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Spaces of Structured Matrices
We consider several types of structured matrices that arise in applications:

Unit norm, Tight frames:

Normal Matrices: {A ∈ ℂd×d ∣ AA* = A*A}
{F = [ f1 ∣ f2 ∣ … | fN] ∈ ℂd×N ∣ ∥fj∥ = 1 ∀ j and FF* =

N
d

Id}

Weighted Adjacency Matrices for Balanced Digraphs:

A = (aij)ij ∈ ℝd×d
≥0 ∣ ∑

i

aik = ∑
j

akj ∀ k
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Main Idea:

Prove theorems about these spaces that are of interest in applied math/signal processing/data 
science, using tools from symplectic geometry.



Concepts from Symplectic Geometry
A symplectic manifold  is an even-dimensional manifold  endowed with a closed, 
nondegenerate -form .

(M, ω) M
2 ω

Let  be a Lie group with an action on  which preserves . A momentum map for this action is a 
smooth map

G M ω

μ : M → 𝔤* ≈ 𝔤
which is equivariant with respect to the co-adjoint action  and which satisfiesG ↷ 𝔤*

dpμ(X)(ξ) = ωp(Yξ |p , X)

for , ,  the associated infinitesimal vector field.X ∈ TpM ξ ∈ 𝔤 Yξ

Given a Hamiltonian action  with momentum map , the associated 
sympectic quotient is

G ↷ M μ : M → 𝔤*

M//G := μ−1(0)/G

If 0 is a regular value of  and  acts freely on the fiber , then  has a canonical 
symplectic manifold structure.

μ G μ−1(0) M//G
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See Peter Michor’s talk



Intuition for Concepts from Symplectic Geometry

ωx(u, v) = x ⋅ (u × v)

x
u

v
(S2, ω)

A symplectic manifold  locally looks like (M, ω) (ℂd, − Im⟨ ⋅ , ⋅ ⟩)
Example.
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S1 ↷ S2 z

μ =

A symplectic manifold  locally looks like (M, ω) (ℂd, − Im⟨ ⋅ , ⋅ ⟩)
Example.

A momentum map for an action  is a smooth mapG ↷ M

μ : M → 𝔤* ≈ 𝔤

Example.

which encodes “conserved quantities” of the action.



Spaces of Frames



UNTF(d, N) = {F = [ f1 ∣ f2 ∣ … | fN] ∈ ℂd×N ∣ ∥fj∥ = 1 ∀ j and FF* =
N
d

Id}
An -frame in  is a full rank matrix . The space of Unit norm, Tight frames isN ℂd F ∈ ℂd×N

Unit Norm Tight Frames
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Frames are used to give redundant representations of signals v ∈ ℂd
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Frames are used to give redundant representations of signals v ∈ ℂd
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“measurements”

An -frame in  is a full rank matrix . The space of Unit norm, Tight frames isN ℂd F ∈ ℂd×N

Aside:

Why not represent signals via measurements w.r.t. an orthonormal basis?


Taking  gives redundancy in measurements which is robust to noise or measurement loss!N > d
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Frames are used to give redundant representations of signals v ∈ ℂd

UNTF(d, N) = {F = [ f1 ∣ f2 ∣ … | fN] ∈ ℂd×N ∣ ∥fj∥ = 1 ∀ j and FF* =
N
d

Id}

Unit Norm Tight Frames

ℂd ∋ v ↦ F*v = (⟨v, fj⟩)N
j=1

∈ ℂN

An -frame in  is a full rank matrix . The space of Unit norm, Tight frames isN ℂd F ∈ ℂd×N

The signal  measurement  reconstruction process is the sequence→ →

v ↦ F*v ↦ FF*v

Theorem (Casazza–Kovačevic, Goyal–Kovačevic–Kelner, Holmes–Paulsen). Among -frames 
in , unit norm, tight frames give optimal reconstruction error under white noise or 
measurement erasures.

