Long-time existence of Brownian motion on configurations of two landmarks

Talk by Karen Habermann on joint work with Philipp Harms and Stefan Sommer

Bulletin of the London Mathematical Society, Vol. 56 (2024), No. 5, 1658-1679

Geometric Sciences in Action: from geometric statistics to shape analysis (CIRM, Luminy, May 2024)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation: Phylogenetic trees

© Darwin

© Espeland et al.

<ロト <回ト < 注ト < 注ト

э

Motivation: Matching MRI scans

- Templates can be used for the identification of structures in Magnetic Resonance Images (MRI) of brains.
 - Template can represent the prototypical structure of the brain of someone developing Alzheimer's disease.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Templates are matched to the MRI scan of an individual.
- Interpolating time dependent data which may arise as a result of follow-up studies of the brain or which are given in the form of historical data such as butterfly wing shapes.

Motivation: Matching MRI scans

- Templates can be used for the identification of structures in Magnetic Resonance Images (MRI) of brains.
 - Template can represent the prototypical structure of the brain of someone developing Alzheimer's disease.
 - Templates are matched to the MRI scan of an individual.
- Interpolating time dependent data which may arise as a result of follow-up studies of the brain or which are given in the form of historical data such as butterfly wing shapes.
- Imagery are assumed characterised via sets of landmarks: To reduce the analysis to objects in a finite dimensional space, the boundary of a shape in ℝ^d for d ≥ 2 is commonly represented by a sequence of n distinct points in ℝ^d.

Landmark configuration spaces

C Hipsley

ヘロト ヘロト ヘビト ヘビト

э

・ロト・西ト・ヨト・ヨー つへぐ

 Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework models shape variations as diffeomorphic deformations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework models shape variations as diffeomorphic deformations.
- The optimal diffeomorphic match is constructed to minimise a running smoothness cost ||Lv||² associated with a differential operator L on the velocity field generating diffeomorphisms whilst simultaneously minimising the matching end point condition of the landmarks.

- Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework models shape variations as diffeomorphic deformations.
- The optimal diffeomorphic match is constructed to minimise a running smoothness cost ||Lv||² associated with a differential operator L on the velocity field generating diffeomorphisms whilst simultaneously minimising the matching end point condition of the landmarks.
- In diffeomorphic landmark matching two landmark configurations $q, p \in Q$ are matched by solving the optimisation problem

$$\min_u \int_0^1 \|u_t\|_V^2 \mathrm{d}t$$
 subject to $arphi_1.q = p$

where $\frac{\partial \varphi_t}{\partial t} = u_t \circ \varphi_t$ with $\varphi_0 = \mathrm{Id}_{\mathbb{R}^d}$.

• Two landmark configurations $q, p \in Q$ are matched by solving the optimisation problem

$$\min_{u} \int_{0}^{1} \|u_t\|_{V}^{2} \,\mathrm{d}t \quad \text{subject to} \quad \varphi_{1.q} = p$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where
$$\frac{\partial \varphi_t}{\partial t} = u_t \circ \varphi_t$$
 with $\varphi_0 = \mathrm{Id}_{\mathbb{R}^d}$.

• Two landmark configurations $q, p \in Q$ are matched by solving the optimisation problem

$$\min_{u} \int_{0}^{1} \|u_t\|_V^2 \,\mathrm{d}t \quad \text{subject to} \quad \varphi_1.q = p$$

where
$$\frac{\partial \varphi_t}{\partial t} = u_t \circ \varphi_t$$
 with $\varphi_0 = \operatorname{Id}_{\mathbb{R}^d}$.

Norm || · ||_V stems from an inner product ⟨·, ·⟩_V on 𝔅_c(ℝ^d) such that the completion of 𝔅_c(ℝ^d) with respect to this norm is a Hilbert space V with positive reproducing kernel K: ℝ^d × ℝ^d → ℝ^{d×d}.

• Two landmark configurations $q, p \in Q$ are matched by solving the optimisation problem

$$\min_{u} \int_{0}^{1} \|u_t\|_V^2 \,\mathrm{d}t \quad \text{subject to} \quad \varphi_1.q = p$$

where
$$\frac{\partial \varphi_t}{\partial t} = u_t \circ \varphi_t$$
 with $\varphi_0 = \operatorname{Id}_{\mathbb{R}^d}$.

- Norm || · ||_V stems from an inner product ⟨·, ·⟩_V on 𝔅_c(ℝ^d) such that the completion of 𝔅_c(ℝ^d) with respect to this norm is a Hilbert space V with positive reproducing kernel K: ℝ^d × ℝ^d → ℝ^{d×d}.
- The optimisation problem is equivalent to the geodesic boundary value problem for a suitable Riemannian metric g on Q, and any minimiser u generates a diffeomorphic flow φ: [0,1] → Diff_c(ℝ^d) which projects down to a geodesic in Q.

