

Score matching and sub-Riemannian bridges

Geometric Sciences in Action: from geometric statistics to shape analysis, Luminy

Erlend Grong, erlend.grong@uib.no

Monday, May 27, 2024

Joint work with Karen Habermann (Warwick) and Stefan Sommer (Copenhagen)

Motivation

Motivation

Assume that we have a given Stratonovich SDE

$$dX_t = \sum_{j=1}^k \sigma_j(X_t) \circ dW_t^j + \sigma_0(X_t)dt, \qquad X_0 = X_0.$$

Many techniques for simulating paths (Euler-Maryama etc). But what about bridges?

Brownian Bridge processes in \mathbb{R}^d

In \mathbb{R}^d , we can force a Brownian motion W_t a process to hit the point x_T at time T by adding a non-homogeneous drift

$$dY_t = dW_t + \frac{1}{T - t}(Y_t - x_T)dt.$$

Diffusion with an elliptic generator

$$dX_t = \sum_{j=1}^k \sigma_j(X_t) \circ dW_t^j + \sigma_0(X_t)dt, \qquad X_0 = X_0.$$

Infinitesimal generator $\frac{1}{2}(\sum_{i=1}^k \sigma_j^2 + 2\sigma_0)$, which is assumed to be elliptic. Let $p_t(x,y)$ be its transition densities with respect to some smooth volume measure,

$$P(X_t \in U|X_s = x) = \int_M p_{t-s}(x, y) d\mu(x).$$

We need the score
$$S_t(x, y) = \nabla^y \log p_t(x, y)$$
.

Uses that the density is positive and smooth. For short time, we have $S_t(x,y) \approx -\frac{1}{t}\Sigma(x)^{-1}(y-x)$, $\Sigma = \sigma\sigma^{\top}$.

Diffusion with an elliptic generator

$$dX_t = \sum_{j=1}^k \sigma_j(X_t) \circ dW_t^j + \sigma_0(X_t)dt, \qquad X_0 = X_0.$$

Let $p_t(x, y)$ be its transition densities with respect to some smooth volume measure.

We need the score
$$S_t(x_0, y) = \nabla^y \log p_t(x_0, y)$$
.

If $p_t(x, y)$ is symmetric, then we can find $Y_t = X_t | (X_T = X_T)$ as solution of

$$dY_t = \sum_{j=1}^k \sigma_j(Y_t) \circ dW_t^j + \sigma_0(Y_t)dt + S_{T-t}(X_T, Y_t).$$

If the generator is not symmetric, we can define an SDE for $\bar{Y}_t = Y_{T-t}$ which also uses the score.

So everything is fine if we know the score. But what if we do not? Intractable in practice.

Solution: Score matching

$$dX_t = \sum_{j=1}^R \sigma_j(X_t) \circ dW_t^j + \sigma_0(X_t)dt, \qquad X_0 = X_0$$

- 1. Simulate several sample path.
- 2. Use clever tricks to define a loss function associated to these samples for which (an approximation) of the score is the minimum, but which does not use the score itself.
- 3. Get a neural network to learn the score.

Assumed elliptic generators.

Why we want to go beyond elliptic generators

$$dX_t = \sum_{j=1}^k \sigma_j(X_t) \circ dW_t^j + \sigma_0(X_t)dt, \qquad X_0(X) = X.$$

What if we introduce multiple conditions

$$X_T(x_{0,i}) = x_{T,i}, \qquad i = 1, \dots, n$$

Can be considered as a bridge process in the landmark space $\mathbb{M} = \{(x_1, \dots, x_n) : x_i \neq x_i\}$ of the SDE

$$d\mathbf{X}_t = \sum_{j=1}^R \boldsymbol{\sigma}_j(\mathbf{X}_t) \circ dW_t^j + \boldsymbol{\sigma}_0(\mathbf{X}_t) dt, \quad \boldsymbol{\sigma}_j(\mathbf{X}_1, \dots, \mathbf{X}_n) = (\sigma_j(\mathbf{X}_1), \dots, \sigma_j(\mathbf{X}_n)).$$

Will loose ellipticity when size of landmark space exceeds k.

In this talk, I will present score matching for bridge processes, where we do not necessarily have an elliptic generator

G, Habermann, Sommer Score matching for sub-Riemannian bridge sampling. arXiv:2404.15258

More on score matching and geometry:

- De Bortoli et al., Riemannian Score-Based Generative Modelling. Advances in Neural Information Processing Systems, 2022.
- Heng et al., Simulating diffusion bridges with score matching. arXiv:2111.07243.

