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Motivation



Assume that we have a given Stratonovich SDE

k
dX = oj(X) o dW, + oo(X)dt,  Xo =Xo.
j=1

Many techniques for simulating paths (Euler-Maryama etc). But
what about bridges?



Brownian Bridge processes in R?

In RY, we can force a Brownian motion W; a process to hit the
point xy at time T by adding a non-homogeneous drift

dwzdm+?%#W—th



Diffusion with an elliptic generator

dXe = 34 0j(Xe) o dW, + oo(X)dt,  Xo = Xo.

Infinitesimal generator %(ZL sz + 200), which is assumed to
be elliptic. Let p¢(x,y) be its transition densities with respect to
some smooth volume measure,

P(Xt € UlXs = X) = [y Pr—s(X, y)dpu(X).

We need the score Si(x,y) = VY log pt(X, y).

Uses that the density is positive and smooth. For short time,

we have Si(x,y) & —1Z(X)"'(y —X), L = o0 .



Diffusion with an elliptic generator

dXe = Y24 0j(Xe) o AW, + oo(X)dt,  Xo = Xo.
Let pt(x,y) be its transition densities with respect to some
smooth volume measure.

We need the score S¢(xo,y) = V¥ log pt(Xo, ).

If pe(x,y) Is symmetric, then we can find Y: = X¢|(X7 = x7) as
solution of
k
dyt = Z Uj(yt) o dWJt + O'Q(Yt)dt + ST—t(XT7 Yt)
j=1
If the generator is not symmetric, we can define an SDE for
Y: = Y7_t which also uses the score.

So everything is fine if we know the score. But what if we do
not? Intractable in practice.



Solution: Score matching

R
=1

1. Simulate several sample path.

2. Use clever tricks to define a loss function associated to
these samples for which (an approximation) of the score
is the minimum, but which does not use the score itself.

3. Get a neural network to learn the score.

Assumed elliptic generators.



Why we want to go beyond elliptic generators

R
dXe = 0j(Xe) o dW, + oo (Xe)dt,  Xo(x) =x.
j=1

What if we introduce multiple conditions

XT(XO’,‘) = XT,is = 1,...,n
Can be considered as a bridge process in the landmark space
M = {(x1,...,Xn) : X; # x;} of the SDE

kR
axi = Z O'j(xt)Odet—FO'()(Xt)dt, O'j(X1, ceyXp) = (O'j(X1), e aj(Xn)).
j=1

Will loose ellipticity when size of landmark space exceeds k.



In this talk, | will present score matching for bridge processes,
where we do not necessarily have an elliptic generator

[ G, Habermann, Sommer
Score matching for sub-Riemannian bridge sampling.
arxXivi2404.15258

More on score matching and geometry:

- De Bortoli et al,, Riemannian Score-Based Generative
Modelling. Advances in Neural Information Processing
Systems, 2022.

- Heng et al, Simulating diffusion bridges with score
matching. arXiv:2111.07243.



In this talk, I will present score matching for bridge processes,
where we do not necessarily have an elliptic generator

[@ G, Habermann, Sommer
Score matching for sub-Riemannian bridge sampling.
arXiv:2404.15258

More on landmarks and geometry:

- Sommer, Arnaudon, Kuhnel, and Joshi. Bridge Simulation
and Metric Estimation on Landmark Manifolds. Graphs in
Biomedical Image Analysis, Computational Anatomy and
Imaging Genetics, 2017.

- G., Vega-Molino, Controllability of shapes through
Landmark Manifolds. arXiv:2403.08090.

- G, Sommer, Most probable paths for developed
processes, arXiv:2211.15168.



Stochastic processes and
sub-Riemannian geometry



SDEs and geometry

R
dXe =Y oj(Xe) o dW + oo(X)dt,  Xo = Xo.
j=1

- Ifg* = Z;; oj(X) ® oj(x) is an invertible then we can
define a corresponding Riemannian metric g.

- Sub-Riemannian: that o1, ..., 0, along with their iterated
brackets span the tangent bundle.

For any collection of vector fields, around a generic point, we
can reduce our consideration to one of the above cases by

restricting to a submanifold.



Similarities and differences

Sub-Rie.
v

=
)

RS SN NN NN =3

Associated distance dg
Associated gradient

Smooth probability density
Positive probability density
—2tlog pe(X,y) = dg(X,y)? + O(t)
g* =% =00 invertible
Parallel transport

dg Lipchitz equiv. to || - ||

SNENENEN
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Similarities and differences

Simplified: if o1,..., 0 linearly independent, then we can
define it as an orthonormal basis of a subbundle E with inner
product (-, -)g and define a distance
.
o0 y) = inf / (&), (02 dt
0

cfromxtoy
ctangentto E

- If g is Riemannian, dq(xo,y) =< |IXo — V|
- If g is sub-Riemannian,
dg(X0,¥) = [xo = V| + -+ Ix§ = V"
+ |Xg+1 _yk+1|1/2 R |ng _ykz|1/2+

+ -+ ‘XSS*VH _yks—1+1‘1/5 N |ng _y/?5|'|/5

n



More references

On the distance

- Bellaiche. The tangent space in sub-Riemannian
geometry. 1996.

