GEOMETRY AND TOPOLOGY OF SPACES OF STRUCTURED MATRICES

Tom Needham (Florida State University) Joint work with Clayton Shonkwiler (Colorado State University)

Geometric Sciences in Action CIRM May 30, 2024

Spaces of Structured Matrices

We consider several types of structured matrices that arise in applications:

Unit norm, Tight frames:
$$\left\{F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \forall j \text{ and } FF^* = \frac{N}{d} I_d\right\}$$

Normal Matrices:
$$\left\{A \in \mathbb{C}^{d \times d} \mid AA^* = A^*A\right\}$$

Weighted Adjacency Matrices for Balanced Digraphs:

$$\left\{A = (a_{ij})_{ij} \in \mathbb{R}_{\geq 0}^{d \times d} \mid \sum_{i} a_{ik} = \sum_{j} a_{kj} \forall k\right\}$$

Spaces of Structured Matrices

We consider several types of structured matrices that arise in applications:

Unit norm, Tight frames:
$$\left\{F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \forall j \text{ and } FF^* = \frac{N}{d} I_d\right\}$$

Normal Matrices:
$$\left\{A \in \mathbb{C}^{d \times d} \mid AA^* = A^*A\right\}$$

Weighted Adjacency Matrices for Balanced Digraphs:

$$\left\{A = (a_{ij})_{ij} \in \mathbb{R}_{\geq 0}^{d \times d} \mid \sum_{i} a_{ik} = \sum_{j} a_{kj} \forall k\right\}$$

Main Idea:

Prove theorems about these spaces that are of interest in applied math/signal processing/data science, using tools from symplectic geometry.

Concepts from Symplectic Geometry

A symplectic manifold (M, ω) is an even-dimensional manifold M endowed with a closed, nondegenerate 2-form ω .

Let G be a Lie group with an action on M which preserves ω . A momentum map for this action is a smooth map $\mu: M \to \mathfrak{q}^* \approx \mathfrak{g}$

which is equivariant with respect to the co-adjoint action $G \curvearrowright \mathfrak{g}^*$ and which satisfies

$$d_p \mu(X)(\xi) = \omega_p(Y_{\xi}|_p, X)$$

for $X \in T_pM$, $\xi \in \mathfrak{g}$, Y_{ξ} the associated infinitesimal vector field.

Given a Hamiltonian action $G \curvearrowright M$ with momentum map $\mu : M \rightarrow \mathfrak{g}^*$, the associated sympectic quotient is

$$M//G := \mu^{-1}(0)/G$$

If 0 is a regular value of μ and G acts freely on the fiber $\mu^{-1}(0)$, then M//G has a canonical symplectic manifold structure.

Concepts from Symplectic Geometry

A symplectic manifold (M, ω) is an even-dimensional manifold M endowed with a closed, nondegenerate 2-form ω .

Let G l	be a Lie group with an action on M which preserves $\omega.$ A momentum map for this a	ction is a
smootł	n map $\mu: M o \mathfrak{g}^* pprox \mathfrak{g}$	
which	s equivariant with respect to the co-adjoint action $G \curvearrowright \mathfrak{g}^*$ and which satisfies	
	See Peter Michor's talk	
or $X \in$	$T_pM,\xi\in \mathfrak{g},Y_\xi$ the associated infinitesimal vector field.	
Given a sympeo	Hamiltonian action $G \curvearrowright M$ with momentum map $\mu: M \to \mathfrak{g}^*$, the associated stic quotient is	
	$M//G := \mu^{-1}(0)/G$	

If 0 is a regular value of μ and G acts freely on the fiber $\mu^{-1}(0)$, then M//G has a canonical symplectic manifold structure.

Intuition for Concepts from Symplectic Geometry

A symplectic manifold (M, ω) locally looks like $(\mathbb{C}^d, -\operatorname{Im}\langle \cdot, \cdot \rangle)$

Example.

Intuition for Concepts from Symplectic Geometry

A symplectic manifold (M, ω) locally looks like $(\mathbb{C}^d, -\operatorname{Im}\langle \cdot, \cdot \rangle)$

Example.

A momentum map for an action $G \curvearrowright M$ is a smooth map

$$\mu: M \to \mathfrak{g}^* \approx \mathfrak{g}$$

which encodes "conserved quantities" of the action.