In this talk, I will present score matching for bridge processes, where we do not necessarily have an elliptic generator

G, Habermann, Sommer Score matching for sub-Riemannian bridge sampling. arXiv:2404.15258

More on landmarks and geometry:

- Sommer, Arnaudon, Kuhnel, and Joshi. Bridge Simulation and Metric Estimation on Landmark Manifolds. Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics, 2017.
- G., Vega-Molino, Controllability of shapes through Landmark Manifolds. arXiv:2403.08090.
- G., Sommer, Most probable paths for developed processes, arXiv:2211.15168.

Stochastic processes and

sub-Riemannian geometry

SDEs and geometry

$$dX_t = \sum_{j=1}^k \sigma_j(X_t) \circ dW^j + \sigma_0(X_t)dt, \qquad X_0 = x_0.$$

- If $g^* = \sum_{j=1}^k \sigma_j(x) \otimes \sigma_j(x)$ is an invertible then we can define a corresponding Riemannian metric g.
- Sub-Riemannian: that $\sigma_1, \ldots, \sigma_k$ along with their iterated brackets span the tangent bundle.

For any collection of vector fields, around a generic point, we can reduce our consideration to one of the above cases by restricting to a submanifold.

Similarities and differences

	Rie.	Sub-Rie.
Associated distance d_g	√	✓
Associated gradient	✓	✓
Smooth probability density	✓	✓
Positive probability density	✓	✓
$-2t \log p_t(x, y) = d_g(x, y)^2 + O(t)$	✓	✓
$g^* = \Sigma = \sigma \sigma^{\top}$ invertible	✓	
Parallel transport	✓	
d_g Lipchitz equiv. to $\ \cdot\ $	✓	

Similarities and differences

Simplified: if $\sigma_1, \ldots, \sigma_k$ linearly independent, then we can define it as an orthonormal basis of a subbundle E with inner product $\langle \cdot, \cdot \rangle_q$ and define a distance

$$d_g(x,y) = \inf_{\substack{c \text{ from } x \text{ to } y \\ c \text{ tangent to } E}} \int_0^T \langle \dot{c}(t), \dot{c}(t) \rangle_g^{1/2} dt$$

- If g is Riemannian, $d_g(x_0, y) \approx ||x_0 y||$
- If g is sub-Riemannian,

$$d_{g}(x_{0},y) \approx |x_{0}^{1} - y^{1}| + \dots + |x_{0}^{k} - y^{k}|$$

$$+ |x_{0}^{k+1} - y^{k+1}|^{1/2} + \dots + |x_{0}^{k_{2}} - y^{k_{2}}|^{1/2} +$$

$$+ \dots + |x_{0}^{k_{s-1}+1} - y^{k_{s-1}+1}|^{1/s} + \dots + |x_{0}^{k_{s}} - y^{k_{s}}|^{1/s}$$

More references

On the distance

- Bellaïche. The tangent space in sub-Riemannian geometry. 1996.
- Montgomery. A tour of subriemannian geometries, their geodesics and applications, 2002.

Smooth, positive density with short-time asymptotics.

- Hörmander. Hypoelliptic second order differential equations. 1967.
- Stroock, Varadhan. On the support of diffusion processes with applications to the strong maximum principle. 1972.
- Léandre. Majoration/Minoration en temps petit de la densité d'une diffusion dégénéré. 1987.

Equations for bridge-processes

Diffusions and conditions

$$dX_t = \sum_{i=1}^R \sigma_i(X_t) \circ dW^i + \sigma_0(X_t)dt, \qquad X_0 = X_0.$$

The generator of this process is $\frac{1}{2}L$ with

$$L = \sum_{j=1}^k \sigma_j^2 + 2\sigma_0.$$

We can define a horizontal gradient of a function $\nabla^E f = \sum_{j=1}^k (\sigma_j f) \sigma_j$. If $d\mu$ is a volume density, we can define

$$\Delta f = \Delta_{E,g,d\mu} f = \operatorname{div}_{d\mu} \nabla^{E} f.$$

Symmetric with respect to $d\mu$. We can write $L = \Delta + 2Z$.

Diffusions and conditions

$$dX_t = \sum_{j=1}^R \sigma_j(X_t) \circ dW^j + \sigma_0(X_t)dt, \qquad X_0 = X_0.$$

The generator $\frac{1}{2}L = \frac{1}{2}(\Delta + 2Z)$.

