
Fluids, diffeomorphisms, and shapes

Boris Khesin

(University of Toronto)

joint with Anton Izosimov (Univ. of Arizona)

May 2024, CIRM, France

Boris Khesin Fluids, diffeomorphisms, and shapes 1 / 27



Table of contents

1 Euler hydrodynamics

2 Geometry of Diff(M) and optimal transport

3 The motion of vortex sheets

4 Multiphase flows

5 Multiphase Hodge decomposition

6 Vorticity metric

7 Open questions and directions

Boris Khesin Fluids, diffeomorphisms, and shapes 2 / 27



Arnold’s setting for the Euler equation
M — a Riemannian manifold with volume form µ
v — velocity field of an inviscid incompressible fluid filling M
The classical Euler equation (1757) on v :

∂tv +∇vv = −∇p .

Here div v = 0 and v is tangent to ∂M.
∇vv is the Riemannian covariant derivative.

Theorem (Arnold 1966)

The Euler equation is the geodesic flow on the group G = Diffµ(M) of
volume-preserving diffeomorphisms w.r.t. the right-invariant L2-metric
E (v) = 1

2

∫
M
(v , v)µ (fluid’s kinetic energy).
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Application: Other groups and energies

Group Metric Equation

SO(3) ⟨ω,Aω⟩ Euler top
E(3) = SO(3) ⋉ R3 quadratic forms Kirchhoff equation for a body in a fluid

SO(n) Manakov’s metrics n-dimensional top
Diff(S1) L2 Hopf (or, inviscid Burgers) equation

Diff(S1) Ḣ1/2 Constantin-Lax-Majda-type equation
Virasoro L2 KdV equation
Virasoro H1 Camassa–Holm equation

Virasoro Ḣ1 Hunter–Saxton (or Dym) equation
Diffµ(M) L2 Euler ideal fluid
Diffµ(M) H1 averaged Euler flow
Sympω(M) L2 symplectic fluid
Diff(M) L2 EPDiff equation

Diffµ(M) ⋉ Vectµ(M)) L2 ⊕ L2 magnetohydrodynamics
C∞(S1, SO(3)) H−1 Heisenberg magnetic chain

Remark These are Hamiltonian systems on g∗ with the quadratic
Hamiltonian=kinetic energy for the Lie-Poisson bracket.

There are suitable functional-analytic settings of Sobolev (Hs for
s > 1 + n/2) and tame Fréchet (C∞) spaces.
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Exterior geometry of Diffµ(M) ⊂ Diff(M)

Dens(M) — the space of smooth density functions (“probability
densities”) on M:

Dens(M) = {ρ ∈ C∞(M) | ρ > 0,

∫
M

ρµ = 1} .

Note: Dens(M) = Diff(M)/Diffµ(M),
the space of (left) cosets of Diffµ(M),
with the projection
π : Diff(M) → Dens(M).

For a density ϱ := ρµ the fiber is
π−1(ϱ) = {φ ∈ Diff(M) | φ∗µ = ϱ}.

Define an L2-metric on Diff(M) by
Gφ(φ̇, φ̇) =

∫
M
|φ̇|2φµ.

It is flat for a flat M.

id

µ %

%̇

u
ϕ

ϕ̇

fi
b
re

fi
b
re

horizontal geodesic

geodesic

π

Diff(M)

Dens(M)

Boris Khesin Fluids, diffeomorphisms, and shapes 5 / 27



The Euler geodesic property for a flat M
Let a flow (t, x) 7→ g(t, x) be defined by its velocity field v(t, x):

∂tg(t, x) = v(t, g(t, x)), g(0, x) = x .

The chain rule immediately gives the acceleration

∂2ttg(t, x) = (∂tv +∇vv)(t, g(t, x)).

Geodesics on Diff(M) are straight lines, ∂2ttg(t, x) = 0, which is
equivalent to the Burgers equation

∂tv +∇vv = 0.