Example.

$$S^1 \frown S^2$$
 by rotation around *z*-axis μ = height

Spaces of Frames

An *N*-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is $\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} \mathbf{I}_d \right\}$

An *N*-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is $\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \forall j \text{ and } FF^* = \frac{N}{d} I_d \right\}$ "unit norm"

An *N*-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is $\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} \mathbf{I}_d \right\}$

Frames are used to give redundant representations of signals $v \in \mathbb{C}^d$

$$\mathbb{C}^d \ni v \mapsto F^* v = \left(\langle v, f_j \rangle \right)_{j=1}^N \in \mathbb{C}^N$$

An *N*-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is $\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} \mathbf{I}_d \right\}$

Frames are used to give redundant representations of signals $v \in \mathbb{C}^d$

$$\mathbb{C}^{d} \ni v \mapsto F^{*}v = \left(\langle v, f_{j} \rangle\right)_{j=1}^{N} \in \mathbb{C}^{N}$$

"measurements"

An *N*-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is $\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} \mathbf{I}_d \right\}$

Frames are used to give redundant representations of signals $v \in \mathbb{C}^d$

$$\mathbb{C}^{d} \ni v \mapsto F^{*}v = \left(\langle v, f_{j} \rangle\right)_{j=1}^{N} \in \mathbb{C}^{N}$$

"measurements"

Aside:

Why not represent signals via measurements w.r.t. an orthonormal basis?

Taking N > d gives redundancy in measurements which is robust to noise or measurement loss!

An *N*-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is $\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} \mathbf{I}_d \right\}$

Frames are used to give redundant representations of signals $v \in \mathbb{C}^d$

$$\mathbb{C}^d \ni v \mapsto F^* v = \left(\langle v, f_j \rangle \right)_{j=1}^N \in \mathbb{C}^N$$

The signal \rightarrow measurement \rightarrow reconstruction process is the sequence

$$v \mapsto F^*v \mapsto FF^*v$$

An *N*-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is $\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} \mathbf{I}_d \right\}$

Frames are used to give redundant representations of signals $v \in \mathbb{C}^d$

$$\mathbb{C}^d \ni v \mapsto F^* v = \left(\langle v, f_j \rangle \right)_{j=1}^N \in \mathbb{C}^N$$

The signal \rightarrow measurement \rightarrow reconstruction process is the sequence

$$v \mapsto F^*v \mapsto FF^*v$$

''frame operator for F ''

An *N*-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is $\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} \mathbf{I}_d \right\}$

Frames are used to give redundant representations of signals $v \in \mathbb{C}^d$

$$\mathbb{C}^d \ni v \mapsto F^* v = \left(\langle v, f_j \rangle \right)_{j=1}^N \in \mathbb{C}^N$$

The signal \rightarrow measurement \rightarrow reconstruction process is the sequence

$$v \mapsto F^*v \mapsto FF^*v$$

Theorem (Casazza–Kovačevic, Goyal–Kovačevic–Kelner, Holmes–Paulsen). Among N-frames in \mathbb{C}^d , unit norm, tight frames give optimal reconstruction error under white noise or measurement erasures.

Unit norm, tight frames generalize orthonormal bases: UNTF(d, d) = U(d)

The space of UNTFs

$$\text{UNTF}(d,N) = \left\{ F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} \mathbf{I}_d \right\}$$

is a potentially singular real algebraic variety with potentially complicated topology.

The space of UNTFs

$$\text{UNTF}(d,N) = \left\{ F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid \|f_j\| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} \mathbf{I}_d \right\}$$

is a potentially singular real algebraic variety with potentially complicated topology.

Frame Homotopy Conjecture - Larson, '02: The space UNTF(d, N) is connected $\forall N \ge d \ge 1$.

Proved by Cahill-Mixon-Strawn in '17. We generalize this using ideas from symplectic geometry:

The space of UNTFs

$$\text{UNTF}(d,N) = \left\{ F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} \mathbf{I}_d \right\}$$

is a potentially singular real algebraic variety with potentially complicated topology.

Frame Homotopy Conjecture - Larson, '02: The space UNTF(d, N) is connected $\forall N \ge d \ge 1$.

