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(Classical) Stein’s method: the Stein operator and
equation

Fix probability measure P and r.v. X ∼ P.

Identify an operator A (the Stein operator) on a family of functions
F(A) such that

E [Af (X )] = 0, ∀f ∈ F(A).

Let H be a family of functions such that, for h ∈ H, there exists
f = fh ∈ F(A) satisfying

h(x)− E [h(X )] = Afh(x)

(the Stein equation).

May 26, 2024 3 / 25



Then, for any other probability measure Q and r.v. Z ∼ Q,

E [h(Z )]− E [h(X )] = E [Afh(Z )] .

In particular,

dH(Z ,X ) = sup
h∈H

|E [h(Z )]− E [h(X )] | ⩽ sup
f ∈F(A)

|E [Af (Z )] |.

If H is the family of all Lipschitz-1-functions, the resulting dH is the
Wasserstein distance.
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Example

If X ∼ N(0, σ2), the corresponding Stein operator is

Af (x) = σ2f ′(x)− x f (x);

and the solutions to the corresponding Stein equation

h(x)− E [h(X )] = σ2f ′h(x)− x fh(x)

are given by

fh(x) =
1

σ2
ex

2/(2σ2)

{
a+

∫ x

−∞
{h(u)− E [h(X )]} e−u2/(2σ2)du

}
.
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Stein’s method for probability measures on Rm:

E. Meckes (2009). On Stein’s method for multivariate normal
approximation, in High Dimensional Probability V: The Luminy
Volume, C. Houdré, V. Koltchinskii, D.M. Mason and M. Peligrad
eds., IMS, 153–178.

L. Mackey & J. Gorham (2016). Multivariate Stein factors for a class
of strongly log-concave distributions, Electron. Commun. Probab.
21, no. 56.

G. Mijoule, G. Reinert and Y. Swan (2019). Stein operators, kernels
and discrepancies for multivariate continuous distributions.
arXiv:1806.03478.
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(Classical) Stein’s method: the approach via generators

This is based on the classical theory of Markov processes.

For the normal distribution N(0, σ2), we take

Lf ≡ Af ′ = σ2f ′′ − x f ′.

Then,

L = σ2
d2

dx2
− x

d

dx
,

and it is the infinitesimal generator of the Ornstein-Uhlenbeck process

dXt =
√
2σ dBt − Xt dt.

Also, the equilibrium distribution of the OU process is the target
distribution N(0, σ2).
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Stein’s method on manifolds

J. Thompson (2020). Approximation of Riemannian measures by
Stein’s method. arXiv:2001.009.

A. Lewis (2021). Stein’s method for probability distributions on S1.
arXiv: 2105.13199.

H. Le, A. Lewis, K. Bharath and C. Fallaize (2024). A diffusion
approach to Stein’s method on Riemannian manifolds, Bernoulli 30,
1079-1104.
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Stein’s method on manifolds

(M , g): a complete and connected Riemannian manifold (without
boundary) of dimension m.

ρ(x , y): the Riemannian distance between x and y in M .

ϕ: a fixed C2-function on M such that ∇ϕ satisfies a Lipschitz condition,
where ∇ is the gradient operator.

µϕ: probability measure on M given by

dµϕ =
1

Cϕ
e−ϕ dvol,

assuming Cϕ =
∫
M

e−ϕ dvol <∞.

r.v. X ∼ dµϕ.
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M = S1:

Using integration by parts,

fh(x) = Cϕe
ϕ(x)

{
a+

∫ x

−π
(h(y)− E [h(X )])dµϕ(y)

}
solves the Stein equation for dµϕ

h(x)− E [h(X )] = f ′h(x)− ϕ′(x) fh(x),

with the Stein operator Af = f ′ − ϕ′ f .

