surfaces of Voronoi cells of primal vertices, which are dual cells as
well. More generally, a dual (n–p)-cell is associated to a corre-
sponding p-simplex (p¼0, 1, 2, 3; n¼3 for 3D mesh) as depicted
in Fig. 3. As a result, in n-D space, the number of dual (n–p)-cell is
the same as that of primal p-simplex.

We construct these two meshes, primal and dual, in view of
description and transition of problem variables. Physical quanti-
ties are defined as discrete p-forms, i.e., scalars associated to p

dimension primitives (p-cells) of either the primal or dual mesh.
In fluid, velocity is described as flux, the mass of fluid passing
through each triangle (primal 2-cell) per unit time. Thus it is a
discrete 2-form U, represented as a vector of size jFj. Similarly, the
porous term b is defined as a discrete 2-form B. In continuum
fluid dynamics, vorticity measures the local angular rate of
rotation, and is defined as the circulation per unit area at a point.
Accordingly, we describe discrete vorticity X through the integral
around dual faces (dual 2-cells), as a discrete dual 2-form,
represented as a vector of size jEj.

Operators: All the vector calculus operators involved in our
computation can be derived from two types of basic operators:
the discrete differentials d and the Hodge stars %. The former, dp,

Fig. 3. The duality of primal and dual mesh: The first line shows the primal simplex, whose dual elements are below. Physical variables U, U and X, defined as discrete

forms, can be transferred by two fundamental operators d and %.
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maps p-forms to (p+1)-forms on the primal mesh, represented by
the transpose of the signed incidence matrix (an example is given
in Fig. 4), while the latter, %p, maps from primal p-forms to
dual (n–p)-forms, represented by a diagonal matrix whose ele-
ment equals to the volume ratio between the corresponding dual
and primal elements, that is, ð%0Þvv ¼ jv

%j= jvj, ð%1Þee ¼ je
%j=jej,

ð%2Þff ¼ jf
%j= jf j, ð%3Þtt ¼ jt

%j= jtj. (The superscript % is dual element
of the primal one, and the operator j � j denotes the volume of the
element.) Once we have the Hodge star operators, the variables
can transferred from primal p-cell to dual (n–p)-cell. For example,
flux Uf through the triangle f (primal 2-cell), can be transferred to
the integral value of velocity on the corresponding dual edge f %

(dual 1-cell), jf %j�ðUf =jf jÞ, i.e., ð%2Þff �Uf . Note that the element of
star operators could be negative if the circumcenter locates
outside the tetrahedron. The negative elements may create
divergence or unstability of the computation. We measure the
mesh quality by the percentage of the well-centered tetrahedra,
and always use amesh with over 90% quality. In the following
subsection we will discuss how to improve the mesh quality. The
transition between discrete forms through these fundamental
operators are illustrated in Fig. 3.

Since variables and their transitions are delicately defined, we can
easily get X from U as follows: %2 transforms U on primal faces to
%2U on dual edges, and then dt

1 makes a sum on each dual faces by
accumulating %2U on all incident dual edges, i.e., X¼ dt

1%2U, a dual
2-form. And this also explains how we build r� by the basic
operators. Following similar principles, the operators (div r�, curl
r�, Laplace D) used in Eq. (2) can be constructed from d and
%: r � ¼ d2, r � ¼ dt

1%2, D¼ dt
1%2d1þ%1d0%

�1
0 dt

0%1.
Solving fluid equations: The vorticity-based equation (2) con-

sists of three ingredients, an advection term Lux, a viscous term
Dx, and last two porous ones. Simply speaking, the advection
term describes the idea that the local spin is pushed forward

along the direction of the velocity. This is consistent with Kelvin’s
circulation theorem: the circulation around a closed curve
moving with the fluid remains constant with time [10]. In this
approach, the discrete vorticity is conserved by extending Kelvin’s
theorem to the discrete level: the circulation around the loop of
each dual face’s boundary keeps constant as the loop is advected
by fluid flow. So we run a backtracking step to find out where the
current dual face comes from, and accumulate the circulation
around the backtracked dual face, and then assign this value to
the current one. This step makes the computation circulation-
preserving at a discrete level, as well as stable, because the
maximum of the new field is never larger than that of the
previous field. For the viscous term and porous terms, linear
solutions are used, and an implicit scheme could be chosen for the
purpose of stability.