The Euler equation ∂tv +∇vv = −∇p is equivalent to

∂2ttg(t, x) = −(∇p)(t, g(t, x)),

which means that the acceleration ∂2ttg ⊥L2 Diffµ(M).

Hence the flow g(t, .) is a geodesic on the submanifold
Diffµ(M) ⊂ Diff(M) for the L2-metric.
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Kantorovich-Wasserstein L2-metric

Theorem (Otto 2000)

The left coset projection π is a Riemannian submersion with respect to
the L2-metric on Diff(M) and the Kantorovich-Wasserstein metric on
Dens(M).

Definition of the Kantorovich-Wasserstein L2-metric

The KW distance between µ, ν ∈ Dens(M):

Wass2(µ, ν) := inf{
∫
M

dist2M(x , φ(x))µ | φ∗µ = ν} .

The corresponding Riemannian metric on Dens(M):

Ḡρ(ρ̇, ρ̇) =

∫
M

|∇θ|2ρµ, for ρ̇+ div(ρ∇θ) = 0,

where ρ̇ ∈ C∞
0 (M) is a tangent vector to Dens(M) at the point ρµ.
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The motion of vortex sheets

Flows with vortex sheets have jump discontinuities in the velocity (the
velocity tangential component jumps, while the normal component is
continuous).

The Euler equations for a fluid flow
discontinuous along a vortex sheet Γ ⊂ M
are 

∂tu
+ +∇u+u+ = −∇p+,

∂tu
− +∇u−u− = −∇p−,

∂tΓ = unormal

where u = χ+
Γ u

+ + χ−
Γ u

− is the fluid
velocity, div u± = 0, unormal is the normal
to Γ component of u, while the pressure p
satisfies p+|Γ = p−|Γ.
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Vortex sheets as geodesics
Consider the space VS(M) of vortex sheets (of a given topological type)
in M, i.e. the space of hypersurfaces which bound fixed volume in M.
Define the following (weak) metric on VS(M). A tangent vector to a
point Γ ∈ VS(M) can be regarded as a vector field v attached at the
vortex sheet Γ ⊂ M and normal to it. Then its square length is set to be

⟨⟨v , v⟩⟩vs := inf
{
⟨u, u⟩L2(M) | divu = 0 and (u, ν) ν = v on Γ

}
where ⟨u, u⟩L2 :=

∫
M
(u, u)µ is the squared L2-norm of a vector field u

on M, and ν is the unit normal field to Γ.

Theorem (Loeschcke-Otto 2012)

Geodesics with respect to the metric ⟨⟨ , ⟩⟩vs on the space VS(M)
describe the motion of vortex sheets in an incompressible flow which is
globally potential outside of the vortex sheet (i.e. u± = ∇f ±).

Question: How to unify Arnold’s and Loeschcke-Otto’s geodesic
approaches?
Note: The metric ⟨⟨ , ⟩⟩vs makes VS(M) into an interesting shape space!
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Heuristics for the space of vortex sheets
Look at the same submersion picture with the following replacements:
the projection

Diff(M) → Dens(M), change to

Diffµ(M) → VS(M),

the fiber Diffµ(M) change to Diffµ,Γ(M) = {φ ∈ Diffµ(M) | φ(Γ) = Γ}.

”Theorem”: The projection
π : Diffµ(M) → VS(M) is a Riemannian
submersion of the L2-metric on Diff(M) to
the metric ⟨⟨ , ⟩⟩vs on VS(M).

”Proof”: This is the definition of ⟨⟨ , ⟩⟩vs.
”Corollary”: Arnold implies Loeschcke-Otto,
as horizontal(=potential) geodesics project to
geodesics on the base VS(M).

Problem: Fibers are L2-dense in Diffµ(M).
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Instead...

From fluids to multiphase
fluids...
From groups to groupoids...
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Multiphase flows and generalized flows

A multiphase fluid consists of several (or continuum of) fractions that
can freely penetrate through each other without resistance, but are
constrained by the conservation of the total volume form.
Example: homogenized vortex sheets or generalized flows by Y.Brenier.