- Montgomery. A tour of subriemannian geometries, their
geodesics and applications, 2002.

Smooth, positive density with short-time asymptotics.

- Hormander. Hypoelliptic second order differential
equations. 1967.

- Stroock, Varadhan. On the support of diffusion processes
with applications to the strong maximum principle. 1972.

- Léandre. Majoration/Minoration en temps petit de la
densite d’'une diffusion dégenére. 1987.
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Equations for bridge-processes




Diffusions and conditions

R
dXe =D 0j(X) 0 AW + oo (Xe)dt,  Xo = Xo.
j=1

The generator of this process is %L with

k
L= ZU/'Z + 209.
j=1
We can define a horizontal gradient of a function

VEf = Zfﬂ(ajf)aj. If du is a volume density, we can define

Af = AE,g,duf: divdu vEf
Symmetric with respect to du. We can write L = A + 22

13



Diffusions and conditions

k
dXe =Y oj(Xe) o dW + oo(X)dt,  Xo = Xo.
j=1
The generator L = (A + 22).
Lemma
Let pi(x,y) be the heat kernel with respect to du. Let Y: be the
result of conditioning X. on X; = x1. Then Y; has generator

1
§L + V*Flog pr_i(-, x7)-

Idea of proof: Doob h-transform, hy = pr_¢(x, x7), transition
density of Y¢ is pll(x,¥) = pr_s(x,¥) h;“X’)
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Diffusions and conditions

R
dXe =D 0j(X) 0 AW + oo (Xe)dt,  Xo = Xo.
j=1

The generator L = J(A + 22).
Lemma
Let pt(x,y) be the heat kernel with respect to du. Let Y; be the

result of conditioning X. on Xr = x1. Then Y = Y7r_¢ has
generator

1
A-Z+ V' log pr_t(xo, -)-

Note that we now only need the score from the initial point, so
we are free to change the final point.
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Finding the loss function




We define the score as

SI(X) y) = vy,E IOg pt(Xa y)

We define the loss functions
T
£(6) = / £ (JIS206) — Se(ko. X)) ot
0

where S? is an estimated score depending on parameters 6 in
the neural network.

How do we minimize this loss without knowing the true score?



Method 1: Divergence method

Lemma
&) = [ B (||SIX)|I2 + 2divSI(X,)) dt+C

Idea of proof: Integration by parts, and being a bit careful.



Method 1: Divergence method

Lemma
= [ E (ISEX)1% + 2divSY(X,)) dt+C

Discretized: Sample paths X, ... x(®) t; = . At

—Cw~ 722 (H59 x())H + 2(divg, S (x“)) .

=1 i=1

Results: Model tries to move derivatives away from sample
values.



Method 1: Divergence method

Results: Model tries to move derivatives away from sample
values. Low row: divergence method. Upper row: Our final
method.
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Method 2: Euler-Maruyama approximation

How do we generate our samples. Write X; on 1to form,

k
axy = Z U}(Xt) dWJt + T(Xt) dt, Xo = Xo
J=1

We approximate with t; =i - At, Wsy = Wy — W,

R
)A<t/'+1 - )AQ/' + Z UJ(Xti)Wtht/’H + T(Xti) AL
j=1

If we define ¥ = oo, then

(Rl = x) ~ N(x+ At 700, A T(0)).
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Method 2: Euler-Maruyama approximation

(Ko % = x) ~ N(x 4 At-7(x), At - 2(x)).

i+1

In the Riemannian case (£(x) full rank, d = k), then X; hat
transitional densities p(x, y), for t < At,

:
/2, /27 det(Z(x))

e (5300 T0 )

pe(x,y +x+t-7(x))
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Method 2: Euler-Maruyama approximation

(KiK. = X) ~ N(x + At 7(X), At - Z(x)).

i+1

In the Riemannian case (X(x) full rank). then X; transitional
densities p¢(x,y). Approximation of score

n

i) = VBixY) = 3 D {oi0).y — X tr(x))g (1)
j=1

n—1

s0) =3 / e (<5?(xt),5?(xt) - 25t_t,.(xt,.,xt)>) dt+C
i=0 7t
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Method 2: Euler-Maruyama approximation

Ko 1R = %) ~ N(X—i—At-T(X),At-Z(X)).

pi(x,y), Approximation of score

n

Se(xy) = VVbi(x,y) = —% D (W)Y =X = tr(X)) g oY)

=

n—1

0= / i ((S200),S10) — 2504 (%)) ) dit + €

j=0 "

K d
K Z ZS?} tr+w
(=1 i=0 j=1

d
(s‘”( XY+ 12 3o )0 e, §)t,+1>

r=1

n—1
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Method 2: Euler-Maruyama approximation

(K. K = X) ~ N(x + At 7(X), At - z(x)>.

i+1
If X; is sub-Riemannian , then (X, |X;, = x) is supported on
Atr(x) + Ex with E, span of a;. Hence VV£py(x,y) is not defined
in general.