After updating the vorticity, the recovery of velocity field u
from vorticity X is needed for backtracking in the next step.
Considering X¼ dt

1%2U, flux U can be obtained directly via a
Poisson equation [10]. Here we also add boundary constraints
into the equation by the method of Lagrange multipliers. And
then we find out the unique velocity vector ut at each dual vertex
whose projection along the incident dual edges is consistent with
the flux of the corresponding primal edges. See Algorithm 1 for an
overview of the computation process.

Algorithm 1. Main steps of the fluid computation using DEC.

//Load mesh and compute the operators

C’dt
1%2

L’dt
1%2d1þ%1d0%

�1
0 dt

0%1

Lu’ LagrangeMultiplier(L)

//Time stepping h

loop
//advect vorticities

ĉ’ backtrackTetrahedronCenters(h)

v̂’ interpolateVelocity(ĉ)
for each dual face f

Xf’0

for each dual edge (i, j) on the boundary of f

Xf’Xf þ
1

2
ðv̂ iþ v̂ jÞ � ðĉ i�ĉ jÞ

//add porous terms
for each dual face f in the coil-filled sub-domain

Xf’
rk

rkþmjh Xf þ
j2CD
ffiffi

k
p h ðC� BÞf

//add viscous term

W’ linearSolver(ð%1�mLhÞW¼X) )

X’%1W
//recover flux from vorticity
t’ setVaringBoundaryConditions()

ðU j lÞ’ linearSolver(LuðU j lÞ ¼ ðX j tÞ )

U¼ d1U
//compute velocity at triangle centers and porous term at

edges
for each tetrahedron t

ut’ linearSolver(Atut ¼Ut ) // At is a project matrix of t

B’ integrate(u)
end loop

2.3. Coil motion

In the existing simulations of aneurysm embolization, the
interactive force between blood and coil was only studied for
the blood, while the reacting force on coils was ignored. In fact,

�1 �2

�3

�0

e01

e03

e02

e12

e13 e23

f031 f023

f123

f012

0-simplex {v0, v1, v2, v3}

1-simplex {e01, e02, e03, e12, e13, e23}

2-simplex {f012, f023, f031, f123}

3-simplex {t0123}

d0 v0 v1 v2 v3

e01 -1 1

e02 -1 1

e03 -1 1

e12 -1 1

e13 -1 1

e23 -1 1

d1 e01 e02 e03 e12 e13 e23

f012 1 -1 1

f023 1 -1 1

f031 -1 1 -1

f123 1 -1 1

d2 f012 f023 f031 f123

t0123 1 1 1 1

Fig. 4. Simplex sets and differential operators in the case of a single tetrahedron.
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the last term of Eq. (1) is a description of the interactive force, but
treated as an averaged quantity. When computing the reaction on
the coil, we apply its local version, which is the drag force of flow
over a cylinder:

FD ¼
1

2
CDru?ju?jA dh, ð3Þ

where u? is the velocity orthogonal to the coil, A is the cross-
sectional area of the coil, dh is the length of the coil section. The
velocity parallel to the coil is neglected, since it only produces
shear force on the coil, which is insignificant compared to the
drag force. Hence, the reacting force on the coil only depends on
local fluid velocity. The model of the coil is based on the work of
Dequidt et al. [7] where coils are modeled as a series of serially
linked beam elements. The deformation of the structure is
computed using a finite element approach which can be opti-
mized for real-time computation by taking advantage of the
structure (tri-diagonal band) of its stiffness matrix.

