An implicit formulation for incorporating different priors into a deformation model

Geometric Sciences in Action: from geometric statistics to shape analysis

Barbara Gris

bgris.maths@gmail.com
LJLL, Sorbonne Université, Paris

Joint work with Benjamin Charlier (Université de Montpellier), Stanley Durrleman
(ICM, Paris), Adel Redjimi (Sorbonne Université), Alain Trouvé (ENS
Paris-Saclay), Josua Sassen (ENS Paris-Saclay)
Work partially supported by the City of Paris.

Idea: characterizing the difference between two shapes thanks to the "best" diffeomorphism transforming one into the other.

D'Arcy Thompson (On Growth and Form, 1917)

Theorem

Let $v \in L^{1}\left([0,1], C_{0}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)$, then

$$
\left\{\begin{array}{l}
\varphi_{t=0}^{v}=l d \\
\partial_{t} \varphi_{t}^{v}=v_{t} \circ \varphi_{t}^{v}
\end{array}\right.
$$

has a unique continuous solution called the flow of v. For all t, φ_{t}^{v} is a diffeomorphism.
J. Glaunes (2005). Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l'anatomie numérique.

Shape registration

$$
\min _{v \in U \subset L^{1}\left([0,1], C_{0}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)}\left\{\int_{0}^{1} c\left(v_{t}\right) \mathrm{d} t+\lambda D\left(\varphi_{t=1}^{v} \cdot S, T\right)\right\}
$$

Large deformation diffeomorphic metric mappings (LDDMM) ${ }^{12}$

$$
\min _{v \in L^{2}([0,1], V)}\left\{\int_{0}^{1}\left|v_{t}\right|_{V}^{2} \mathrm{~d} t+\lambda D\left(\varphi_{t=1}^{v} \cdot S, T\right)\right\}
$$

[^0]Implicit priors in deformation models
L Introduction
-Shape registration with large deformations

Charon, N., Trouvé, A. (2013). The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM Journal on Imaging Sciences, 6(4), 2547-2580.

Implicit priors in deformation models
L Introduction
-Shape registration with large deformations

Basipetal

Acropetal

Diffuse/Equal

Two main possibilities:
 - Defining local field generators ${ }^{34567}$
 - Setting shape-dependent metric on the space of vector fields ${ }^{89}$

[^1]
DEFORMATION MODULE

- Extend space of shape $q=(\tilde{q}, \theta)$
- $v_{q}: h \in H \longrightarrow v_{q, h} \in V_{q}$
- cost : $\left|v_{q, h}\right|^{2} \leq M c_{q}(h)$
- Combination:
- $q=(\tilde{q}, \theta, \psi)$
- $V_{q}=V_{\theta}+V_{\psi}$
- Trajectories s.t. $\exists v_{t} \in V_{q}$: $\dot{q}_{t}=\left(v_{t} \cdot \tilde{q}_{t}, v_{t} \cdot \theta_{t}, v_{t} \cdot \psi_{t}, \ldots\right)$

Gris, B., Durrleman, S., Trouvé, A. (2018). A sub-riemannian modular framework for diffeomorphism-based analvsis of shape ensembles. SIAM Journal on Imaaina Sciences. 11(1). 802-833.

Modular registration

$J(q, h)=\int c_{q}(h)+\lambda D\left(\varphi_{t=1}^{v_{q, h}} \cdot S, T\right)$
with $\dot{q}_{t}=v_{q_{t}, h_{t}} \cdot q_{t}$.

- Defining modules
- Minimizing J

Modules:

- Pose:
- Global translation
- Global rotation
- Strap lengths:
- local translations with transported direction
\llcorner Deformation modules
Example: explicit module

LDeformation modules
-Example: explicit module

Basipetal

Acropetal

Diffuse/Equal

- Defining $v_{q}: H \mapsto V_{q}$ from properties to satisfy
$v_{q, h}=\operatorname{argmin}\left\{\left.|v|_{V}^{2}+\frac{1}{\nu} \right\rvert\, S_{q}(v) S_{q}(v)-A_{q}(h)\right.$
- Evaluation operator S
- Observation operator A
- Model: S and A
- Explicit expression for $v_{q, h}$

Lacroix, L., Charlier, B., Trouvé, A., Gris, B. (2021). IMODAL: creating learnable user-defined deformation models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12905-12913).