N
ℂd

Unit norm, tight frames generalize orthonormal bases: UNTF(d, d) = U(d)
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Structure of UNTFs
The space of UNTFs

is a potentially singular real algebraic variety with potentially complicated topology.
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Frame Homotopy Conjecture - Larson, ’02: The space  is connected .UNTF(d, N ) ∀ N ≥ d ≥ 1

Proved by Cahill-Mixon-Strawn in ’17. We generalize this using ideas from symplectic geometry:
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Proved by Cahill-Mixon-Strawn in ’17. 

Theorem (N-Shonkwiler, ’21). Any space of frames of the following form is connected:

ℱ(r, S) = {F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and FF* = S}
•  with  is a collection of vector norms and r = (r1, …, rN) ∈ ℝN r1 ≥ r2 ≥ … ≥ rN ≥ 0

•  is a positive-definite Hermitian frame operatorS

We generalize this using ideas from symplectic geometry:

allows variable “measurement power”
frame operator can be tuned for “colored noise”



Connectivity of Frame Spaces
Theorem (N-Shonkwiler, ’21). Any space of frames of the following form is connected:

ℱ(r, S) = {F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and FF* = S}



Connectivity of Frame Spaces
Theorem (N-Shonkwiler, ’21). Any space of frames of the following form is connected:

Proof Idea. Given , the space λ = (λ1 ≥ λ2 ≥ ⋯ ≥ λd ≥ 0)

ℱ(r, S) = {F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and FF* = S}

{F ∈ ℂd×N ∣ spec(FF*) = λ}/U(d)

has a natural symplectic structure (isomorphic to a complex flag manifold; Grassmannian if ). λ = 1
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It has a Hamiltonian action by the torus  (right multiplication) with momentum mapU(1)N

[F] ↦ μ([F]) = (−
1
2

∥fj∥2)N
j=1

∈ ℝN

Theorem (Atiyah ’82). Level sets of momentum maps of torus actions are connected.

Connectivity of , with , follows easily from connectivity of .ℱ(r, S) spec(S) = λ μ−1( −
1
2 (r2

j )j)
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Proof Idea. Given , the space λ = (λ1 ≥ λ2 ≥ ⋯ ≥ λd ≥ 0)
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Geometry of Frame Spaces
Theorem (N-Shonkwiler, ’22). Given vectors of norms  and eigenvalues , the spacer λ

{F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and spec(FF*) = λ}

For,  and , write  if  .r = (r1 ≥ ⋯ ≥ rN) λ = (λ1 ≥ ⋯ ≥ λd) r ≺ λ
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Geometry of Frame Spaces
Theorem (N-Shonkwiler, ’22). Given vectors of norms  and eigenvalues , the spacer λ

{F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and spec(FF*) = λ}

If it has singularities, they occur exactly at 
orthodecomposable frames, and singularities locally 
look like products of a quadratic cone and a manifold.

Generalizes a result of Dykema-Strawn ’06: The space  is a smooth manifold if 
 and  are relatively prime. Answers open questions of Cahill-Mixon-Strawn ’17.

UNTF(d, N )
d N

Description of singularities uses a result of 
Arms-Marsden-Moncrief ’81.

For,  and , write  if  .r = (r1 ≥ ⋯ ≥ rN) λ = (λ1 ≥ ⋯ ≥ λd) r ≺ λ
k

∑
j=1

rj ≤
k

∑
j=1

λj ∀k = 1,…, d

is a smooth manifold   partitions  and  with  and . ⇔ /∃ r = r′� ⊔ r′�′� λ = λ′� ⊔ λ′�′� r′� ≺ λ′� r′�′� ≺ λ′�′�



Random Matrix Theory Application
Rough idea of Compressed Sensing: “A random matrix  is good at compressing 
sparse vectors in , via , with high probability.”

F ∈ ℂd×N

ℂN ℂN ∋ v ↦ Fv ∈ ℂd

Can the quantitative version of this statement be improved if we choose a random unit norm 
tight frame? Empirical evidence suggests that the answer is “yes”.