3. Validation

In order to assess the overall approach, we have performed a
series of validation tests for both the coil and the blood flow
models. The coil model has been validated against an actual coil,
that was scanned at different steps of its deployment. This study
was reported in [7] and showed a very good similarity between
the simulated coil behavior and the real coil deformation. The
main difference with our previous work is that we have further
improved the computation time for the coil model, in particular
using a GPU-based version of the block tri-diagonal band linear
solver. Typical computation times are less than 5 ms per time step
for a coil model with 200 nodes.

To assess blood flow computation using the DEC method, we
performed two series of comparative tests against FLUENT1 which
is one of the leading software in the field of fluid dynamics. In this
case, we mostly aim at validating the numerical accuracy of the
DEC method than the actual ability to accurately describe blood
flow patterns near the aneurysms. Such an analysis is very
complex to achieve, in particular in very small vessels such as
the ones in the brain. The first comparison consists of a 2D
simulation of blood flow on two meshes with the same geometry
but a different resolution is performed by comparing with the
results of FLUENT. Laminar flow with flux boundary conditions at
both inlet and outlet sections is considered. The viscosity of blood
is strong so that the corresponding Reynolds number is small
enough for the laminar assumption. And we pick up two inter-
esting geometries of the aneurysm, one with a large neck and the
other with a small neck. The first two columns in Fig. 5 are
the contours of velocity magnitude and streamlines computed by
the DEC method and FLUENT software respectively on the
identical mesh of 210,177 triangles (first row) and 35,688
triangles (second row), while the last image is the result by
DEC on a coarser mesh of only 19,753 triangles (first row) and
8944 triangles (second row). This comparison shows the similar-
ity between the two methods, even when we reduce the number
of mesh elements by 10 times. The streamlines show perfect
agreement for the vortex structures, including the position of the
vortex center in the aneurysm. Besides, we have also investigated
other physical variables, which are also in good agreement
between DEC and FLUENT. Although the DEC method does not
have high order accuracy, we did not find any obvious numerical
dissipation from this test case. It should be noted that the method
is more sensitive to the mesh quality than the mesh resolution, as

numerical instabilities may occur when elements of the star
operator become negative (if the circumcenter is located outside
an element). In the results presented here, all meshes have at
least 90% of well-centered elements.

We also performed a 3D comparison. The computational
domain has 32,453 tetrahedral elements, which is much coarser
if comparing with the 2D cases. As a result, we show the
comparisons of the velocity magnitude in Fig. 6. Although the
mesh is very coarse, similar flow structures are captured. In both
cases there is a low-speed region surrounded by high-speed
flows, which represents a local vortex in this section. But
obviously, we found less blood flows into the sac of the aneurysm
by the DEC method, and also a difference of kinetic energy exits
between the two approaches. In addition, we can also find the
streamlines in Fig. 7, which show the similar movement of blood.
These results show that the DEC method can also capture the
large-scale flow structure, even on a very coarse mesh. However,
small-scale differences exist between the two approaches, which
may stem from numerical dissipation, but could be reduced by
using finer meshes and higher-order interpolation methods (but
increase the computation time, which is an issue when dealing
with applications that require real-time or near real-time
computation).

When real-time simulation is required (for training, interven-
tion planning, or augmented reality), a trade-off between compu-
tation time and accuracy has to be found. The accuracy is highly
dependent on the mesh resolution. As the resolution decreases
(i.e., the average edge size increases), the kinetic energy decreases
in both DEC and FLUENT results, but less rapidly for the DEC case.
In our case, computational efficiency is more important than
small-scale details. In this context, the DEC method offers some
advantages over other methods, in particular it is less sensitive to
the mesh resolution. As mesh resolution and computation times
are related, we can run faster simulations with the DEC method.
While these results are in favor of our approach, they only rely on
comparisons between two numerical approaches. To further
prove the reliability of our results, other methods could be used
in the comparison, but ultimately, the validation should involve a
comparison with actual blood flow data. Such information can be
obtained using MRI or angiograms [23].

