
The geometric software stack:
past, present, future

Jean Feydy
HeKA team, Inria Paris

Inserm, Université Paris-Cité

31st of May, 2024
Geometric sciences in action

CIRM, Marseille

1

Recent works

Lung registration. Interventional radiology.

⟹ Accessible to you guys, but barely anyone else.
2

Recent works

Orthopedic surgery. Public health.

⟹ Accessible to you guys, but barely anyone else.
3

Recent works

Metallurgy. Swarms of incompressible cells.

⟹ Accessible to you guys, but barely anyone else.
4

HeKA : a translational research team for public health

Inserm

Hospitals

Inria

Universities

5

Geometric data analysts are in a delicate position

Our constraints:

1. Differential geometry is not part of themainstream curriculum
⟹ High entry cost for students and users.

2. Credibility ⟺ Performance and high-resolution figures
⟹ Constant work to keep upwith new technology.

3. We are already very busy
⟹ Our career incentives do not reward long-term softwaremaintenance.

6

Today’s talk – some practical answers to three pressing questions

1. Which language and libraries should I use?

2. Is my code still going to run in 2030?

3. How do I get rewarded for all of that extra work?

7

Which language should I use?

The C++ era (2000-2015):

• High-performance C++ was necessary to handle 3D data.
• Monolithic code-bases with a lot of inertia, cryptic to scientists.
• The Visualization ToolKit, the Computational Geometry Algorithms Library…

The Python era (since 2015):

• Modular and inter-operable tools via dictionaries and Nu-mPy arrays.
• Permissive open source licences create trust.
• Scikit-learn, Scikit-image, PyVista, Vedo…

8

Which language should I use?

Domain-specific languages are fine too:

• R is data-centric: native idiom for biologists andmedical doctors.
• Julia is convenient for numerical analysis.

But Python is the lingua franca for gluing pipelines together:

1. Identify the key building blocks in your method.
2. Implement them in the language that suits you best.
3. Write a Python interface – now super easy.

⟹ Speak French, German orHindi at home… but publish in English.

9

TheKeOps library: efficient support for symbolicmatrices,withJoanandBenjamin

KeOps – www.kernel-operations.io:

• For PyTorch, NumPy, Matlab and R, on CPU and GPU.
• Automatic differentiation.
• Just-in-time compilation of optimized C++ schemes,
triggered for every new reduction: sum, min, etc.

If the formula “F” is simple (⩽ 100 arithmetic operations):
“100k × 100k” computation → 10ms – 100ms,
“1M × 1M” computation → 1s – 10s.

Hardware ceiling of 1012 operations/s.
×10 to ×100 speed-up vs standard GPU implementations

for a wide range of problems.

F(xi , yj)

Symbolic matrix
Formula + data

• Distances d(xi,yj).
• Kernel k(xi,yj).
• Numerous
transforms.

10

Yet another python compiler?

Many impressive tools out there (Numba, Triton, Halide, Taichi…):

• Focus on generality (software + hardware).
• Increasingly easy to use via e.g. PyTorch 2.0.

KeOps fills a scientific niche (like FFT libraries):

• Focus on a single major bottleneck: geometric interactions.
• Agnosticwith respect to Euclidean / non-Euclidean formulas.
• Fully compatible with PyTorch, NumPy, R.
• Can actually be used bymathematicians (600k+ downloads).

KeOps is a bridge between geometers (with a maths background)
and compiler experts (with a CS background).

11

Which libraries should I use?

Exciting libraries get killed all the time :-(

Theano (2008-2017):

• Pioneering deep learning library: Python + Autodiff + GPU.
• Created andmaintained in Montreal (MILA).
• Development stopped when PyTorch became available.

Taichi (2017-2023):

• Awesome Python dialect for 3D shape processing and graphics, 25k GitHub stars.
• PhD thesis of Yuanming Hu at MIT, now CEO of Meshy.
• Active development stopped last summer.

12

Tip #1: look at the developers’ long term incentives

PyTorch (Meta) – sending all the right signals:

• Business strategy on AI is to make it an open source commodity.
• Transparent governance structure, PyTorch foundation.
• Extensive internal documentation.