Proved by Cahill-Mixon-Strawn in '17. We generalize this using ideas from symplectic geometry:

Theorem (N-Shonkwiler, '21). Any space of frames of the following form is connected:

$$\mathscr{F}(r,S) = \left\{ F \in \mathbb{C}^{d \times N} \mid ||f_j|| = r_j \,\forall \, j \text{ and } FF^* = S \right\}$$

• $r = (r_1, ..., r_N) \in \mathbb{R}^N$ with $r_1 \ge r_2 \ge ... \ge r_N \ge 0$ is a collection of vector norms and

• *S* is a positive-definite Hermitian frame operator

The space of UNTFs

$$\text{UNTF}(d,N) = \left\{ F = [f_1 \mid f_2 \mid \dots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} \mathbf{I}_d \right\}$$

is a potentially singular real algebraic variety with potentially complicated topology.

Frame Homotopy Conjecture - Larson, '02: The space UNTF(d, N) is connected $\forall N \ge d \ge 1$.

Proved by Cahill-Mixon-Strawn in '17. We generalize this using ideas from symplectic geometry:

Theorem (N-Shonkwiler, '21). Any space of frames of the following form is connected:

$$\mathscr{F}(r,S) = \left\{ F \in \mathbb{C}^{d \times N} \mid ||f_j|| = r_j \,\forall \, j \text{ and } FF^* = S \right\}$$

• $r = (r_1, ..., r_N) \in \mathbb{R}^N$ with $r_1 \ge r_2 \ge ... \ge r_N \ge 0$ is a collection of vector norms and

• *S* is a positive-definite Hermitian frame operator

frame operator can be tuned for "colored noise"

allows variable "measurement power"

Theorem (N-Shonkwiler, '21). Any space of frames of the following form is connected:

$$\mathscr{F}(r,S) = \left\{ F \in \mathbb{C}^{d \times N} \mid ||f_j|| = r_j \,\forall \, j \text{ and } FF^* = S \right\}$$

Theorem (N-Shonkwiler, '21). Any space of frames of the following form is connected:

$$\mathscr{F}(r,S) = \left\{ F \in \mathbb{C}^{d \times N} \mid ||f_j|| = r_j \,\forall \, j \text{ and } FF^* = S \right\}$$

Proof Idea. Given $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_d \ge 0)$, the space

$$\left\{F \in \mathbb{C}^{d \times N} \mid \operatorname{spec}(FF^*) = \lambda\right\} / \operatorname{U}(d)$$

has a natural symplectic structure (isomorphic to a complex flag manifold; Grassmannian if $\lambda = 1$).

Theorem (N-Shonkwiler, '21). Any space of frames of the following form is connected:

$$\mathscr{F}(r,S) = \left\{ F \in \mathbb{C}^{d \times N} \mid ||f_j|| = r_j \,\forall \, j \text{ and } FF^* = S \right\}$$

Proof Idea. Given $\lambda = (\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_d \ge 0)$, the space $\{F \in \mathbb{C}^{d \times N} \mid \operatorname{spec}(FF^*) = \lambda\}/\mathrm{U}(d)$

has a natural symplectic structure (isomorphic to a complex flag manifold; Grassmannian if $\lambda = 1$).

It has a Hamiltonian action by the torus ${
m U}(1)^N$ (right multiplication) with momentum map

$$[F] \mapsto \mu([F]) = \left(-\frac{1}{2} \|f_j\|^2\right)_{j=1}^N \in \mathbb{R}^N$$

Theorem (N-Shonkwiler, '21). Any space of frames of the following form is connected:

$$\mathscr{F}(r,S) = \left\{ F \in \mathbb{C}^{d \times N} \mid ||f_j|| = r_j \,\forall \, j \text{ and } FF^* = S \right\}$$

Proof Idea. Given $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_d \ge 0)$, the space

$$\left\{F \in \mathbb{C}^{d \times N} \mid \operatorname{spec}(FF^*) = \lambda\right\} / \operatorname{U}(d)$$

has a natural symplectic structure (isomorphic to a complex flag manifold; Grassmannian if $\lambda = 1$).

It has a Hamiltonian action by the torus ${
m U}(1)^N$ (right multiplication) with momentum map

$$[F] \mapsto \mu([F]) = \left(-\frac{1}{2} \|f_j\|^2\right)_{j=1}^N \in \mathbb{R}^N$$

Theorem (Atiyah '82). Level sets of momentum maps of torus actions are connected.

Connectivity of $\mathscr{F}(r, S)$, with spec $(S) = \lambda$, follows easily from connectivity of $\mu^{-1}\left(-\frac{1}{2}(r_j^2)_j\right)$.