Lemma

Let $p_t(x, y)$ be the heat kernel with respect to $d\mu$. Let Y_t be the result of conditioning X. on $X_T = x_T$. Then Y_t has generator

$$\frac{1}{2}L + \nabla^{X,E} \log p_{T-t}(\cdot, X_T).$$

Idea of proof: Doob h-transform, $h_t = p_{T-t}(x, x_T)$, transition density of Y_t is $p_{s,t}^h(x,y) = p_{t-s}(x,y) \frac{h_t(y)}{h_s(x)}$.

Diffusions and conditions

$$dX_t = \sum_{j=1}^R \sigma_j(X_t) \circ dW^j + \sigma_0(X_t)dt, \qquad X_0 = X_0.$$

The generator $\frac{1}{2}L = \frac{1}{2}(\Delta + 2Z)$.

Lemma

Let $p_t(x,y)$ be the heat kernel with respect to $d\mu$. Let Y_t be the result of conditioning X. on $X_T = x_T$. Then $\overline{Y}_t = Y_{T-t}$ has generator

$$\frac{1}{2}\Delta - Z + \nabla^{y,E} \log p_{T-t}(x_0,\cdot).$$

Note that we now only need the score from the initial point, so we are free to change the final point.

Finding the loss function

We define the score as

$$S_t(x,y) = \nabla^{y,E} \log p_t(x,y).$$

We define the loss functions

$$\mathscr{E}(\theta) = \int_0^1 \mathbb{E}^{\mathsf{x}_0} \left(\|\mathsf{S}_t^{\theta}(\mathsf{X}_t) - \mathsf{S}_t(\mathsf{x}_0, \mathsf{X}_t)\|_g^2 \right) dt$$

where S^{θ} is an estimated score depending on parameters θ in the neural network.

How do we minimize this loss without knowing the true score?

Method 1: Divergence method

Lemma

$$\mathscr{E}(\theta) = \int_0^T \mathbb{E}^{X_0} \left(\|S_t^{\theta}(X_t)\|_q^2 + 2\operatorname{div} S_t^{\theta}(X_t) \right) dt + C$$

Idea of proof: Integration by parts, and being a bit careful.

Method 1: Divergence method

Lemma

$$\mathscr{E}(\theta) = \int_0^T \mathbb{E}^{x_0} \left(\|S_t^{\theta}(X_t)\|_q^2 + 2 \operatorname{div} S_t^{\theta}(X_t) \right) dt + C$$

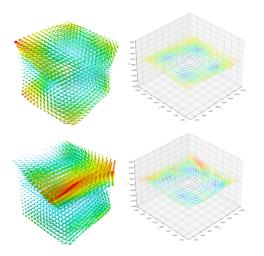
Discretized: Sample paths $X^{(1)}, \ldots, X^{(K)}, t_i = i \cdot \Delta t$,

$$\mathscr{E}(\theta) - C \approx \frac{\Delta t}{K} \sum_{l=1}^K \sum_{i=1}^n \left(\left\| \mathsf{S}_{t_i}^{\theta}(\mathsf{X}_{t_i}^{(l)}) \right\|_g^2 + 2(\mathsf{div}_{d\mu} \, \mathsf{S}_{t_i}^{\theta})(\mathsf{X}_{t_i}^{(l)}) \right).$$

Results: Model tries to move derivatives away from sample values.

Method 1: Divergence method

Results: Model tries to move derivatives away from sample values. Low row: divergence method. Upper row: Our final method.



How do we generate our samples. Write X_t on Itô form,

$$dX_t = \sum_{j=1}^k \sigma_j(X_t) dW_t^j + \tau(X_t) dt, \qquad X_0 = X_0$$

We approximate with $t_i = i \cdot \Delta t$, $W_{s,t} = W_t - W_s$,

$$\hat{X}_{t_{i+1}} = \hat{X}_{t_i} + \sum_{i=1}^k \sigma_j(\hat{X}_{t_i}) W_{t_i, t_{i+1}} + \tau(\hat{X}_{t_i}) \cdot \Delta t.$$

If we define $\Sigma = \sigma \sigma^{\top}$, then

$$(\hat{X}_{t_{i+1}}|\hat{X}_{t_i}=x) \sim N(x+\Delta t \cdot \tau(x), \Delta t \cdot \Sigma(x)).$$

$$(\hat{X}_{t_{i+1}}|\hat{X}_{t_i}=x) \sim N(x + \Delta t \cdot \tau(x), \Delta t \cdot \Sigma(x)).$$