$$
v_{q, h}=\operatorname{argmin}\left\{|v|_{V}^{2}+\frac{1}{\nu}\left|S_{q}(v)-A_{q}(h)\right|^{2}\right\}
$$

- $S_{q}(v)=\left(v\left(x_{1}\right), \ldots, v\left(x_{N}\right)\right), q=\left(x_{1}, \ldots, x_{N}\right) \in \mathcal{O} \doteq\left(\mathbb{R}^{d}\right)^{N}$
- $A_{q}(h)=\left(K_{q}+\nu / d\right) h\left(h_{1}, \ldots, h_{N}\right)$, $h=\left(h_{1}, \ldots, h_{N}\right) \in H \doteq\left(\mathbb{R}^{d}\right)^{N}$
- $v_{q, h}=\sum_{i} K\left(x_{i}, \cdot\right) h_{i}$
- $c_{q}(h)=\left(h \mid\left(K_{q}+\nu l d\right) h\right)$

$$
v_{q, h}=\operatorname{argmin}\left\{|v|_{V}^{2}+\frac{1}{\nu}\left|S_{q}(v)-A_{q}(h)\right|^{2}\right\}
$$

- $S_{q}(v)=\left(v\left(x_{1}\right), \ldots, v\left(x_{N}\right), \alpha \operatorname{div}(v)\left(x_{1}\right), \ldots, \alpha \operatorname{div}(v)\left(x_{N}\right)\right)$,

$$
q=\left(x_{1}, \ldots, x_{N}\right) \in \mathcal{O} \doteq\left(\mathbb{R}^{d}\right)^{N}
$$

- $A_{q}(h)=\left(h_{1}, \ldots, h_{N}, 0, \ldots, 0\right)$, $h=\left(h_{1}, \ldots, h_{N}\right) \in H \doteq\left(\mathbb{R}^{d}\right)^{N}$
- $v_{q, h}=\operatorname{argmin}\left\{|v|_{V}^{2}+\frac{1}{\nu} \sum_{i}\left|v\left(x_{i}\right)-h_{i}\right|^{2}+\frac{1}{\nu} \alpha^{2} \sum_{i}\left|\operatorname{div}(v)\left(x_{i}\right)\right|^{2}\right\}$
$\left\llcorner_{\text {Deformation modules }}\right.$
LImplicit deformation modules modeling divergence free motion (current work with Benjamin Charlier)

Local translation

$L_{\text {Deformation modules }}$
LImplicit deformation modules modeling divergence free motion (current work with Benjamin Charlier)

Local translation with divergence-free constraint
\llcorner Deformation modules

- Implicit deformation modules modeling divergence free motion (current work with Benjamin Charlier)

LDeformation modules

LImplicit deformation modules modeling divergence free motion (current work with Benjamin Charlier)

L Deformation modules

LImplicit deformation modules modeling divergence free motion (current work with Benjamin Charlier)

Divergence-free constraints

LDeformation modules

LImplicit deformation modules modeling divergence free motion (current work with Benjamin Charlier)

No constraints

Divergence-free constraints

No constraints

L Deformation modules
LImplicit deformation modules modeling divergence free motion (current work with Benjamin Charlier)
Histogram infinitesimal area ratios (final vs initial)

Implicit priors in deformation models

L Deformation modules
LImplicit deformation modules modeling divergence free motion (current work with Benjamin Charlier)

Target

L Deformation modules
LImplicit deformation modules modeling divergence free motion (current work with Benjamin Charlier)

Divergence-free constraints
No constraints

L Deformation modules
LImplicit deformation modules modeling divergence free motion (current work with Benjamin Charlier)
Histogram infinitesimal area ratios (final vs initial)

$$
v_{q, h}=\operatorname{argmin}\left\{|v|_{v}^{2}+\frac{1}{\nu}\left|S_{q}(v)-A_{q}(h)\right|^{2}\right\}
$$