Norm || · ||_V stems from an inner product ⟨·, ·⟩_V on 𝔅_c(ℝ^d) such that the completion of 𝔅_c(ℝ^d) with respect to this norm is a Hilbert space V with positive reproducing kernel K: ℝ^d × ℝ^d → ℝ^{d×d}.

The optimisation problem is equivalent to the geodesic boundary value problem for a suitable Riemannian metric g on Q, and any minimiser u generates a diffeomorphic flow φ: [0,1] → Diff_c(ℝ^d) which projects down to a geodesic in Q.

Norm || · ||_V stems from an inner product ⟨·, ·⟩_V on 𝔅_c(ℝ^d) such that the completion of 𝔅_c(ℝ^d) with respect to this norm is a Hilbert space V with positive reproducing kernel K: ℝ^d × ℝ^d → ℝ^{d×d}.

The optimisation problem is equivalent to the geodesic boundary value problem for a suitable Riemannian metric g on Q, and any minimiser u generates a diffeomorphic flow φ: [0,1] → Diff_c(ℝ^d) which projects down to a geodesic in Q.
 The cometric g⁻¹ admits a simple description in terms of the reproducing kernel K, namely, for q ∈ Q and covectors ξ, η ∈ T^{*}_aQ,

$$g_q^{-1}(\xi,\eta) = \sum_{i,j=1}^n \xi_i^\top K(q_i,q_j)\eta_j .$$

Norm || · ||_V stems from an inner product ⟨·, ·⟩_V on 𝔅_c(ℝ^d) such that the completion of 𝔅_c(ℝ^d) with respect to this norm is a Hilbert space V with positive reproducing kernel K: ℝ^d × ℝ^d → ℝ^{d×d}.

The optimisation problem is equivalent to the geodesic boundary value problem for a suitable Riemannian metric g on Q, and any minimiser u generates a diffeomorphic flow φ: [0,1] → Diff_c(ℝ^d) which projects down to a geodesic in Q.
 The cometric g⁻¹ admits a simple description in terms of the reproducing kernel K, namely, for q ∈ Q and covectors ξ, η ∈ T^{*}_aQ,

$$g_q^{-1}(\xi,\eta) = \sum_{i,j=1}^n \xi_i^\top K(q_i,q_j)\eta_j .$$

Our analysis is based on this formula alone and does not make use of its geometric origins.

• The cometric g^{-1} admits a simple description in terms of the reproducing kernel K, namely, for $q \in Q$ and covectors $\xi, \eta \in T_q^*Q$,

$$g_q^{-1}(\xi,\eta) = \sum_{i,j=1}^n \xi_i^\top K(q_i,q_j)\eta_j .$$

• The cometric g^{-1} admits a simple description in terms of the reproducing kernel K, namely, for $q \in Q$ and covectors $\xi, \eta \in T_q^*Q$,

$$g_q^{-1}(\xi,\eta) = \sum_{i,j=1}^n \xi_i^\top K(q_i,q_j)\eta_j .$$

We restrict our attention to kernels which are invariant under rotations and translations. This assumption is satisfied in most important examples.

• The cometric g^{-1} admits a simple description in terms of the reproducing kernel K, namely, for $q \in Q$ and covectors $\xi, \eta \in T_q^*Q$,

$$g_q^{-1}(\xi,\eta) = \sum_{i,j=1}^n \xi_i^\top K(q_i,q_j)\eta_j .$$

- We restrict our attention to kernels which are invariant under rotations and translations. This assumption is satisfied in most important examples.
- We consider positive definite kernels of the form

$$K \colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{d \times d}, \qquad (q_i, q_j) \mapsto k(\|q_i - q_j\|_{\mathbb{R}^d}) I_d$$

where $k \colon (0,\infty) \to \mathbb{R}$ is a scalar function.

- We restrict our attention to kernels which are invariant under rotations and translations. This assumption is satisfied in most important examples.
- We consider positive definite kernels of the form

 $K \colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{d \times d}, \qquad (q_i, q_j) \mapsto k(\|q_i - q_j\|_{\mathbb{R}^d})I_d$ where $k \colon (0, \infty) \to \mathbb{R}$ is a scalar function.

- We restrict our attention to kernels which are invariant under rotations and translations. This assumption is satisfied in most important examples.
- We consider positive definite kernels of the form

 $K \colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{d \times d}, \qquad (q_i, q_j) \mapsto k(\|q_i - q_j\|_{\mathbb{R}^d})I_d$ where $k \colon (0, \infty) \to \mathbb{R}$ is a scalar function.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Examples:

$$k_{1/2}(r) = e^{-r}$$

 $k_{3/2}(r) = 2(1+r)e^{-r}$
 $k_G(r) = e^{-r^2}$

- We restrict our attention to kernels which are invariant under rotations and translations. This assumption is satisfied in most important examples.
- ▶ We consider positive definite kernels of the form $K : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{d \times d}, \qquad (q_i, q_j) \mapsto k(\|q_i - q_j\|_{\mathbb{R}^d})I_d$ where $k : (0, \infty) \to \mathbb{R}$ is a scalar function.