In the Riemannian case ($\Sigma(x)$ full rank, d=k), then \hat{X}_t hat transitional densities $\hat{p}_t(x,y)$, for $t \leq \Delta t$,

$$\hat{p}_t(x, y + x + t \cdot \tau(x)) = \frac{1}{t^{d/2} \sqrt{2\pi \det(\Sigma(x))}} \cdot \exp\left(-\frac{1}{2t} \langle y, \Sigma(x)^{-1} y \rangle\right)$$

$$(\hat{X}_{t_{i+1}}|\hat{X}_{t_i}=x) \sim N(x+\Delta t \cdot \tau(x), \Delta t \cdot \Sigma(x)).$$

In the Riemannian case ($\Sigma(x)$ full rank). then \hat{X}_t transitional densities $\hat{p}_t(x,y)$. Approximation of score

$$S_t(x,y) \approx \nabla^y \hat{p}_t(x,y) = -\frac{1}{t} \sum_{j=1}^n \left\langle \sigma_j(y), y - x - t\tau(x) \right\rangle_g \sigma_j(y)$$

$$\mathscr{E}(\theta) = \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E}^{\mathsf{x}_0} \left(\left\langle \mathsf{S}_t^{\theta}(\mathsf{X}_t), \mathsf{S}_t^{\theta}(\mathsf{X}_t) - 2\mathsf{S}_{t-t_i}(\mathsf{X}_{t_i}, \mathsf{X}_t) \right\rangle \right) dt + C$$

$$(\hat{X}_{t_{i+1}}|\hat{X}_{t_i}=x) \sim N(x+\Delta t \cdot \tau(x), \Delta t \cdot \Sigma(x)).$$

 $\hat{p}_t(x,y)$, Approximation of score

$$S_t(x,y) \approx \nabla^y \hat{p}_t(x,y) = -\frac{1}{t} \sum_{j=1}^n \left\langle \sigma_j(y), y - x - t\tau(x) \right\rangle_{g(x)} \sigma_j(y)$$

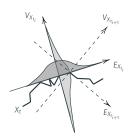
$$\mathscr{E}(\theta) = \sum_{i=0}^{n-1} \int_{t_i}^{t_{i+1}} \mathbb{E}^{x_0} \left(\left\langle S_t^{\theta}(X_t), S_t^{\theta}(X_t) - 2S_{t-t_i}(X_{t_i}, X_t) \right\rangle \right) dt + C$$

$$\approx \frac{\Delta t}{K} \sum_{l=1}^{K} \sum_{i=0}^{n-1} \sum_{j=1}^{d} S_t^{\theta, j}(X_{t_{t+1}}^{(l)})$$

$$\cdot \left(S^{\theta, j}(X_{t_{i+1}}^{(l)}) + \frac{1}{\Delta t} \sum_{r=1}^{d} \left\langle \sigma_j(X_{t_{i+1}}^{(l)}), \sigma_r(X_{t_i}^{(l)}) \right\rangle_{g(X_{t_i})} W_{t_i, t_{i+1}}^{(l), r} \right)$$

$$(\hat{X}_{t_{i+1}}|\hat{X}_{t_i}=x) \sim N(x+\Delta t \cdot \tau(x), \Delta t \cdot \Sigma(x)).$$

If X_t is sub-Riemannian , then $(\hat{X}_{t_{i+1}}|\hat{X}_{t_i}=x)$ is supported on $\Delta t \tau(x) + E_x$ with E_x span of σ_j . Hence $\nabla^{y,E} \hat{p}_t(x,y)$ is not defined in general.



We use $\frac{d}{ds} \sum_{i=1}^{k} \hat{p}_t(x_0, y + s\sigma_j(x))\sigma_j(y)|_{s=0}$, instead but not ideal.

