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Motivation and history

Mimic ordinary statistics: assume nonlinear M given; want
• averages: measure µ on M  mean µ̄ ∈ M

• variance, PCA
• Law of Large Numbers (LLN), confidence regions
• Central Limit Theorem (CLT)

+ smooth M [Bhattacharya and Patrangenaru 2003, 2005]

+ singular M
- open books [SAMSI Working Group 2013]

- isolated planar singularity [Huckemann, Mattingly, M–, Nolen 2015]

- phylogenetic tree spaces [Barden, Le 2018, w/Owen 2013, 2014]

• MCMC methods to draw from M, building on

+ stochastic analysis on manifolds e.g., [Malliavin 1978]

+ Brownian motion in manifolds e.g., [Kendall 1984], [Hsu 1988]

+ diffusion on metric spaces [Sturm 1998]

Goals for today
• Gaussians on singular spaces
•  stratified CLT
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Stratified spaces

Def [Mattingly, M–, Tran 2023]. M is smoothly stratified with distance d if
• M is a complete, locally compact, geodesic space
• M =

⊔d
j=0 M

j has disjoint locally closed strata M j

• each stratum M j

+ is a manifold with geodesic distance d|M j

+ has closure M j =
⋃

k≤j M
k

• locally well defined exponential maps that are local homeomorphisms
+ essential for bringing asymptotics of sampling to Tµ̄M and back to M

• curvature bounded above by κ: M is CAT(κ)
+ only really needed at µ̄, which
+ morally won’t be infinitely curved anyway: Fréchet means would flee

Examples
• graph (or network): strata are vertices and edges
• polyhedron: strata are (relatively open) faces
• real (semi)algebraic variety: strata ↔ equisingular loci

Actual examples
• fruit fly wings
• tree spaces
• shape spaces

3
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Examples
• graph (or network): strata are vertices and edges
• polyhedron: strata are (relatively open) faces
• real (semi)algebraic variety: strata ↔ equisingular loci

Actual examples
• fruit fly wings
• tree spaces
• shape spaces

3
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Fréchet means

Def. Probability distribution µ on any metric space M has Fréchet function

Fµ(y) =
1

2

∫

M

d(x , y)2µ(dx)
↑ ↑

square
distance

measure
induced
by µ

and Fréchet mean µ̄ = argmin
y∈M

Fµ(y).

Prop. M is CAT(κ)
⇒ M has tangent spaces (cones)

Def. The logarithm map is

logµ̄ : M → Tµ̄M

x 7→ d(µ̄, x)V ,

where V = unit tangent to geodesic from µ̄ to x .

Note. M singular at µ̄⇔ Tµ̄M 6∼= R
d

Prop. M smoothly stratified
⇒ Tµ̄M is a smoothly stratified CAT(0) cone.

4
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Fréchet means

Def. Probability distribution µ on any metric space M has Fréchet function
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History Stratified spaces Fréchet means and log maps Tangent fields Radial transport Collapse Gaussians CLT Escape vectors Future directions

Random tangent fields

Def. A random tangent field on Tµ̄M is a stochastic process f : Ω× Sµ̄M → R,
so f (V ) : Ω→ R for each V ∈ Sµ̄M.
• Gaussian if

(

f (V1), . . . , f (Vn)
)

is multivariate Gaussian ∀ V1, . . . ,Vn ∈ Sµ̄M

• covariance Σ(U,V ) = E
[

f (U)f (V )
]

Def. Sµ̄M = unit sphere in Tµ̄M has metric ds . Vectors U,V ∈ Sµ̄M have

• angle ∠(U,V ) =

{

ds(U,V ) if < π

π otherwise

• angular pairing 〈U,V 〉µ̄ = ‖U‖‖V ‖ cos
(

∠(U,V )
)

.

Def. An M-valued random variable x = x(ω) : Ω→ M with law µ yields
• random tangent field g(V ) = g(x ,V ) = 〈V , logµ̄x〉µ̄
• covariance Σ(U,V ;µ) = E

[(

g(x ,U)− Eg(U)
)(

g(x ,V )− Eg(V )
)]

, where
E(· · · ) =

∫

M
· · · dµ

Thm [Mattingly, M–, Tran & Lammers, Huckemann]. Fix a localized measure µ on M. Let
• G = Gaussian random tangent field with E

[

G (U)G (V )
]

= Σ(U,V ;µ)
• x1, x2, . . . i.i.d. M-valued variables ∼ µ
• gn(V ) = 1

n

∑n
k=1 gi (V ), the average of the fields gi (V ) = g(xi ,V ).