For example, ϕ(x) = −c cos(x − x0) corresponds to the von Mises
distribution M(x0, c), so that the Stein operator for M(x0, c) is

Af (x) = f ′(x) + c sin(x − x0) f (x).
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General M :

Consider the (uniformly elliptic) diffusion on M , given by the solution of
the Itô stochastic differential equation

dXt = dBM
t − 1

2
∇ϕ(Xt) dt,

BM
t : BM on M .

The infinitesimal generator for this diffusion is the self-adjoint
operator

Lϕ =
1

2
{∆− ⟨∇ϕ, ∇⟩} ,

∆: the Laplace-Beltrami operator of (M , g).
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If there is a constant κ > 0 such that

Ric(x) + Hessϕ(x) ⩾ −κ g(x), ∀x ∈M ,

then Xt is conservative, where

Ric: the Ricci curvature tensor;
Hessϕ: the Hessian of ϕ.

dµϕ is the unique equilibrium measure for Xt .
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Stein’s method on manifolds: the Stein operator and
equation for dµϕ

Assume

X ∼ dµϕ = e−ϕ dvol /Cϕ;

E [ρ(X , x)] <∞ for some x ∈M ;

Xx ,t : a diffusion determined by

dXt = dBM
t − 1

2
∇ϕ(Xt) dt,

starting from x .

For a given h, define

fh(x) =

∫ ∞

0
{E [h(X )]− E [h(Xx ,t)]}dt.
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Assume that
Ric+Hessϕ ⩾ 2κ g (∗)

for a constant κ > 0, and that h ∈ C0(M) is a Lipschitz function. Then,
the Stein equation for dµϕ is

h(x)− E [h(X )] = Lϕfh(x).

In particular, Lϕ is the Stein operator for dµϕ.

By carefully analysing the bound for Lϕ(fh), the results relating to Stein’s
method for Euclidean r.v.’s can be generalised to Riemannian manifolds.
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For example, let k = 1, 2,

Hk = {h ∈ Ck(M) | h is Lipschitz with Ci (h) = 1, i = 0, · · · , k}.

(i) For Z ∼ dµψ satisfying the corresponding (∗),

dH1(Z ,X ) ⩽
1

κ
E [|∇(ψ − ϕ)(Z )|] .

(ii) For a general Z on M ,

dH2(Z ,X ) ⩽
2

κ
η E [ρ(Z ,X )] ,

where η is a positive constant depending only on ϕ and the geometry
of M .
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Examples.

(i) Take M = Sm. Then, the distance dH1 between two von Mises-Fisher
distributions X1 ∼ M(x1, c1) and X2 ∼ M(x2, c2) is bounded by

dH1(X1,X2) ⩽
|c2x2 − c1x1|

2κ

2∑
i=1

{ρ(x∗, xi ) + E [ρ(xi ,Xi )]} ,

where

x∗ =
c2x2 − c1x1
|c2x2 − c1x1|

.
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(ii) Take M = SO(m) with the bi-invariant metric determined by tr(AB)
for skew-symmetric A,B.

Take ϕ(S) = −c tr(S0S) with S0 ∈ SO(m) and the constant c > 0. Then,
dµϕ is a von Mises-Fisher distribution on SO(m).

If Z is a uniform random variable on SO(m) and

Hessϕ ⩾

(
2κ− (m − 2)

4

)
g

for some κ > 0, then

dH1(Z ,X ) ⩽
c

κ
E

[√
m − tr(Z 2)

]
.
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Stein’s method on manifolds: a fundamental condition

Ric+Hessϕ ⩾ 2κ g (∗)

for a constant κ > 0.

Assume that the condition (∗) holds. Then, there is a pair of coupled
diffusions (Xx ,t ,Yy ,t), both with generator Lϕ, s.t.

E [ρ(Xx ,t ,Yy ,t)
p] ⩽ ρ(x , y)p e−pκt , p ⩾ 1.
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Stein’s method on stratified spaces

Assume: top dimensional strata are joined by co-dimensional one strata
and each co-dimension one stratum lies on the boundary of more than 2
top dimensional strata, e.g. spiders, open books and tree spaces etc.