Geometry of Frame Spaces

Theorem (N-Shonkwiler, '22). Given vectors of norms r and eigenvalues λ , the space

$$\left\{F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \,\forall \, j \text{ and } \operatorname{spec}(FF^*) = \lambda\right\}$$

is a smooth manifold $\Leftrightarrow \mathbb{F}$ partitions $r = r' \sqcup r''$ and $\lambda = \lambda' \sqcup \lambda''$ with $r' \prec \lambda'$ and $r'' \prec \lambda''$.

For,
$$r = (r_1 \ge \dots \ge r_N)$$
 and $\lambda = (\lambda_1 \ge \dots \ge \lambda_d)$, write $r \prec \lambda$ if $\sum_{j=1}^k r_j \le \sum_{j=1}^k \lambda_j \ \forall k = 1, \dots, d$.

Geometry of Frame Spaces

Theorem (N-Shonkwiler, '22). Given vectors of norms r and eigenvalues λ , the space

$$\left\{F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \forall j \text{ and } \operatorname{spec}(FF^*) = \lambda\right\}$$

is a smooth manifold $\Leftrightarrow \mathbb{F}$ partitions $r = r' \sqcup r''$ and $\lambda = \lambda' \sqcup \lambda''$ with $r' \prec \lambda'$ and $r'' \prec \lambda''$.

For,
$$r = (r_1 \ge \dots \ge r_N)$$
 and $\lambda = (\lambda_1 \ge \dots \ge \lambda_d)$, write $r \prec \lambda$ if $\sum_{j=1}^k r_j \le \sum_{j=1}^k \lambda_j \ \forall k = 1, \dots, d$.

If it has singularities, they occur exactly at orthodecomposable frames, and singularities locally look like products of a quadratic cone and a manifold.

Description of singularities uses a result of Arms-Marsden-Moncrief '81.

Generalizes a result of Dykema-Strawn '06: The space UNTF(d, N) is a smooth manifold if d and N are relatively prime. Answers open questions of Cahill-Mixon-Strawn '17.

Rough idea of Compressed Sensing: "A random matrix $F \in \mathbb{C}^{d \times N}$ is good at compressing sparse vectors in \mathbb{C}^N , via $\mathbb{C}^N \ni v \mapsto Fv \in \mathbb{C}^d$, with high probability."

Can the quantitative version of this statement be improved if we choose a random unit norm tight frame? Empirical evidence suggests that the answer is "yes".

Rough idea of Compressed Sensing: "A random matrix $F \in \mathbb{C}^{d \times N}$ is good at compressing sparse vectors in \mathbb{C}^N , via $\mathbb{C}^N \ni v \mapsto Fv \in \mathbb{C}^d$, with high probability."

Can the quantitative version of this statement be improved if we choose a random unit norm tight frame? Empirical evidence suggests that the answer is "yes".

A first step:

- We say a frame $F \in \mathbb{C}^{d \times N}$ is full spark if any choice of d columns is spanning.
- Question: What is the probability that a random UNTF is full spark?

We say a frame $F \in \mathbb{C}^{d \times N}$ is full spark if any choice of d columns is spanning.

Theorem (N-Shonkwiler, '22). Given vectors of norms r and eigenvalues λ , the space $\left\{ F \in \mathbb{C}^{d \times N} \mid ||f_j|| = r_j \; \forall \; j \text{ and } \operatorname{spec}(FF^*) = \lambda \right\}$

satisfies exactly one of three conditions:

- It is empty
- It is nonempty and contains only frames which are not full spark
- It is nonempty and full spark frames are a subset of full Hausdorff measure

We say a frame $F \in \mathbb{C}^{d \times N}$ is full spark if any choice of d columns is spanning.

Theorem (N-Shonkwiler, '22). Given vectors of norms r and eigenvalues λ , the space $\left\{ F \in \mathbb{C}^{d \times N} \mid ||f_j|| = r_j \forall j \text{ and } \operatorname{spec}(FF^*) = \lambda \right\}$

satisfies exactly one of three conditions:

- It is empty
- It is nonempty and contains only frames which are not full spark
- It is nonempty and full spark frames are a subset of full Hausdorff measure

Proof Ingredients.

$$\left\{F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \forall j \text{ and } \operatorname{spec}(FF^*) = \lambda\right\} / \left(\operatorname{U}(d) \times \operatorname{U}(1)^N\right)$$

is a symplectic manifold with Hamiltonian torus action whose momentum map takes the form

$$[F] \mapsto (\mu_{jk})_{j,k}$$
, where μ_{jk} is the k^{th} eigenvalue of the partial frame operator $\sum_{\ell=1}^{r} f_{\ell} f_{\ell}^*$.