- $S_{q}(v)=\left(v\left(x_{1}\right), \ldots, v\left(x_{N}\right), \alpha \epsilon(v)\left(x_{1}\right), \ldots, \alpha \epsilon(v)\left(x_{N}\right)\right)$,

$$
q=\left(x_{1}, \ldots, x_{N}\right) \in \mathcal{O} \doteq\left(\mathbb{R}^{d}\right)^{N}
$$

$$
\epsilon_{X}(v)=\frac{D v(x)+D v(x)^{T}}{2}
$$

\longrightarrow Captures local metric changes induced by $I d+v$ around x

- $A_{q}(h)=\left(h_{1}, \ldots, h_{N}, 0, \ldots, 0\right)$, $h=\left(h_{1}, \ldots, h_{N}\right) \in H \doteq\left(\mathbb{R}^{d}\right)^{N}$
- $v_{q, h}=\operatorname{argmin}\left\{|v|_{V}^{2}+\frac{1}{\nu} \sum_{i}\left|v\left(x_{i}\right)-h_{i}\right|^{2}+\frac{1}{\nu} \alpha^{2} \sum_{i}\left|\epsilon(v)\left(x_{i}\right)\right|^{2}\right\}$
$\left\llcorner_{\text {Deformation modules }}\right.$
LImplicit deformation modules modeling ARAP motion (current work with Benjamin Charlier)

Local translation

$L_{\text {Deformation modules }}$
LImplicit deformation modules modeling ARAP motion (current work with Benjamin Charlier)

Local translation with ARAP constraint
$\left\llcorner_{\text {Deformation modules }}\right.$
LImplicit deformation modules modeling ARAP motion (current work with Benjamin Charlier)

Sum of two local translations

$\left\llcorner_{\text {Deformation modules }}\right.$
LImplicit deformation modules modeling ARAP motion (current work with Benjamin Charlier)

Sum of two local translations with ARAP constraint
\llcorner Deformation modules

- Implicit deformation modules modeling ARAP motion (current work with Benjamin Charlier)

\llcorner Deformation modules
LImplicit deformation modules modeling ARAP motion (current work with Benjamin Charlier)

L Deformation modules

LImplicit deformation modules modeling ARAP motion (current work with Benjamin Charlier)

With ARAP constraints

\llcorner Deformation modules

LImplicit deformation modules modeling ARAP motion (current work with Benjamin Charlier)

Without ARAP constraints
$L_{\text {Deformation modules }}$
L Implicit deformation modules modeling ARAP motion (current work with Benjamin Charlier)

ARAP constraints

No constraints

- Deformation modules
-Implicit deformation modules modeling ARAP motion (current work with Benjamin Charlier)

Source
Target

Implicit priors in deformation models

\llcorner Deformation modules
LImplicit deformation modules modeling ARAP motion (current work with Benjamin Charlier)

- Many works on as-rigid-as-possible and divergence-free fields ${ }^{1011121314}$
- One element of the 'Deformation modules toolbox'

[^2]
\llcorner Deformation modules

LImplicit deformation modules of order 1: modeling growth

$$
\zeta_{q}(h)=\operatorname{argmin}\left\{|v|_{V}^{2}+\frac{1}{\nu}\left|S_{q}(v)-A_{q}(h)\right|^{2}\right\}
$$

$\rightarrow \epsilon_{X}(v)=\frac{D v(x)+D v(x)^{T}}{2}$
$-S_{q}(v)=\left(\epsilon_{X_{i}}(v)\right)_{i}$

- growth model operator $A_{q}: h \mapsto A_{q}(h)$

Lacroix, L., Charlier, B., Trouvé, A., Gris, B. (2021). IMODAL: creating learnable user-defined deformation models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12905-12913).

Implicit priors in deformation models

L Deformation modules
LImplicit deformation modules of order 1: modeling growth

Implicit priors in deformation models
\llcorner Deformation modules
LImplicit deformation modules of order 1: modeling growth

Implicit priors in deformation models
$L_{\text {Deformation modules }}$
LImplicit deformation modules of order 1: modeling growth

\llcorner Deformation modules
-Implicit deformation modules of order 1: modeling growth

Implicit priors in deformation models

\llcorner Deformation modules
LImplicit deformation modules of order 1: modeling growth

\llcorner Deformation modules
LImplicit deformation modules of order 1: modeling growth

Implicit priors in deformation models

\llcorner Deformation modules
LImplicit deformation modules of order 1: modeling growth

$L_{\text {Deformation modules }}$
LImplicit deformation modules of order 1: modeling growth

Implicit priors in deformation models
L Deformation modules
L Implicit deformation modules of order 1: modeling growth

$\left\llcorner_{\text {Deformation modules }}\right.$
LImplicit deformation modules of order 1: modeling growth