JAX and TensorFlow (Google) – several red flags:

• Business strategy on AI is to protect the Google searchmonopoly and GCP.
• Opaque governance structure, killedbygoogle.com.
• Minimal internal documentation.

13

Tip #2: Implement a future-proof interface

Insulate users from deprecations:

• Numpy arrays.
• Human-readable files.

User-centric design:

• Principle of least surprise.
• Write tutorials – a feature that is not documented does not exist.
• Plain, descriptive names:

Kernel ⟶ covariance
Splines ⟶ deformation(covariance="thin plate spline")
LDDMM ⟶ deformation(covariance="gaussian", scale=2, n_steps=10)

14

Problem: software rots

Some personal nightmares:

• CMake, Boost…
• Nvidia actively deprecates “old” GPUs.
• torch.solve(A, B) = 𝐵−1𝐴 → 𝐴−1𝐵.

Without constant gardening,
software breaks after 3-5 years.

Some of my old GitHub repositories.
15

Research you’re proud of should be in a library

#1 – Include your model in a pre-existing library:
• Outsourcemaintenance, gain visibility.
• Permissive licenses are key: MIT, BSD…

#2 – Develop andmaintain your own library:
• Be realistic: focus on your core expertise.
• Bet on interoperabilitywith other packages.
• Freedom for you, minimize risk for users.

⟹ Agree on a consistent interfacewith
the community and keep your word.

A professional storage facility.
16

GeomLoss: scaling up optimal transport to anatomical data

Progresses of the last decade add up to a ×100 - ×1000 acceleration:

Sinkhorn GPU
×10
−−→ + KeOps

×10
−−→ + Annealing

×10
−−→ + Multi-scale

With a precision of 1%, on amodern gaming GPU:

pip install
geomloss

+
gaming GPU
(1 000 €)

⟹

10k points in 30-50ms 100k points in 100-200ms

17

GeomLoss: going forward

Current landscape in computational optimal transport:

• Python Optimal Transport (POT): tons of tutorials, but slow solvers from 2015.
• Mérigot, Lévy, De Goes: super-fast OT solvers for physics.
• Schmitzer, GeomLoss: super-fast OT solvers for geometric data.
• Massivewaste of time for newcomers in the field.

How to solve the issue:

• Agree on a common interface.
• Include GeomLoss and others as optional backends in POT.
• Automated benchmarkwebsite to highlight “solved” and “open” problems.

⟹ Put egos aside, move forward as a community.
⟶ Only possible because we are not judged by our h-index.

18

But Jean… I’m just amathematician!

Writing good code is easy now!
Use professional tools:

• Black and Ruff beautify your code.
• Pytest and Hypothesis find bugs.
• Copilotwrites documentation.
• Sphinx creates a clean website.
• GitHub actions deploy automagically.

Check out scientific-python.org.

Invest in power tools.
19

But Jean… I’m just amathematician!

Why should I bother?

• If you don’t code your method first, no one will.
• Get to meet a wide range of exciting users.
• Open up career paths for students.

Publish or perish?

• French open source software awards from the Ministry of research.
• At INRIA, clear incentives for software development.
• Career paths for research engineers in academia?

20

From Deformetrica to scikit-shapes (with an ‘s’)

scikit-shapes:
• Follows the tips above!
• Named after scikit-image: a reference library
for classical image processing.

• Abstractsmultiscaling and feature extraction.
• Foundations are now solid (Louis Pujol).
• Funded by INRIA and Prairie.

Next steps:
• LDDMM and elastic metrics.
• GPMM and functional maps.
• Research on robustness andmodularity. scikit-shapes.github.io

Check it out in 2025! 21

Our community is judged by its software output

The C++ tower of Babel. The Pythonmarket of ideas.

Major challenge: beyond goodwill, create sustainable open business models.
Are universities hostile environments? Kitware (VTK), Tutte Institute (UMAP), INRIA…

22

Documentation and tutorials are available online

⟹ shape-analysis.github.io ⟸

Monthly seminar, videos on YouTube. 23

shape-analysis.github.io

References

References i

24

	References