We say a frame $F \in \mathbb{C}^{d \times N}$ is full spark if any choice of d columns is spanning.

Theorem (N-Shonkwiler, '22). Given vectors of norms r and eigenvalues λ , the space $\left\{ F \in \mathbb{C}^{d \times N} \mid ||f_j|| = r_j \forall j \text{ and } \operatorname{spec}(FF^*) = \lambda \right\}$

satisfies exactly one of three conditions:

- It is empty
- It is nonempty and contains only frames which are not full spark
- It is nonempty and full spark frames are a subset of full Hausdorff measure

Proof Ingredients.

The eigenvalues satisfy the Gelfand-Tsetlin pattern.

Defines a convex polytope whose Lebesgue measure can be used to compute Hausdorff measure on frame space (Duistermaat-Heckmann Theorem).

$$\lambda_{1} \geq \lambda_{2} \geq \lambda_{3}$$

$$\downarrow^{\lambda} \qquad \nabla \qquad \downarrow^{\lambda} \qquad \nabla \qquad \downarrow^{\lambda} \qquad \nabla \qquad \downarrow^{\lambda} \qquad$$

Other Applications: Normal Matrices and Balancing Directed Graphs

Normal Matrices

A matrix $A \in \mathbb{C}^{d \times d}$ is normal if $AA^* = A^*A$.

Normal matrices the general setting for the Spectral Theorem

$$\left\{A \in \mathbb{C}^{d \times d} \mid AA^* = A^*A\right\} = \left\{UDU^* \mid U \text{ unitary, } D \text{ diagonal}\right\}$$

Normal Matrices

A matrix $A \in \mathbb{C}^{d \times d}$ is normal if $AA^* = A^*A$.

Normal matrices the general setting for the Spectral Theorem

$$\left\{A \in \mathbb{C}^{d \times d} \mid AA^* = A^*A\right\} = \left\{UDU^* \mid U \text{ unitary, } D \text{ diagonal}
ight\}$$

Normal matrices have spectra which are Lipschitz stable under perturbations [Bauer-Fike Theorem, 1960] \Rightarrow applications in control theory

Normality plays a role in dynamics on networks [Asllani-Carletti, 2018]

 \Rightarrow applications in mathematical biology

This motivates algorithms for finding the nearest normal matrix to a given $A \in \mathbb{C}^{d \times d}$.

Normal Matrices via Gradient Flow

A classical, natural measure of non-normality of a matrix A is $E(A) := ||AA^* - A^*A||_{Fro}^2$.

The function $E : \mathbb{C}^{d \times d} \to \mathbb{R}$ is not quasi-convex.

Normal Matrices via Gradient Flow

A classical, natural measure of non-normality of a matrix A is $E(A) := ||AA^* - A^*A||_{Fro}^2$.

The function $E : \mathbb{C}^{d \times d} \to \mathbb{R}$ is not quasi-convex.

E is the norm squared of a momentum map for the action of U(d) on $\mathbb{C}^{d \times d}$ by conjugation. This class of functions has amazing gradient descent properties — see Kirwan '84, Lerman '05.

Normal Matrices via Gradient Flow

A classical, natural measure of non-normality of a matrix A is $E(A) := ||AA^* - A^*A||_{Fro}^2$.

The function $E : \mathbb{C}^{d \times d} \to \mathbb{R}$ is not quasi-convex.

E is the norm squared of a momentum map for the action of U(d) on $\mathbb{C}^{d \times d}$ by conjugation. This class of functions has amazing gradient descent properties — see Kirwan '84, Lerman '05.

Let $A_0 \in \mathbb{C}^{d \times d}$ be an arbitrary matrix.

Theorem [N-Shonkwiler, '24]. Gradient descent of the functional $E : A \mapsto ||AA^* - A^*A||_{Fro}^2$ converges to a normal matrix A_{∞} . If A_0 is real, then so is A_{∞} and A_{∞} has the same eigenvalues as A_0 . Moreover, there exist $c, \epsilon > 0$ such that, if $E(A_0) < \epsilon$ then $||A_0 - A_{\infty}||_{Fro}^2 \le c\sqrt{E(A_0)}$. This can be adapted to preserve total weight $||A_0||_{Fro}^2$.

Topology of Unit Norm Normal Matrices

The space of normal matrices is contractible.