Random Matrix Theory Application

• We say a frame  is full spark if any choice of  columns is spanning.F ∈ ℂd×N d

Rough idea of Compressed Sensing: “A random matrix  is good at compressing 
sparse vectors in , via , with high probability.”

F ∈ ℂd×N

ℂN ℂN ∋ v ↦ Fv ∈ ℂd

Can the quantitative version of this statement be improved if we choose a random unit norm 
tight frame? Empirical evidence suggests that the answer is “yes”.

A first step:

• Question: What is the probability that a random UNTF is full spark?



Random Matrix Theory Application

{F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and spec(FF*) = λ}
Theorem (N-Shonkwiler, ’22). Given vectors of norms  and eigenvalues , the spacer λ

satisfies exactly one of three conditions:

• It is empty

• It is nonempty and contains only frames which are not full spark

• It is nonempty and full spark frames are a subset of full Hausdorff measure

We say a frame  is full spark if any choice of  columns is spanning.F ∈ ℂd×N d



Random Matrix Theory Application

{F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and spec(FF*) = λ}
Theorem (N-Shonkwiler, ’22). Given vectors of norms  and eigenvalues , the spacer λ

satisfies exactly one of three conditions:

• It is empty

• It is nonempty and contains only frames which are not full spark

• It is nonempty and full spark frames are a subset of full Hausdorff measure

We say a frame  is full spark if any choice of  columns is spanning.F ∈ ℂd×N d

Proof Ingredients.

{F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and spec(FF*) = λ}/(U(d) × U(1)N)
is a symplectic manifold with Hamiltonian torus action whose momentum map takes the form

, where  is the  eigenvalue of the partial frame operator .[F] ↦ (μjk)j,k μjk kth
j

∑
ℓ=1

fℓ f*ℓ



Random Matrix Theory Application

{F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and spec(FF*) = λ}
Theorem (N-Shonkwiler, ’22). Given vectors of norms  and eigenvalues , the spacer λ

satisfies exactly one of three conditions:

• It is empty

• It is nonempty and contains only frames which are not full spark

• It is nonempty and full spark frames are a subset of full Hausdorff measure

We say a frame  is full spark if any choice of  columns is spanning.F ∈ ℂd×N d

The eigenvalues satisfy the Gelfand-Tsetlin pattern.

 G-T patternd = 3

Defines a convex polytope whose Lebesgue measure 
can be used to compute Hausdorff measure on frame 
space (Duistermaat-Heckmann Theorem).

Proof Ingredients.



Other Applications: Normal Matrices 
and Balancing Directed Graphs



{A ∈ ℂd×d ∣ AA* = A*A} = {UDU* ∣ U unitary, D diagonal}
Normal matrices the general setting for the Spectral Theorem 

Normal Matrices
A matrix  is normal if .A ∈ ℂd×d AA* = A*A



{A ∈ ℂd×d ∣ AA* = A*A} = {UDU* ∣ U unitary, D diagonal}
Normal matrices have spectra which are Lipschitz 
stable under perturbations [Bauer-Fike Theorem, 1960] 

 applications in control theory⇒

Normal matrices the general setting for the Spectral Theorem 

Normality plays a role in dynamics on networks 
[Asllani-Carletti, 2018] 

 applications in mathematical biology⇒

Normal Matrices
A matrix  is normal if .A ∈ ℂd×d AA* = A*A

This motivates algorithms for finding the nearest normal matrix to a given .A ∈ ℂd×d



Normal Matrices via Gradient Flow
A classical, natural measure of non-normality of a matrix  is .A E(A) := ∥AA* − A*A∥2

Fro

The function  is not quasi-convex.E : ℂd×d → ℝ



Normal Matrices via Gradient Flow
A classical, natural measure of non-normality of a matrix  is .A E(A) := ∥AA* − A*A∥2

Fro

The function  is not quasi-convex.E : ℂd×d → ℝ

 is the norm squared of a momentum map for the action of  on 
 by conjugation. This class of functions has amazing gradient 

descent properties — see Kirwan ’84, Lerman ’05.