In order to show the effect of coil embolization, another
simulations are performed on an aneurysm of particular interest,
with a large sac of volume 8.976�10�7 m3 and a wide neck of
dimension 8.2�10�3 m. Such aneurysms are difficult to treat, as
coils might be pushed out by the blood flow during
deployment. Fig. 8 shows the velocity magnitude contours before
and after placement of coils of total length 0.3 m (j¼ 83:2%). The
decrease of velocity magnitude is obvious and in accordance with
recent results [15].

4. Real-time simulation of coil embolization

In this section, we show how the two previously described
models can be combined and used in a real-time simulation of
coil embolization. Using the method described in Section 2.2 we
show how it is possible to achieve real-time simulation when
relying on ‘‘coarse’’ meshes (i.e., meshes with less than 20,000
elements) and how a pre-computation scheme can be used when
higher accuracy of the solution is sought. Typically, real-time
computation can be achieved with a good accuracy for applica-
tions where real-time simulation is required (training system for
instance), yet interactivity is still possible in other applications,
but with a different approach described in the second part of this
section.1 FLUENT is a commercial product of ANSYS, http://ansys.com

Y. Wei et al. / Computers & Graphics 35 (2011) 422–430 427



Author's personal copy

4.1. Real-time simulation on coarse meshes

We have seen in Section 3 that a higher mesh resolution
permits to achieve a higher level of accuracy in the solution, but
that the error induced by a lower resolution mesh is limited. As in
other applications where real-time computation is sought, the
objective is then to reach the best trade-off between accuracy and
computation time. In our method, as in other numerical techni-
ques such as the finite element method, the size of the matrices
directly relates to the number of elements in the mesh
(see Algorithm 1). Two linear systems, for the diffusion and

Laplacian computations, need to be solved at each time step. In
our approach, solving them is the most time consuming step, the
second most time consuming step being the backtrack step
(see Section 2.2.2). In order to reach real-time or interactive rates
in the simulation, we then need to limit the number of elements
in the mesh and rely on optimized linear solvers.

Many numerical techniques can be used to improve the
efficiency of this process. Both the diffusion and Laplacian
matrices specifying the systems of equations that need to be
solved are constant over time. Therefore, we rely on a direct
solver which factorizes the matrices only once, during initializa-
tion. Within the simulation itself, the solution of each system of
equations is computed by efficient sparse triangular solve

Fig. 5. Comparison between 2D simulation results. In each row, results are based on identical boundary conditions but different mesh resolutions (the first two columns

rely on an identical fine mesh, while the last result uses a different, coarser mesh). Left: simulation based on DEC method, middle: simulation using FLUENT, a commercial

CFD software, right: simulation based on DEC method on a coarser mesh. Top row: fine mesh resolution consists of 210,177 triangles while the coarse mesh only contains

19,754 triangles. Bottom row: fine mesh resolution consists of 35,688 triangles while the coarse mesh only contains 8944 triangles. We can see that nearly identical results

are obtained between the proposed method and the commercial software when using a fine mesh, but also that significantly decreasing the mesh resolution has little

impact on the solution computed by DEC.

Fig. 6. Comparison between 3D simulation results using velocity magnitude by volume rendering: (left) simulation based on DEC method, (right) simulation from FLUENT

(a commercial software). Identical meshes (with 32,453 tetrahedral elements) and boundary conditions were used in both methods.

Fig. 7. Comparison between 3D simulation results using streamlines: (left)

simulation based on DEC method, (right) simulation from FLUENT (a commercial

software). Identical meshes (with 32,453 tetrahedral elements) and boundary

conditions were used in both methods.