Method 3: Stochastic Taylor expansion

$$dX_t = \sum_{i=1}^k \sigma_j(X_t) \circ dW_t^j + \sigma_0(X_t)dt.$$

Define
$$W_t^0 = t$$
, $\sigma_{\alpha}^j = \sigma_{\alpha_1} \sigma_{\alpha_2} \cdots \sigma_{\alpha_l} x^j$,

$$J_{s,t}^{\alpha} = \int_{s < t_1 < \dots < t_l < t} \circ dW_{t_1}^{\alpha_1} \circ \dots \circ dW_{t_i}^{\alpha_l}.$$

Define $l(\alpha) = \text{length and } n(\alpha) = \text{number of zeros. If}$

$$\hat{X}_{t_i+t} = \sum_{l(\alpha)+n(\alpha) \leq 2\gamma} J^{\alpha}_{t_i,t_i+t} \cdot \boldsymbol{\sigma}_{\alpha}(\hat{X}_{t_i}), \qquad \textit{for } t \in [0,\Delta t].$$

Then under appropriate growth conditions on σ_{lpha} ,

$$\mathbb{E}^{\mathsf{X}_0}\left(\sup_{0\leq t\leq T}\|\mathsf{X}_t-\hat{\mathsf{X}}_t\|\right)\leq \mathsf{C}(\Delta t)^{\gamma}.$$

Method 3: Stochastic Taylor expansion ($\gamma = 1$)

For $t \in [t_i, t_{i+1}]$, we obtain

$$\hat{X}_{t} = \hat{X}_{t_{i}} + (t - t_{i}) \sigma_{0}(\hat{X}_{t_{i}}) + \sum_{j=1}^{k} W_{t_{i},t}^{j} \sigma_{j}(\hat{X}_{t_{i}})
+ \sum_{j,l=1}^{k} \int_{t_{i}}^{t} W_{t_{i},s}^{j} \circ dW_{s}^{l} \sigma_{(j,l)}(\hat{X}_{t_{i}})
= \hat{X}_{t_{i}} + (t - t_{i}) \sigma_{0}(\hat{X}_{t_{i}}) + \sum_{j=1}^{k} W_{t_{i},t}^{j} \sigma_{j}(\hat{X}_{t_{i}})
+ \frac{1}{2} \sum_{j,l=1}^{k} W_{t_{i},t}^{j} W_{t_{i},t}^{l} \sigma_{(j,l)}(\hat{X}_{t_{i}}) + \sum_{1 \leq j < l \leq k} A_{t_{i},t}^{j,l}(\sigma_{(j,l)} - \sigma_{(l,j)})(\hat{X}_{t_{i}}),$$

where $A_{s,t}^{j,l} = \frac{1}{2} \int_s^t (W_{s,r}^j \circ dW_r^l - W_{s,r}^l \circ dW_r^j)$ is the so-called Lévy area.

Method 3: Stochastic Taylor expansion ($\gamma=1$)

Theorem (HGS 24)

If σ_i , $[\sigma_i, \sigma_j]$ spans the tangent bundle everywhere, then \hat{X}_t has a smooth positive density.

Idea of proof: We make a fiber bundle $F \to \mathbb{R}^d$ and we can lift the process there and show that this is sub-Riemannian. Then we average over each fiber for the result.

Method 3: Stochastic Taylor expansion ($\gamma = 1$)

For approximating the score

$$-2t \log p_t(x_0, y) = d_g(x_0, y)^2$$

\times |x_0^1 - y^1|^2 + \cdots + |x_0^k - y^k|^2 + |x_0^{k+1} - y^{k+1}| + \cdots + |x_0^d - y^d|

whenever σ_i , $[\sigma_i, \sigma_j]$ spans the tangent bundle everywhere. Approach

- Take steps according to approximations using the Taylor expansions and approximations of the Levi area.
- Using the above identity (perhaps scaled with some constants for each coordinate) to approximate the score.

Equation on \mathbb{R}^3 (done for d = 2k + 1 in the paper):

$$dX_t = \left(\partial_X - \frac{X_t^2}{2}\partial_Z\right) \circ dW_t^1 + \left(\partial_Y + \frac{X_t^1}{2}\partial_Z\right) \circ dW_t^2$$

Stochastic Taylor expansion X_t equals X_t itself: Solution

$$X_{t} = X_{s} \cdot X_{s,t},$$

$$X_{s,t} = (W_{s,t}^{1}, W_{s,t}^{2}, A_{s,t}),$$

$$W_{s,t}^{j} = W_{t}^{j} - W_{s}^{j}, \qquad A_{s,t} = \frac{1}{2} \int_{0}^{t} (W_{s,r}^{1} \circ dW_{r}^{2} - W_{s,r}^{2} \circ dW_{r}^{1}).$$

$$(x_{1}, y_{1}, z_{1}) \cdot (x_{2}, y_{2}, z_{2}) = (x_{1} + x_{2}, y_{1} + y_{2}, z_{1} + z_{2} + 1/2 \cdot (x_{1}y_{2} - x_{2}y_{1}))$$

