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Motivation: Matching MRI scans

I Templates can be used for the identification of structures in
Magnetic Resonance Images (MRI) of brains.
I Template can represent the prototypical structure of the brain

of someone developing Alzheimer’s disease.
I Templates are matched to the MRI scan of an individual.

I Interpolating time dependent data which may arise as a result
of follow-up studies of the brain or which are given in the form
of historical data such as butterfly wing shapes.

I Imagery are assumed characterised via sets of landmarks:
To reduce the analysis to objects in a finite dimensional space,
the boundary of a shape in Rd for d ≥ 2 is commonly
represented by a sequence of n distinct points in Rd.
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Large Deformation Diffeomorphisms Landmark Matching

I Large Deformation Diffeomorphic Metric Mapping (LDDMM)
framework models shape variations as diffeomorphic
deformations.

I The optimal diffeomorphic match is constructed to minimise a
running smoothness cost ‖Lv‖2 associated with a differential
operator L on the velocity field generating diffeomorphisms
whilst simultaneously minimising the matching end point
condition of the landmarks.

I In diffeomorphic landmark matching two landmark
configurations q, p ∈ Q are matched by solving the
optimisation problem

min
u

∫ 1

0
‖ut‖2V dt subject to ϕ1.q = p

where ∂ϕt

∂t = ut ◦ ϕt with ϕ0 = IdRd .
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Large Deformation Diffeomorphisms Landmark Matching

I Two landmark configurations q, p ∈ Q are matched by solving
the optimisation problem

min
u

∫ 1

0
‖ut‖2V dt subject to ϕ1.q = p

where ∂ϕt

∂t = ut ◦ ϕt with ϕ0 = IdRd .

I Norm ‖ · ‖V stems from an inner product 〈·, ·〉V on Xc(Rd)
such that the completion of Xc(Rd) with respect to this norm
is a Hilbert space V with positive reproducing kernel
K : Rd × Rd → Rd×d.

I The optimisation problem is equivalent to the geodesic
boundary value problem for a suitable Riemannian metric g on
Q, and any minimiser u generates a diffeomorphic flow
ϕ : [0, 1]→ Diffc(Rd) which projects down to a geodesic in Q.
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ϕ : [0, 1]→ Diffc(Rd) which projects down to a geodesic in Q.

I The cometric g−1 admits a simple description in terms of the
reproducing kernel K, namely, for q ∈ Q and covectors
ξ, η ∈ T ∗qQ,

g−1q (ξ, η) =
n∑

i,j=1

ξ>i K(qi, qj)ηj .

Our analysis is based on this formula alone and does not
make use of its geometric origins.
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ξ, η ∈ T ∗qQ,

g−1q (ξ, η) =

n∑
i,j=1

ξ>i K(qi, qj)ηj .

I We restrict our attention to kernels which are invariant under
rotations and translations. This assumption is satisfied in
most important examples.

I We consider positive definite kernels of the form

K : Rd × Rd → Rd×d, (qi, qj) 7→ k(‖qi − qj‖Rd)Id

where k : (0,∞)→ R is a scalar function.



Large Deformation Diffeomorphisms Landmark Matching

I The cometric g−1 admits a simple description in terms of the
reproducing kernel K, namely, for q ∈ Q and covectors
ξ, η ∈ T ∗qQ,

g−1q (ξ, η) =

n∑
i,j=1

ξ>i K(qi, qj)ηj .

I We restrict our attention to kernels which are invariant under
rotations and translations. This assumption is satisfied in
most important examples.

I We consider positive definite kernels of the form

K : Rd × Rd → Rd×d, (qi, qj) 7→ k(‖qi − qj‖Rd)Id

where k : (0,∞)→ R is a scalar function.



Large Deformation Diffeomorphisms Landmark Matching

I The cometric g−1 admits a simple description in terms of the
reproducing kernel K, namely, for q ∈ Q and covectors
ξ, η ∈ T ∗qQ,

g−1q (ξ, η) =

n∑
i,j=1

ξ>i K(qi, qj)ηj .