The space of unit norm normal matrices

$$\mathcal{UN}_{\mathbb{F}}(d) = \left\{ A \in \mathbb{F}^{d \times d} \mid AA^* = A^*A \text{ and } \|A\|_{\text{Fro}} = 1 \right\}, \, \mathbb{F} = \mathbb{R} \text{ or } \mathbb{C}$$

can have interesting topology.

Topology of Unit Norm Normal Matrices

The space of normal matrices is contractible.

The space of unit norm normal matrices

$$\mathcal{UN}_{\mathbb{F}}(d) = \left\{ A \in \mathbb{F}^{d \times d} \mid AA^* = A^*A \text{ and } \|A\|_{\text{Fro}} = 1 \right\}, \, \mathbb{F} = \mathbb{R} \text{ or } \mathbb{C}$$

can have interesting topology.

Example. { $A \in \mathbb{R}^{2 \times 2} | ||A||_{Fro} = 1$ } stereographically projected to \mathbb{R}^3 .

Image of unit norm nilpotent matrices in blue.

Image of $\mathscr{UN}_{\mathbb{R}}(2)$ in pink.

Topology of Unit Norm Normal Matrices

The space of normal matrices is contractible.

The space of unit norm normal matrices

$$\mathcal{UN}_{\mathbb{F}}(d) = \left\{ A \in \mathbb{F}^{d \times d} \mid AA^* = A^*A \text{ and } \|A\|_{\text{Fro}} = 1 \right\}, \, \mathbb{F} = \mathbb{R} \text{ or } \mathbb{C}$$

can have interesting topology.

Example. { $A \in \mathbb{R}^{2 \times 2} \mid ||A||_{\text{Fro}} = 1$ } stereographically projected to \mathbb{R}^3 .

Image of unit norm nilpotent matrices in blue.

Image of $\mathscr{UN}_{\mathbb{R}}(2)$ in pink.

Theorem [N-Shonkwiler, '24]. • $\pi_k(\mathcal{UN}_{\mathbb{C}}(d))$ is trivial for all $k \leq 2d - 2$.

• $\pi_k(\mathcal{UN}_{\mathbb{R}}(d))$ is trivial for all $k \leq d-2$.

Proof. $\mathcal{UN}_{\mathbb{F}}(d)$ is homotopy equivalent to {non-nilpotent $d \times d$ matrices}, via gradient descent of E.

The space of nilpotent matrices is a stratified space with high codimension strata. Use transversality.

Balancing Digraphs

Let $A = (a_{ij})_{ij} \in \mathbb{R}^{d \times d}$ be the adjacency matrix of a weighted, directed graph.

We say that the graph is balanced if

$$\sum_{i} a_{ik} = \sum_{j} a_{kj} \forall k$$

Balancing is necessary for, e.g., traffic flow problems [Hooi-Tong, 1970].

Balancing Graphs by Gradient Descent

Let $A_0 \in \mathbb{R}^{d \times d}$ be the entry-wise square of an adjacency matrix of a weighted digraph.

Theorem [N-Shonkwiler, '24]. Gradient descent of the functional $A \mapsto \|\text{diag}(AA^* - A^*A)\|_{\text{Frob}}^2$ converges to the entry-wise square of the adjacency matrix of a balanced digraph. It has the same eigenvalues and principal minors as A_0 , and has zero entries whenever A_0 does.

This can be adapted to preserve total weight $||A_0||_{\text{Frob}}^2$.

Thanks for Listening!

Open Questions:

- What about higher homotopy/(co)homology of $\mathcal{F}(r, S)$?
- What about the corresponding question for spaces of real frames?
- Can symplectic methods be applied to frames in infinite-dimensional Hilbert spaces?
- Can geometry of the Gelfand-Tsetlin polytope be used to get quantitative statements about compressed sensing properties of random frames?
- Can we efficiently generate random frames using Markov chain sampling in G-T polytope?

References:

Tom Needham and Clayton Shonkwiler, *Symplectic Geometry and Connectivity of Spaces of Frames*, Advances in Computational Mathematics, 2021.

Tom Needham and Clayton Shonkwiler, *Toric Symplectic Geometry and Full Spark Frames*, Applied and Computational Harmonic Analysis, 2022.

Tom Needham and Clayton Shonkwiler, *Geometric Approaches to Matrix Normalization and Graph Balancing*, arXiv preprint 2405.06190, 2024.

This research was supported by NSF DMS 2107808.