Implicit priors in deformation models
L Deformation modules
L Implicit deformation modules of order 1: modeling growth

$$
\zeta_{q}(h)=\operatorname{argmin}\left\{|v|_{V}^{2}+\frac{1}{\nu}\left|S_{q}(v)-A_{q}(h)\right|_{q}^{2}\right\}
$$

- Morphoelasticity : growth of an elastic material ${ }^{15} 16$
- $v=v_{\text {growth }}+v_{\text {elastic }}$
- $\left|S_{q}(v)-A_{q}(h)\right|^{2}=\left|S_{q}\left(v_{\text {elastic }}\right)\right|^{2}$
- Penalize $v_{\text {elastic }}$ with linear elastic energy
- Softness of material increases when σ or ν decrease

[^3]
Implicit priors in deformation models

\llcorner Deformation modules
Mixed formulation to model stressed with inner stress (current work with Josua Sassen)

Fig. 3 - Buckling induced by growth. In this example, the outer rim of the ring grows to twice its original size. This leads to the formation of folds that minimise the elastic energy of the system. At equilibrium, a heterogeneous pattern of stress, appears with residual stress gradients from centre to periphery, in angular bands and through the thickness of the ring.

Foubet, O., Trejo, M., Toro, R. (2019). Mechanical morphogenesis and the development of neocortical organisation. Cortex, 118, 315-326.

L Deformation modules
-Mixed formulation to model stressed with inner stress (current work with Josua Sassen)

$$
\begin{gathered}
\zeta_{q}(h)=\operatorname{argmin}\left\{|v|_{V}^{2}+\frac{1}{\nu}\left|S_{q}(v)-A_{q}(h)\right|^{2}\right\} \\
\zeta_{q^{g}}^{g}\left(h^{g}\right)=\operatorname{argmin}\left\{|v|_{V}^{2}+\frac{1}{\nu}\left|S_{q^{g}}(v)-A_{q^{g}}\left(h^{g}\right)\right|^{2}\right\} \\
\zeta_{q}(h)=\zeta_{q}^{g}\left(h^{g}\right)+\sum_{i} T_{i} K\left(x_{i}, \cdot\right) h_{i}^{t} \\
C_{q}(h)=\left|\zeta_{q}(h)\right|_{V}^{2}+\left|S_{q}\left(\zeta_{q}(h)\right)-A_{q}(h)\right|^{2}+|h|
\end{gathered}
$$

L Deformation modules
Growing ring (growing outer layer, non growing inner layer)

Implicit priors in deformation models

\llcorner Deformation modules
Growing ring (growing outer layer, non growing inner layer)

L Deformation modules
Growing ring (growing outer layer, non growing inner layer)

Implicit priors in deformation models
L Deformation modules
$L_{\text {Growing ring (growing outer layer, non growing inner layer) }}$

L Deformation modules
Growing ring (growing outer layer, non growing inner layer)

$$
\begin{gathered}
\zeta_{q^{g}}^{g}\left(h^{g}\right)=\operatorname{argmin}\left\{|v|_{V}^{2}+\frac{1}{\nu}\left|S_{q^{g}}(v)-A_{q^{g}}\left(h^{g}\right)\right|^{2}\right\} \\
\zeta_{q}(h)=\zeta_{q}^{g}\left(h^{g}\right)+\sum_{i} T_{i} K\left(x_{i}, \cdot\right) h_{i}^{t}
\end{gathered}
$$

L Deformation modules
Growing ring with softer material (small scale for RKHS or small ν)

$$
\begin{gathered}
\zeta_{q^{g}}^{g}\left(h^{g}\right)=\operatorname{argmin}\left\{|v|_{V}^{2}+\frac{1}{\nu}\left|S_{q^{g}}(v)-A_{q^{g}}\left(h^{g}\right)\right|^{2}\right\} \\
\zeta_{q}(h)=\zeta_{q}^{g}\left(h^{g}\right)+\sum_{i} T_{i} K\left(x_{i}, \cdot\right) h_{i}^{t}
\end{gathered}
$$

\llcorner Deformation modules
Growing ring (one growth layer)