I We restrict our attention to kernels which are invariant under
rotations and translations. This assumption is satisfied in
most important examples.

I We consider positive definite kernels of the form

K : Rd × Rd → Rd×d, (qi, qj) 7→ k(‖qi − qj‖Rd)Id

where k : (0,∞)→ R is a scalar function.



Large Deformation Diffeomorphisms Landmark Matching

I We restrict our attention to kernels which are invariant under
rotations and translations. This assumption is satisfied in
most important examples.

I We consider positive definite kernels of the form

K : Rd × Rd → Rd×d, (qi, qj) 7→ k(‖qi − qj‖Rd)Id

where k : (0,∞)→ R is a scalar function.

Examples:

k1/2(r) = e−r

k3/2(r) = 2(1 + r)e−r

kG(r) = e−r
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I We restrict our attention to kernels which are invariant under
rotations and translations. This assumption is satisfied in
most important examples.

I We consider positive definite kernels of the form

K : Rd × Rd → Rd×d, (qi, qj) 7→ k(‖qi − qj‖Rd)Id

where k : (0,∞)→ R is a scalar function.

Examples:

k1/2(r) = e−r = 1− r + o(r) ,

k3/2(r) = 2(1 + r)e−r = 2− r2 + o(r2) ,

kG(r) = e−r
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= 1− r2 + o(r3) .



Brownian motion of two landmarks

I The key observation is that for a radial kernel, the distance
between the two landmarks is a diffusion process, whose
dynamics is characterised by a scalar stochastic differential
equation.

I Q = {q = (x, y) : x, y ∈ Rd with x 6= y} and λ = k(0).
I For q = (x, y) ∈ Q,

K(q) =

(
λId k(‖x− y‖Rd)Id

k(‖x− y‖Rd)Id λId

)
.

I The distance process (rt)t∈[0,ζ) between the two landmarks
solves the Itô stochastic differential equation

drt = σ(rt) dBt + b(rt) dt

where σ(r) =
√

2(λ− k(r)) and

b(r) =
((d− 1)k(r)− λ)k′(r)

λ+ k(r)
.
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solves the Itô stochastic differential equation

drt = σ(rt) dBt + b(rt) dt

where σ(r) =
√

2(λ− k(r)) and

b(r) =
((d− 1)k(r)− λ)k′(r)

λ+ k(r)
.



Brownian motion of two landmarks

Theorem (H, Harms, Sommer – BLMS, 2024)

Let Q be the landmark manifold of pairs of distinct points in Rd.
Suppose that k extends continuously differentiable on (0,∞), and
has a bounded and Lipschitz continuous derivative on [1,∞) such
that it defines a positive radial kernel K : Rd × Rd → Rd×d.
Moreover, suppose that, for D, γ > 0, as r ↓ 0,

k(0)− k(r) = Drγ + o(rγ) .

Then the Riemannian manifold is Brownian complete if γ ≥ 2,
whilst it is Brownian incomplete if γ < 2.

Sketch of proof.

Follow the classification for singular points of one-dimensional
diffusion processes by Cherny and Engelbert.
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Numerical simulations
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Results for d = 1 and n = 2 with 20 sample paths. First column for k1/2,
second column for k3/2, and third column for Gaussian kernel. First row
shows the log-distances between the landmarks for all sample paths as a
function of t, stopped if collision occurs. Second row shows position of
the two landmarks versus time for the sample path attaining the smallest
inter-landmark distance, again stopped if the landmarks collide.
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Results for d = 2 and n = 2. Setup as in the previous figure. In the
bottom row, the plots show each coordinate qit, i = 1, 2, of the
landmarks separately. Whilst the landmarks temporarily come close for all
kernels, a rapid decrease in the distance is observed only for the kernel
k1/2, which indicates collision.