Equation on \mathbb{R}^3 (done for d = 2k + 1 in the paper):

$$dX_t = \left(\partial_x - \frac{X_t^2}{2}\partial_z\right) \circ dW_t^1 + \left(\partial_y + \frac{X_t^1}{2}\partial_z\right) \circ dW_t^2$$

Stochastic Taylor expansion X_t equals X_t itself. Approximation

$$\begin{split} \hat{X}_{t_{i+1}} &= \hat{X}_{t_i} \cdot \Delta_i X, \\ \Delta_i X &= \left(\Delta_i W^1, \Delta_i W_{s,t}^2, \Delta_i A_{s,t} \right), \\ \Delta_i A &= \frac{1}{2} \left(\Delta_i c_{2,1} \Delta_i W^1 - \Delta_i c_{1,1} \Delta_i W^2 \right) \\ &+ \frac{1}{2} \sum_{m=1}^{K_2-1} \left(\Delta_i c_{1,m} \Delta_i c_{2,m+1} - \Delta_i c_{1,m+1} \Delta_i c_{2,m} \right) \\ \Delta_i W^j &\sim N(0, \Delta t), \qquad \Delta_i c_{j,m} \sim N\left(0, \frac{\Delta t}{2m+1} \right). \end{split}$$

$$q_0, q \in \mathbb{R}^3$$
:

$$\sigma = \partial_x - y/2\partial_z, \qquad \tau = \partial_y + x/2\partial_z.$$

$$dX_t = \sigma(X_t) \circ dW_t^1 + \tau(X_t) \circ dW_t^2. \text{ Sub-Riemannian distance}$$

$$d_g(q_0, q) = d_g(0, q_0^{-1} \cdot q) =: f(q_0^{-1} \cdot q).$$

$$f(x, y, 0)^2 = x^2 + y^2, \qquad f(0, 0, z)^2 = 4\pi |z|.$$

$$f(x, y, z)^2 \approx \hat{f}(x, y, z)^2 = x^2 + y^2 + 4\pi |z|.$$

$$\nabla^E \hat{f}^2 = 2(x - \pi y \operatorname{sgn}(|z|))\sigma + 2(y + \pi x \operatorname{sgn}(|z|))\tau$$

Score estimation comparison for the Heisenberg group.

$$\text{Minimizing } \mathscr{E}(\theta) = \sum_{i=0}^{n-1} \int_0^{\Delta t} e_{t_i,t_i+t}(\theta) \, dt + C \approx \sum_{i=0}^{n-1} \Delta_i \mathscr{E}(\theta) + C$$

$$\hat{X}_{t_{i+1}} = \hat{X}_{t_i} \cdot \Delta_i \hat{X}_i$$
. Estimated score $S^{\theta} = S^{\theta,1} \sigma + S^{\theta,2} \tau$.

• Euler-Maruyama: $\Delta_i X = (\Delta_i W^1, \Delta_i W^2, 0)$,

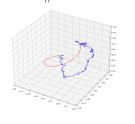
$$\Delta_i\mathscr{E}_i(\theta) = \left\| (S^{\theta,1}, S^{\theta,1}) - \frac{1}{t}(W^1, W^2) \right\|^2.$$

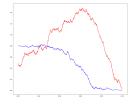
• Taylor: $\Delta_i X = (\Delta_i W^1, \Delta_i W^2, \Delta_i A)$,

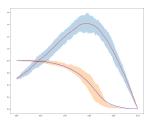
$$\Delta_{i}\mathscr{E}_{i}(\theta) = \left\| (S^{\theta,1}, S^{\theta,1}) - \frac{1}{t}(W^{1}, W^{2}) - \frac{\operatorname{sgn}(X_{t}^{3})}{t}(-W^{2}, W^{1}) \right\|^{2}.$$

• Taylor: $\Delta_i X = (\Delta_i W^1, \Delta_i W^2, \Delta_i A)$,

$$\Delta_{i}\mathscr{E}_{i}(\theta) = \left\| (S^{\theta,1}, S^{\theta,1}) - \frac{1}{t}(W^{1}, W^{2}) - \frac{\mathsf{sgn}(X_{t}^{3})}{t}(-W^{2}, W^{1}) \right\|^{2}.$$







Thank you very much Merci beaucoup