L Deformation modules
Growing ring (one growth layer)

$$
\begin{gathered}
\zeta_{q^{g}}^{g}\left(h^{g}\right)=\operatorname{argmin}\left\{|v|_{V}^{2}+\frac{1}{\nu}\left|S_{q^{g}}(v)-A_{q^{g}}\left(h^{g}\right)\right|^{2}\right\} \\
\zeta_{q}(h)=\zeta_{q}^{g}\left(h^{g}\right)+\sum_{i} T_{i} K\left(x_{i}, \cdot\right) h_{i}^{t}
\end{gathered}
$$

Implicit priors in deformation models
L Deformation modules
$L_{\text {Growing ring (growing outer layer, non growing inner layer) }}$

- Incorporating structures in deformation models:
- Deformation modules
- Implicit formulation
- Enrich the space of geometrical descriptors
- Future work
- Stress from elastic energy, plasticity
- Brain gyrification? ${ }^{1718}$
- Formulation without inversion: adapted optimization scheme
- Source and documentation https://github.com/imodal

Thank you for your attention!
 Questions?

[^4]
[^0]: ${ }^{1}$ Beg, M. F., Miller, M. I., Trouvé, A., Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International journal of computer vision
 ${ }^{2}$ Arguillere, S., Trélat, E., Trouvé, A., Younes, L. (2015). Shape deformation analysis from the optimal control viewpoint. Journal de mathématiques pures et appliquées

[^1]: ${ }^{3}$ S. Durrleman, M. Prastawa, G. Gerig, and S. Joshi. Optimal data-driven sparse parameterization of diffeomorphisms for population analysis. In Information Processing in Medical Imaging, 2011
 ${ }^{4}$ U. Grenander, A. Srivastava, S. Saini. A pattern-theoric characerization of biological growth. IEEE, 2007
 ${ }^{5}$ V. Arsigny, X. Pennec, N. Ayache. Polyrigid and Polyaffine Transformations: A Novel Geometrical Tool to Deal with Non-rigid Deformations - Application to the Registration of Histological Slices. Medical Image Analysis. 2005
 ${ }^{6}$ L. Younes. Constrained diffeomorphic shape evolution. Foundations of Computational Mathematics, 2012.
 ${ }^{7}$ Higher order momentum [S. Sommer M. Nielsen, F. Lauze, and X. Pennec. Higher-order momentum distributions and locally affine Iddmm registration. SIAM Journal on Imaging Sciences, 2013]
 ${ }^{8}$ N. Charon and L. Younes. "Shape spaces: From geometry to biological plausibility. 2022
 ${ }^{9}$ D. N. Hsieh, S. Arguillère, N. Charon, M.I. Miller, L. Youne. A model for elastic evolution on foliated shapes. In International Conference on Information Processing in Medical Imaging. 2019.

[^2]: ${ }^{10}$ Alexa, M., Cohen-Or, D., Levin, D. (2023). As-rigid-as-possible shape interpolation. In Seminal Graphics Papers: Pushing the Boundaries, Volume 2 (pp. 165-172).
 ${ }^{11}$ Igarashi, T., Moscovich, T., Hughes, J. F. (2005). As-rigid-as-possible shape manipulation. ACM transactions on Graphics (TOG), 24(3), 1134-1141.
 ${ }^{12}$ Hartman, E., Pierson, E., Bauer, M., Charon, N., Daoudi, M. (2023). Bare-esa: A riemannian framework for unregistered human body shapes. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 14181-14191).
 ${ }^{13}$ Eisenberger, M., Lähner, Z., Cremers, D. (2019, August). Divergence-free shape correspondence by deformation. In Computer Graphics Forum (Vol. 38, No. 5, pp. 1-12).
 ${ }^{14}$ Micheli, M., Glaunes, J. A. (2013). Matrix-valued kernels for shape deformation analysis. arXiv preprint arXiv:1308.5739.

[^3]: ${ }^{15}$ A. Goriely. The mathematics and mechanics of biological growth, volume 45. Springer, 2017.
 ${ }^{16}$ N. Charon, L. Younes. Shape spaces: from geometry to biological plausibility. 2022.

[^4]: ${ }^{17}$ Tallinen, T., Chung, J. Y., Rousseau, F., Girard, N., Lefèvre, J., Mahadevan, L. (2016). On the growth and form of cortical convolutions. Nature Physics, 12(6), 588-593.
 ${ }^{18}$ Foubet, O., Trejo, M., Toro, R. (2019). Mechanical morphogenesis and the development of neocortical organisation. Cortex, 118, 315-326.