Trajectories of particles in one-dimensional generalized flows for
(a) continuum of phases for the flip of the interval [0, 1] and
(b) a two-phase flow for the interval-exchange map [0, 1/2] ↔ [1/2, 1].
While a shortest curve on Diffµ(M) does not always exist
(A.Shnirelman), it does in the class of generalized flows (Y.Brenier).
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The Euler equation for multiphase flows

Multiphase flows on a mfd M are governed by the following equations:{
∂tuj +∇ujuj = −∇p ,

∂tµj + div(µjuj) = 0 .

Here µ1, . . . , µn ∈ C∞(M) are mass densities of n phases of the fluid
subject to the condition

∑n
j=1 µj = volM , the vector fields

u1, . . . , un ∈ vect(M) are the corresponding fluid velocities, and the
pressure p ∈ C∞(M) is common for all phases.

Dispersed two-phase flows: gas bubbles (or liquid droplets) dispersed in a
liquid or solid particles or droplets dispersed in gas.
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Lie groupoids for multiphase fluids

What is the group-type structure behind such fluids? This is the
“multiphase groupoid” G ⇒ B, a pair of sets with two maps to base B,
called the source and target maps, and a partial operation (g , h) 7→ gh
on G defined for all pairs g , h ∈ G such that src(g) = trg(h), satisfying
certain properties. For multiphase fluids base B = MDens(M) is

MDens(M) = {µ̄ := (µ1, ..., µn) | µi ∈ Dens(M), µj > 0,
∑

j
µj = volM} ,

with
∫
M
µj = cj for some fixed constants cj ∈ R.

The Lie groupoid G = MDiff(M) consists of n-tuples of diffeomorphisms
of M preserving the incompressibility property of multiphase densities, i.e.
the set of tuples (ϕ̄ ; µ̄, µ̄′) := (ϕ1, ..., ϕn;µ1, ..., µn, µ

′
1, ..., µ

′
n) where

ϕ̄∗µ̄ = µ̄′ component-wisely.
The composition is given by composition of diffeomorphisms:

(ψ̄ ; µ̄′, µ̄′′)(ϕ̄ ; µ̄, µ̄′) := (ψ̄ϕ̄ ; µ̄, µ̄′′) .
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Example: Classical vortex sheets

Classical vortex sheets are a particular case of multiphase fluids where the
densities are indicator functions of the connected components separated
by a hypersurface in M. Then the multiphase Lie groupoid becomes the
groupoid of volume-preserving diffeomorphisms of M discontinuous along
a hypersurface. Its elements are quadruples (Γ1, Γ2, ϕ

+, ϕ−), where Γ1, Γ2
are hypersurfaces (vortex sheets) in M confining the same total volume,
while ϕ± : D±

Γ1
→ D±

Γ2
are volume preserving diffeomorphisms between

connected components of M \ Γi . The multiplication of the quadruples is
given by the natural composition of discontinuous diffeomorphisms:
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Lie algebroid for multiphase fluids

What is the space of infinitesimal objects?

The corresponding Lie algebroid Mvect(M) is the space of possible
velocities of the multiphase fluid. It is a vector bundle over MDens(M)
where the fiber of Mvect(M) over a multiphase density µ̄ ∈ MDens(M)
is the space of multiphase vector fields on M “divergence-free” with
respect to the multiphase volume form µ̄, i.e. vector fields of the form
ū := (u1, ..., un), where ui ∈ Vect(M) are such that

∑
j Lujµj = 0.

Example

a) The case n = 1 gives an incompressible fluid in M.
b) The case of indicator densities µ± on D±

Γ corresponds to classical
vortex sheets. Note that the velocity fields on D±

Γ have the same normal
component on Γ (“impermeability” of Γ).
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The multiphase Euler equation as a geodesic flow

Theorem (A.Izosimov-B.K.)