We use % ZJ’-; pr(Xa, Y + soj(x))oj(y)|s=o, instead but not ideal. 2



Method 3: Stochastic Taylor expansion

R
dXe =) 0j(Xe) o dW, + ao(X:)dt.
j=1

Define W? =t o, = OarOay oa,Xj,

J?tZ/ odWg" o -+ o0 dW".
’ s<ty<-<t <t '
Define [(«) = length and n(a) = number of zeros. If

Xeove= > e oalfy),  for te[0, Al
[(a)+n(e)<2vy

Then under appropriate growth conditions on o,

E ( sup_||X: —>A<t||> < C(AY)”.
0<t<T
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Method 3: Stochastic Taylor expansion (y = 1)

Fort € [t;, tj1q], we obtain
k
X = Xt +(t_t)0'0(Xt +ZWt ey Xtv)
j=1

+Z/W o dW. o y(Xs,)

=1

=X + (t—t) oo(Xe) +ZWt co(Xe)
j=1

R
1 i | ~ ~
o W W)+ Y Aoy o)),
Jl=1 1<j<I<k
where A, = 1 [{(W,, o dWi — WL, o dW}) is the so-called Lévy

area.
26



Method 3: Stochastic Taylor expansion (y = 1)

Theorem (HGS 24)
If o1, [0, 0] spans the tangent bundle everywhere, then X: has a

smooth positive density.

Idea of proof: We make a fiber bundle F — R? and we can lift
the process there and show that this is sub-Riemannian. Then
we average over each fiber for the result.

27



Method 3: Stochastic Taylor expansion (y = 1)

For approximating the score

- Ztlogpt(XO7y) - dg(X07y)2
A e e e R ] L P VU I AR P Vel

whenever o}, [0}, 0j] spans the tangent bundle everywhere.
Approach

- Take steps according to approximations using the Taylor
expansions and approximations of the Levi area.

- Using the above identity (perhaps scaled with some
constants for each coordinate) to approximate the score.

28



Method 3 Example: Heisenberg group

Equation on R3 (done for d = 2k + 1 in the paper):
X? X!
X, = (aX _ ;az) o dW! + <ay + 2taZ> o dI?
Stochastic Taylor expansion X; equals X; itself: Solution
Xt = Xs ‘Xs,u

Xs,t = (Wl,ta Wg,taAs,t) )
1
2
(X1, Y1, 21) - (X2, V2, 22) = (X1 +X2, Y1 + V2,21 +22 +1/2 - (X1Y2 — XaV1))

. . ) t
Woo= Wi Wy, Ase=5 [ (W0 dW? — V2 o du)).
0
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Method 3 Example: Heisenberg group

Equation on R3 (done for d = 2k + 1 in the paper):
X2 X!
Stochastic Taylor expansion X; equals X; itself. Approximation
Kiy =X - A,
DX = (AW, AW L, AjAsy)
1
AA =5 (Ajco 1 AW — Ajci1AW?)

K1
1
+5 Z (AicimAiCo,mi1 — AiC1m+1AiCom)

m=1

| At
AW ~N(O,At),  Ajgm~N <0’ 2m+1> '

30



Method 3 Example: Heisenberg group

do,q € R*:
o= 0x—Yy/20,, T = 0y + X/20;.
dX; = o(X¢) o dW] + 7(X¢) o dW?. Sub-Riemannian distance
dg(q0. ) = dg(0,95" - 9) = f(qy ' - )-
fix,y,002 =x>+v*,  f(0,0,2)* = 4x|z].

fx,y. 27 = fx, .2 =5 4+ v + b,
VER = 2(x — mysgn(|z]))o + 2(y + mxsgn(|z]))T

31



Method 3 Example: Heisenberg group

Score estimation comparison for the Heisenberg group.

n—1 At n—1

Minimizing &(6) = Z/ et 4e(0)dt+Cr Y NE(O) +C
0

i=0 i=0

Xi.. = Xe - AKX Estimated score S¢ = S%g 4- 5927,

i+1
- Euler-Maruyama: AX = (A;W', AW?,0),

2
8i6(0) = (5°7,5%) ~ v

- Taylor: AX = (AW', AW?, AA),

2
A,(op,((g) — H(59,1759,1) - %(W1, VVZ) sgn( )( WZ W1)

32



Method 3 Example: Heisenberg group

: Tay[or: AIX = (A[W1,A1W2’ AiA),

Aiéi(0) = H(50’1750’1) - ;(W1, W?) — . 2 p2,wh
= e ’
‘\ 777}%"/ A‘/{/ ‘/" ) V\"'\ \\(
> \\ k"




Thank you very much
Merci beaucoup
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