Fig. 8. (Left): velocity magnitude in aneurysm with no coil; (Right): with 16.8% of

the volume filled with coils. Aneurysm model composed of 18 K tetrahedral

elements.
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operations using the pre-computed factorized matrices. In our
experiments we used the multi-threaded sparse symmetric inde-
finite solver in the Pardiso [21] library to factorize and solve the
diffusion and Laplacian matrices. In addition to the computational
efficiency, the ability to support large time steps while remaining
stable must be considered to achieve interactive performances.
Due to the considerable local variations that can appear in the
flow inside blood vessels and aneurysms with complex geome-
tries, the precision of the time integration scheme used for the
advection stage is critical. Many solutions are available and have
been studied, from simple single-step Euler integration scheme,
to adaptive multi-step methods and higher-order schemes. In our
experiments, we found the third-order Runge–Kutta scheme to
provide an interesting trade-off between accuracy and computa-
tional cost. It is able to increase the achievable time step
compared to single-step methods by a factor of four to five times.
Using a more advanced method would not be able to improve this
result significantly, as other stages in the algorithms are now the
limiting factor.

4.2. Real-time simulation on fine meshes

To achieve interactivity in the simulation, we compute and
store the velocity field for multiple time steps within one cardiac
period and we assume the simulation is performed over a series
of identical cardiac cycles. Periodically time-varying boundary
conditions are set at the inlet and outlet vessels around the
aneurysm for a duration covering a complete cardiac cycle. A
cardiac cycle is decomposed in 20–30 steps (one cardiac cycle
lasts about 1 s). For each step, the solution is computed for a
specific coil density. This process is repeated for different den-
sities of coil in the aneurysm. This database of velocity fields

(typically 100 sets) can then be used to interpolate the blood
velocity at the position of each coil segments and apply appro-
priate drag forces. It can also provide real-time feedback, at any
step of the embolization, about blood velocities inside the
aneurysm.

Figs. 9 and 10 present a simulation of coil deployment
respectively without and with the influence of the blood flow.
While the simulation without flow is unrealistic, accounting for
blood flow influence provides a simulation and overall behavior
much closer to what takes place in an actual procedure (e.g. if the
coil loop diameter is too small compared to the aneurysm size, it
gets pushed out of the aneurysm by the flow). By combining
patient-specific aneurysm geometry with accurate coil and flow
models, such coupled simulation has the potential to become
accurate enough to support medical planning applications.

On a Intel i7 3.33 GHz processor, one simulation time step of
5 ms required an average of 44 ms to compute with a tetrahedral
mesh containing 21,576 elements. This allows to compute one
cardiac cycle in less than 10 s, and the full database in only a few
minutes. Comparing our computation times with FLUENT, which
we used for assessing the accuracy, we noticed a �2 to �3
speed-up using DEC, depending on the mesh resolution. Combin-
ing this result with the fact the DEC method is less sensitive to the
reduction in mesh density, it seems that this approach has some
real benefits when computation time is an important constraint,
without sacrificing accuracy.

5. Conclusion

In this paper we present a method for efficiently and accu-
rately computing blood flow in aneurysms. More importantly we
introduce parameters to account for the presence of coils in the
aneurysm in order to model their impact on the flow. We also
model the reciprocal effect, i.e., the impact of the flow onto the
coil. Both aspects are essential in the context of coil embolization
planning. Our method is significantly faster than previous
approaches while providing similar results. We have assessed
our computation on an aneurysm presenting interesting clinical
characteristics. Comparisons with results obtained from commer-
cial software show that this method is accurate, but also presents
interesting properties in terms of scalability. The numerical error
introduced by using a coarser mesh is limited, allowing for fast
computation while minimizing the impact on the accuracy.

Regarding future directions, we want to further investigate
and hopefully improve the current limitations of DEC, such as its
sensitivity to the mesh quality, the accuracy in the backtracking
step and interpolation method. Besides, we acknowledge that
further validation is required, both on DEC method and the
medical simulation. We also want to investigate more deeply
various computational strategies to obtain real-time (or near real-
time) computation by using more advanced numerical schemes.
Also, using the DEC method, several steps of our computation
depend only on topological neighbors. This could be leveraged to
provide a parallel implementation on GPU. Moreover, an intuitive
3D visualization of flow data could also be interesting and helpful
for the surgery [11].
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