The Euler equations {
∂tuj +∇ujuj = −∇p ,

∂tµj + div(µjuj) = 0 .

for a multiphase fluid flow are groupoid Euler-Arnold equations
corresponding to the L2-metric on the algebroid MVect(M).
Equivalently, these Euler equations are a geodesic equation for the
right-invariant L2-metric on (source fibers of) the Lie groupoid
MDiff(M) of multiphase volume-preserving diffeomorphisms.

For the case of a flat space M the geodesic nature of homogenized vortex
sheets was established by C.Loeschcke (2012).
The standard Euler hydrodynamical is a particular case of the above
equations with only one phase, n = 1.
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Hamiltonian framework and continuum of phases

Furthermore, these equations allow a Hamiltonian framework, an
analogue of the Hamiltonian property of the Euler-Arnold equation on
the dual to a Lie algebra with respect to the Lie-Poisson structure:

Theorem

The Euler equations for a multiphase flow written on the dual
MVect(M)∗ of the algebroid are Hamiltonian with respect to the natural
Poisson structure on the dual algebroid and the Hamiltonian function
given by the L2 kinetic energy.
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Generalized flows

The above extends mutatis mutandis to a “continuous” index i , i.e. to
multiphase flows where phases (fractions of the fluid) are enumerated by
a continuous parameter a ∈ A in a measure space A. This provides the
geodesic and Hamiltonian frameworks for generalized flows of Y.Brenier.
Generalized flows satisfy equations{

∂t(µaua) + div (µaua ⊗ ua) + µa∇p = 0 ,

∂tµa + div (µaua) = 0 ,

on the fraction velocities ua ∈ Vect(M), along with the constraint∫
A
µa da = 1 on the fraction densities µa ∈ C∞(M). The pressure

function p ∈ C∞(M) is common for all fractions.

Remark. An equivalent form is ∂tua +∇uaua = −∇p, while condition
div(

∫
A
µauada) = 0 is an analog of div u = 0 for the classical Euler

equation.
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Multiphase Hodge decomposition
Given a multiphase density µ̄ = (µ1, ..., µn) we introduce the (weighted)
L2 inner product: on a Riemannian M:

⟨ū, ū⟩µ̄ :=

∫
M

∑
i

(ui , ui )µi .

Recall that the multifield ū = (u1, ..., un) is µ̄-div-free if Lūµ̄ = 0.

Theorem

There is a generalized Hodge decomposition: given a multi-density µ̄, any
multiphase vector field v̄ admits a unique L2-orthogonal decomposition
v̄ = ū ⊕L2 ∇̄f , where f ∈ C∞(M), ∇̄f := (∇f , ...,∇f ), and ū is
µ̄-div-free.

Proof. Find f as a solution of the Poisson equation ∆µ̄f = divµ̄v̄ (i.e.∑
i divµi∇f =

∑
i divµi vi ). Then ū := v̄ − ∇̄f is µ̄-div-free and

∇̄f ⊥L2 ū, since
⟨∇̄f , ū⟩µ̄ =

∫
M

∑
i (∇f , ui )µi =

∫
M

∑
i f (divµiui )µi =

∫
M
f Lūµ̄ = 0.
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Computation of geodesics

Adapt the above computation above to multiphase fluids. Let a
multi-flow (t, xi ) 7→ gi (t, xi ) be defined by its velocity field vi (t, xi ):

∂tgi (t, xi ) = vi (t, gi (t, xi )), gi (0, xi ) = xi .

The same chain rule gives the acceleration

∂2tt ḡ(t, x̄) = (∂t v̄ +∇v̄ v̄)(t, ḡ(t, x̄)).

Again, the geodesics on Diff×n(M) are straight lines, and ∂2tt ḡ(t, x̄) = 0
is equivalent to the multi-Burgers equation ∂t v̄ +∇v̄ v̄ = 0.