Examples:

 $k_{1/2}(r) = e^{-r} = 1 - r + o(r) ,$ $k_{3/2}(r) = 2(1 + r)e^{-r} = 2 - r^2 + o(r^2) ,$ $k_G(r) = e^{-r^2} = 1 - r^2 + o(r^3) .$

▲□▶▲圖▶▲≧▶▲≧▶ ≧ りへぐ

The key observation is that for a radial kernel, the distance between the two landmarks is a diffusion process, whose dynamics is characterised by a scalar stochastic differential equation.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The key observation is that for a radial kernel, the distance between the two landmarks is a diffusion process, whose dynamics is characterised by a scalar stochastic differential equation.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

•
$$Q = \{q = (x, y) : x, y \in \mathbb{R}^d \text{ with } x \neq y\} \text{ and } \lambda = k(0).$$

The key observation is that for a radial kernel, the distance between the two landmarks is a diffusion process, whose dynamics is characterised by a scalar stochastic differential equation.

▶
$$Q = \{q = (x, y) : x, y \in \mathbb{R}^d \text{ with } x \neq y\}$$
 and $\lambda = k(0)$.
▶ For $q = (x, y) \in Q$,

$$K(q) = \begin{pmatrix} \lambda I_d & k(\|x-y\|_{\mathbb{R}^d})I_d \\ k(\|x-y\|_{\mathbb{R}^d})I_d & \lambda I_d \end{pmatrix}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The key observation is that for a radial kernel, the distance between the two landmarks is a diffusion process, whose dynamics is characterised by a scalar stochastic differential equation.

▶
$$Q = \{q = (x, y) : x, y \in \mathbb{R}^d \text{ with } x \neq y\}$$
 and $\lambda = k(0)$.
▶ For $q = (x, y) \in Q$,

$$K(q) = \begin{pmatrix} \lambda I_d & k(\|x-y\|_{\mathbb{R}^d})I_d \\ k(\|x-y\|_{\mathbb{R}^d})I_d & \lambda I_d \end{pmatrix}.$$

The distance process (r_t)_{t∈[0,ζ)} between the two landmarks solves the Itô stochastic differential equation

$$dr_t = \sigma(r_t) dB_t + b(r_t) dt$$

where $\sigma(r) = \sqrt{2(\lambda - k(r))}$ and
$$b(r) = \frac{((d-1)k(r) - \lambda)k'(r)}{\lambda + k(r)}.$$

Theorem (H, Harms, Sommer – BLMS, 2024)

Let Q be the landmark manifold of pairs of distinct points in \mathbb{R}^d . Suppose that k extends continuously differentiable on $(0, \infty)$, and has a bounded and Lipschitz continuous derivative on $[1, \infty)$ such that it defines a positive radial kernel $K \colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$. Moreover, suppose that, for $D, \gamma > 0$, as $r \downarrow 0$,

$$k(0) - k(r) = Dr^{\gamma} + o(r^{\gamma}) .$$

Then the Riemannian manifold is Brownian complete if $\gamma \geq 2$, whilst it is Brownian incomplete if $\gamma < 2$.

Theorem (H, Harms, Sommer – BLMS, 2024)

Let Q be the landmark manifold of pairs of distinct points in \mathbb{R}^d . Suppose that k extends continuously differentiable on $(0, \infty)$, and has a bounded and Lipschitz continuous derivative on $[1, \infty)$ such that it defines a positive radial kernel $K \colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{d \times d}$. Moreover, suppose that, for $D, \gamma > 0$, as $r \downarrow 0$,

$$k(0) - k(r) = Dr^{\gamma} + o(r^{\gamma}) .$$

Then the Riemannian manifold is Brownian complete if $\gamma \geq 2$, whilst it is Brownian incomplete if $\gamma < 2$.

Sketch of proof.

Follow the classification for singular points of one-dimensional diffusion processes by Cherny and Engelbert.

Numerical simulations

Results for d = 1 and n = 2 with 20 sample paths. First column for $k_{1/2}$, second column for $k_{3/2}$, and third column for Gaussian kernel. First row shows the log-distances between the landmarks for all sample paths as a function of t, stopped if collision occurs. Second row shows position of the two landmarks versus time for the sample path attaining the smallest inter-landmark distance, again stopped if the landmarks collide.

Numerical simulations

Results for d = 2 and n = 2. Setup as in the previous figure. In the bottom row, the plots show each coordinate q_t^i , i = 1, 2, of the landmarks separately. Whilst the landmarks temporarily come close for all kernels, a rapid decrease in the distance is observed only for the kernel $k_{1/2}$, which indicates collision.