It is sufficient to concentrate on spiders.

0

T3
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For a fixed integer N > 2, let Γ be the space defined by

Γ = {x = (x , i) : x ⩾ 0; i = 1, · · · ,N},

where we identify (0, i), i = 1, · · · ,N, and call it O.

Let ϕi , i = 1, · · · ,N, be N C2([0,∞)) functions with ϕi (0) = ϕ1(0) and
with ci =

∫∞
0 e−ϕi (x) dx <∞. Then,

dµϕ(x) =
αi

N∑
k=1

αkck

e−ϕi (x) dx . for x = (x , i)

is a probability measure on Γ, where αi > 0 such that

N∑
i=1

αi = 1.

May 26, 2024 20 / 25



Stein’s method on stratified spaces: a version of the Stein
method?
It can be checked, using integration by parts, that, for given H on Γ, the
Fh on Γ defined by

Fh,i (x) = eϕi (x)
∫ x

0
e−ϕi (t)

Hi (t)−
αi

N∑
j=1

αjcj

∫ ∞

0
Hi (u) e

−ϕi (u) du

dt,

where Fh,i (x) = Fh(x) for x = (x , i), solves the Stein equation

F ′
h(x)− ϕ′(x)Fh(x) = H(x)− E [H(X )] ,

where X ∼ dµϕ, i.e.

dFh,i (x)

dx
− dϕi (x)

dx
Fh,i (x) = Hi (x)−

αi

N∑
j=1

αjcj

∫ ∞

0
Hi (u) e

−ϕi (u) du.

May 26, 2024 21 / 25



Stein’s method on stratified spaces: related diffusions?

Let Li be the operator on (0,∞) given by

LiFi (x) =
1

2

{
d2 Fi (x)

dx2
− dϕi (x)

dx

dFi (x)

dx

}
, for x > 0,

and define the operator Lϕ on C∞(Γ) by

LϕF (x) = LiFi (x) for x = (x , i),

where the domain D(Lϕ) consists of functions F ∈ C∞(Γ) satisfying the
condition

ρ(F ) =
N∑
i=1

αi
dFi
dx

(0) = 0.
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The Lϕ generates a Markov process X (t) = (x(t), i(t)) on Γ, which, inside
each leg Ii , is a diffusion process governed by Li . Then, there is a BM
B(t) and a continuous increasing process ℓ(t) such that

dx(t) = dB(t)− 1

2

dϕi(t)

dx
(x(t)) dt + dℓ(t),

where ℓ(t) increases only when x(t) = 0.

The process almost surely spends zero time at O.

If X (0) = O, αk is the probability that the process moves into Ik next.

The Itô formula becomes

dF (X (t)) =
dFi(t)
dx

(x(t)) dB(t) + LϕF (X (t)) dt + ρ(F ) dℓ(t).
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Stein’s method on stratified spaces: the Stein operator and
equation?

dµϕ is the invariant distribution of X (t).

IF there is a pair of coupled Markov processes (Xx(t),Yy (t)), both with
generator Lϕ, s.t.

E [d(Xx(t),Yy (t))
p] ⩽ d(x , y)p e−pκt , p = 1, 2,

for some κ > 0, then

Lϕ is the Stein operator for dµϕ.

The Stein equation for dµϕ:

H(x)− E [H(X )] = LϕFh(x),

with

Fh(x) =

∫ ∞

0
(E [H(X )]− E [H(Xx(t))]) dt.

The Stein equation can be used to study discrepancies between
random variables.

May 26, 2024 24 / 25



BUT,

unlike the case for manifolds, it is unclear under what conditions we
can construct a pair of Markov processes with the required
exponential decay (or perhaps weaker) property;

the difficulty arises due to the ‘local time’ term in the Itô formula for
the distance function.
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