Then
√
n(gn − Eg)

D→ G
5
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Radial transport

Prop. Set X = Tµ̄M with apex O. Fix
• Z = logO z ∈ TOX
• q ∈ [O, z ]
• q′ ∈ (O, z ]

Then radial transport TqX → Tq′X is isometry if q 6= O.
Idea. Z points out of stratum containing O

⇒ q ∈ (O, z ] is strictly less singular than O
⇒ T

→

ZX is strictly less singular than X
Def [Mattingly, M–, Tran & Barden, Le]. The limit tangent cone along Z is

T
→

ZX = lim−→
q∈(O,z]

TqX

The limit log map along Z is induced by TOX → TqX for any q ∈ (O, z ]:
LZ : TOX → T

→

ZX
Iterate to get Tµ̄M → R

m = tangent space to some smooth stratum
• choose resolving vectors Z appropriately
• to ensure µ pushes forward appropriately, assume µ is localized:
unique µ̄, locally convex Fµ, and µ(cut locus) = 0
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Tangential collapse

Def. Localized µ on smoothly stratified M has fluctuating cone

Cµ =
{

X ∈ Tµ̄M | ∇µ̄F (X ) = 0 and
X ∈ convex cone generated by supp(µ ◦ log−1

µ̄ )
}

Lemma. Adding mass to µ can only cause µ̄ to move into Cµ

Thm [Mattingly, M–, Tran 2023]. M smoothly stratified ⇒ some sequence of limit log
maps, followed by convex projection to the relevant smooth stratum, is a
tangential collapse: a continuous map L : Tµ̄M → R

m that is
• injective on Cµ and
• preserves angles with vectors in Cµ

Examples

• kale:
L−→

• nonconvex quadrants:
L−→

7
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History Stratified spaces Fréchet means and log maps Tangent fields Radial transport Collapse Gaussians CLT Escape vectors Future directions

Stratified Gaussians

Smooth M : Tµ̄M ∼= R
m already

Singular M : use tangential collapse Tµ̄M
L−→ R

m

Lemma. The map L has a measurable section over Rℓ = conv(imageL),
∆ : Rℓ → discrete measures on R+ supp(µ ◦ log−1

µ̄ ) ⊆ Tµ̄M

with L ◦∆ = idRℓ , where L(λ1δY 1 + · · ·+ λjδY j ) = λ1L(Y 1) + · · ·+ λjL(Y j).

Example.
1/2

1/2

L−→
∆←−

Def [Mattingly, M–, Tran 2023]. A Gaussian tangent mass Γµ is any measurable section
of any R

ℓ-valued random variable N ∼ N(0,Σ):

Γµ = ∆(N ).

Perspective shift: continuous variation in Gaussians can come from
redistributing weights on unmoving points rather than from spatial variation

Thm [Mattingly, M–, Tran 2023]. G (X ) = 〈Γµ,X 〉µ̄ for all X ∈ Cµ.

8
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Central limit theorems

Perturbative CLT

CLT 2 [Mattingly, M–, Tran 2023]. limn→∞

√
n logµ̄ µ̄n

d→ E (Γµ)

Variational CLT in a space of measures

CLT 3 [Mattingly, M–, Tran 2023]. lim
n→∞

√
n logµ̄ µ̄n = ∇µb(Γµ),

• the directional derivative, in the space P2M of L2 measures on M,
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Escape vectors

Def. Fix ∆ = λ1δY 1 + · · ·+ λjδY j , a discrete measure on Tµ̄M. If
δ = λ1δy1 + · · ·+ λjδy j with Y i = logµ̄y

i then ∆ has escape vector

E (Y ) = lim
t→0

1

t
logµ̄(µ+ tδ)

Note. Γµ is a random discrete measure of the form ∆.

Example [Huckemann, Mattingly, M–, Nolen 2015]

• Isolated hyperbolic planar singularity: angle sum at
apex is α > 2π (that is, circumference at radius 1 is α)

• E is convex projection to the fluctuating cone
Cµ = {V ∈ hull(suppµ) | ∇µ̄F (V ) = 0}
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α > 2π

M

• Isolated hyperbolic planar singularity: angle sum at
apex is α > 2π (that is, circumference at radius 1 is α)

embedded in R
3:

• E is convex projection to the fluctuating cone
Cµ = {V ∈ hull(suppµ) | ∇µ̄F (V ) = 0}
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Looking forward

Gaussian objects on singular spaces

• use G and Γµ to enable MCMC sampling

• heat dissipation and random walks: heat kernels

• infinite divisibility of probability distributions

Statistical developments
• convergence rates

• confidence regions

• geometric PCA, e.g., in the sense of [Marron, et al. since 2010s]

• smoothness/singularity testing

• learning stratified spaces

• singular influence functions

Infinite-dimensional singular settings
• persistence diagrams [Mileyko, Mukherjee, Harer 2011]

• spaces of measures [Lott 2006]
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Looking forward

Curvature invariants from distortion maps and tangential collapse
• generalize 2D angle deficit
• variation from point to point in M

• integrate to reflect topology of singular spaces?
• compare with singular homology or intersection cohomology
• how to construct measures with given Fréchet mean?

Algebraic singularities: functoriality and moduli
• distortion ↔ how CLT transforms under morphism
• proposal for real or complex variety X :

+ take resolution of singularities X̃ → X

+ push CLT on X̃ forward to X

+ correction terms should involve local sheaf-theoretic data around µ̄

+ conj: results in well defined CLT on X

+ e.g.: compare pushforward CLT with singular CLT in smoothly stratified case
+ analogy: multiplier ideals

• asymptotics of sampling from moduli spaces
+ statistical invariants ↔ typical or expected variation of algebraic structures
+ in neighborhoods of a fixed degeneration
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• Dennis Barden and Huiling Le, The logarithm map, its limits and Fréchet means in orthant spaces, Proc. of the London Mathematical Society (3) 117

(2018), no. 4, 751–789.
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History Stratified spaces Fréchet means and log maps Tangent fields Radial transport Collapse Gaussians CLT Escape vectors Future directions

References
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