E U(d)
ℂd×d



Let  be an arbitrary matrix.A0 ∈ ℂd×d

Theorem [N-Shonkwiler, ‘24]. Gradient descent of the functional  

converges to a normal matrix . If  is real, then so is  and  has the same eigenvalues as .  
Moreover, there exist  such that, if  then .                               

This can be adapted to preserve total weight . 

E : A ↦ ∥AA* − A*A∥2
Fro

A∞ A0 A∞ A∞ A0

c, ϵ > 0 E(A0) < ϵ ∥A0 − A∞∥2
Fro ≤ c E(A0)

∥A0∥2
Fro

Normal Matrices via Gradient Flow
A classical, natural measure of non-normality of a matrix  is .A E(A) := ∥AA* − A*A∥2

Fro

 is the norm squared of a momentum map for the action of  on 
 by conjugation. This class of functions has amazing gradient 

descent properties — see Kirwan ’84, Lerman ’05.

E U(d)
ℂd×d

The function  is not quasi-convex.E : ℂd×d → ℝ



Topology of Unit Norm Normal Matrices
The space of normal matrices is contractible. 

The space of unit norm normal matrices

𝒰𝒩𝔽(d) = {A ∈ 𝔽d×d ∣ AA* = A*A and ∥A∥Fro = 1}, 𝔽 = ℝ or ℂ

can have interesting topology.
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ℝ3

Image of  in pink.𝒰𝒩ℝ(2)
Image of unit norm nilpotent matrices in blue.



Topology of Unit Norm Normal Matrices
The space of normal matrices is contractible. 

The space of unit norm normal matrices

𝒰𝒩𝔽(d) = {A ∈ 𝔽d×d ∣ AA* = A*A and ∥A∥Fro = 1}, 𝔽 = ℝ or ℂ

can have interesting topology.

Theorem [N-Shonkwiler, ’24]. •  is trivial for all .πk(𝒰𝒩ℂ(d)) k ≤ 2d − 2

•  is trivial for all .πk(𝒰𝒩ℝ(d)) k ≤ d − 2

Proof.  is homotopy equivalent to , via gradient descent of .


The space of nilpotent matrices is a stratified space with high codimension strata. Use transversality.

𝒰𝒩𝔽(d) {non-nilpotent d × d matrices} E

Example.  stereographically 
projected to .

{A ∈ ℝ2×2 ∣ ∥A∥Fro = 1}
ℝ3

Image of  in pink.𝒰𝒩ℝ(2)
Image of unit norm nilpotent matrices in blue.
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akj ∀ k

0 1 0 0
0 0 1 1
0 0 0 1
1 0 0 0

1

2 3

4 1

2 3

4

0 2 0 0
0 0 1 1
0 0 0 1
2 0 0 0

Unbalanced Balanced

Balancing is necessary for, e.g., traffic flow problems [Hooi-Tong, 1970].

Balancing Digraphs
Let  be the adjacency matrix of a weighted, directed graph.A = (aij)ij ∈ ℝd×d

We say that the graph is balanced if 



Let  be the entry-wise square of an adjacency matrix of a weighted digraph.A0 ∈ ℝd×d

Theorem [N-Shonkwiler, ’24]. Gradient descent of the functional  
converges to the entry-wise square of the adjacency matrix of a balanced digraph. It has the same 
eigenvalues and principal minors as , and has zero entries whenever  does.                                

This can be adapted to preserve total weight . 

A ↦ ∥diag(AA* − A*A)∥2
Frob

A0 A0

∥A0∥2
Frob

Balancing Graphs by Gradient Descent



Thanks for Listening!
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Open Questions:
• What about higher homotopy/(co)homology of ?ℱ(r, S)

• What about the corresponding question for spaces of real frames?

• Can symplectic methods be applied to frames in infinite-dimensional Hilbert spaces?

• Can geometry of the Gelfand-Tsetlin polytope be used to get quantitative statements about 
compressed sensing properties of random frames?

• Can we efficiently generate random frames using Markov chain sampling in G-T polytope?