Now the multi-phase Euler equation ∂t v̄ +∇v̄ v̄ = −∇̄p is equivalent to

∂2tt ḡ(t, x̄) = −(∇̄p)(t, ḡ(t, x̄)),

or the orthogonality of the acceleration ∂2tt ḡ ⊥L2 MDiff µ̄(M) in the
multiphase Hodge decomposition. Hence the flow ḡ(t, .) is a geodesic on
the submanifold MDiffµ(M) ⊂ Diff×n(M).
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Vorticity metric on vortex sheets

Recall the metric on VS(M). A tangent vector to a point Γ ∈ VS(M) is
a vector field v attached and normal to the vortex sheet Γ ⊂ M. Then

⟨⟨v , v⟩⟩vs := inf

{∫
M

(u, u)µ | divu = 0 and (u, ν) ν = v on Γ

}
where is a vector field u on M, and ν is the unit normal field to Γ.

Theorem

Consider the vortex sheet algebroid DVect(M) → VS(M), equipped with
the L2-metric. Then vortex sheets in potential flows evolve along
geodesics of a metric ⟨⟨v , v⟩⟩vs on VS(M) obtained as the projection of
the L2-metric on the algebroid DVect(M) to the base VS(M), the shape
space of diffeomorphic hypersurfaces bounding the same volume.

Explicitly, since the infimum of
∫
M
(u, u)µ is attained on gradient vector

fields u± = ∇f ±,...
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The vorticity metric explicitly is ...

Corollary

The vorticity metric ⟨⟨v , v⟩⟩vs on VS(M) has the following explicit
expression via the solution of the Neumann problem:

⟨⟨v , v⟩⟩vs =
∫
D+

Γ

(∇f +,∇f +)µ+

∫
D−

Γ

(∇f −,∇f −)µ ,

where ∆f ± = 0 in D±
Γ and the normal component of ∇f ± at Γ is v .

Equivalently,

⟨⟨v , v⟩⟩vs = ⟨(NtD+ +NtD−)v , v⟩L2(Γ) ,

where NtD± are the Neumann-to-Dirichlet operators on the domains D±
Γ .
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Properties of the vorticity metric

Remark 1. This vorticity metric ⟨⟨v , v⟩⟩vs is non-local in terms of v and
it is H−1/2-like (and unlike various Hs -types with s ≥ 0).

Indeed, the reconstruction of a harmonic potential from the normal
derivative data requires an integration of the fundamental solution in M
against the boundary data over Γ, hence nonlocality. The
Neumann-to-Dirichlet operators NtD± have order −1 as
pseudo-differential operators on the boundary Γ, hence the metric
⟨⟨v , v⟩⟩vs is H−1/2-like. A simpler version is ⟨⟨v , v⟩⟩′vs := ⟨NtD+v , v⟩L2(Γ) .

Remark 2. Regarding shapes Γ = ∂DΓ as measures µΓ supported on
DΓ := D+

Γ ⊂ M one can define the Wasserstein distance between the
shapes. Then

Wass(µΓ, µΓ̃) ≤ Distvs(Γ, Γ̃) .

Indeed, in both cases one takes the L2-norm of the vector fields moving
the shape/mass, but in the Wasserstein distance one minimizes over all,
not necessarily volume-preserving, diffeomorphisms of M.
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Open questions: Multiphase fluids and beyond

0) Study properties of this vorticity metric: curvatures, relation to
instability of vortex sheets, relation to water waves, etc.

1) Describe the groupoid geometry of barotropic multiphase fluids.

2) Vector densities are usually described by an n-tuple of densities on
which an n-tuple of diffeomorphisms acts, and there are coefficients for
mass exchanges between the components. Is the groupoid framework a
natural setting for optimal transport of vector densities?

3) Develop the H1 geometry of multi-phase fluids or vector-valued
information geometry.

4) Vector Madelung and multiphase fluids; their symplectic, Kähler, and
momentum map properties in the groupoid setting.
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THANK YOU!
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