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What is Topological Data Analysis?

Topological Data Analysis is:

a mathematically grounded framework...

...that applies to a wide variety of data sets...

...for a wide variety of tasks.

Hk = Zk/Bk

−∞

Mapper: exploratory data analysis
ToMATo: clustering

Persistence diagrams:
machine learning
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What is Topological Data Analysis?

Its main goal is to compute the topology of spaces (number and sizes of
connected components, loops, cavities, etc) from samplings...

...and to summarize this info into descriptors suitable for data science



The Gudhi library



The Gudhi library



The Gudhi library

conda: ∼250 000 total downloads
pip: ∼34 000 downloads over the last 6 months
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Čech/Alpha complexes

Def: Given a point cloud P = {P1, . . . , Pn} ⊂ Rd, its Čech complex of radius
r > 0 is the abstract simplicial complex C(P, r) s.t. vert(C(P, r)) = P and

σ = [Pi0 , Pi1 , . . . , Pik ] ∈ C(P, r) iif ∩k
j=0 B(Pij , r) ̸= ∅.
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Mapper complexes

Input:

- continuous function f : X → Y

- cover I of im(f) by open intervals: im(f) ⊆
⋃

I∈I I

• Compute pullback cover U of X: U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various con-
nected components in X

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ ̸= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k

i=0 Vi ̸= ∅, V0, · · · , Vk ∈ V

Method:

- topological space X

→ connected cover V

(99% of the time Y = RD)



Input:

• Compute pullback cover U of P : U = {f−1(I)}I∈I

• Refine U by separating each of its elements into its various clus-
ters, as identified by a clustering algorithm

• The Mapper is the nerve of V:

- 1 vertex per element V ∈ V

- 1 edge per intersection V ∩ V ′ ̸= ∅, V, V ′ ∈ V

- 1 k-simplex per (k + 1)-fold intersection
⋂k

i=0 Vi ̸= ∅, V0, · · · , Vk ∈ V

Method:

- point cloud P ⊆ X with metric dP

intersections are assessed by the
presence of common data points

- continuous function f : P → R
- cover I of im(f) by open intervals: imf ⊆

⋃
I∈I I

→ connected cover V

Mapper complexes
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Gδ = δ-neighborhood graph
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Computation with filtrations and matrix reduction

Algorithms for computing the homology groups of a simplicial complex work
by decomposing it with a so-called filtration.

Def: A filtered simplicial complex S is a family {Su}u∈R of subcomplexes of
some fixed simplicial complex S s.t. Sa ⊆ Sb for any a ≤ b.

Def: The persistence barcode (resp. diagram) D is a set of points in the
plane (resp. intervals) encoding the topological features that appeared and
disappeared in the filtration.
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H0 (connected components)

When two components merge, stop the
bar of the most recent one (elder rule).
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Persistence of sublevel sets of function

H0 (connected components)



Persistence of images

H1 (loops)
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Persistence of meshes

Thm: db(D(f), D(g)) ≤ ∥f − g∥∞
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Persistence diagrams and ML

persistence

∞

⊆ ⊆
Persistence diagram

H

Φ

Etc.

• Classifier (RF, SVM, NN etc.)

• Dim. red. (PCA, MDS, UMAP, t-SNE)

• Clustering (DBSCAN, K-means, etc.)



Persistence representations [Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]
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Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

[Statistical Topological Data Analysis using
Persistence Landscapes, Bubenik, JMLR, 2015]



Persistence representations

diagrams are turned into 2-d density functions

diagrams are turned into families of 1-d functions

diagrams are turned into sequences of values

diagrams are turned into finite-dimensional vectors

diagrams are turned into pixelized images → finite-dimensional vectors

• landscapes

• images

• discrete measures:

→ Fisher information

→ heat diffusion

→ convolution with weighted kernel

• finite metric spaces

5
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 0 4 5

4 0 3
5 3 0


a b c
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b
c

• polynomial roots or evaluations
{p1, . . . , pn} 7→ (P1(p1, . . . , pn), . . . , Pr(p1, . . . , pn), . . . )

[Stable topological signatures for
points on 3D shapes, C., Oudot,
Ovsjanikov, SGP, 2015]

[Statistical Topological Data Anal-
ysis using Persistence Landscapes,
Bubenik, JMLR, 2015]

[Persistence weighted Gaussian kernel for
topological data analysis, Kusano, Hiraoka,
Fukumizu, ICML, 2016]

[A stable multi-scale kernel for topologi-
cal machine learning, Reininghaus et al.,
CVPR, 2015]

[Persistence Images: A Stable Vector
Representation of Persistent Homol-
ogy, Adams et al., JMLR, 2017]

[Persistence Fisher kernel: a Riemannian
manifold kernel for persistence diagrams,
Le, Yamada, NeurIPS, 2018]

[Tropical coordinates on the space
of persistence barcodes, Kalisnik,
FoCM, 2018]

→ optimal transport
[Sliced Wasserstein distance between PDs,
C., Cuturi, Oudot, ICML, 2017]



Persistence representations



Learn persistence representations



Learn persistence representations

Weight function

Point transformation

PersLay(D) = ρ (op{w(p) · ϕ(p)}p∈D)

Permutation-invariant
operation

[PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]



Learn persistence representations

features
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Learn persistence representations

features

w(·)ϕ(·) op

op

op
ρ
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w(·)ϕ(·)

opw(·)ϕ(·)

data

[PersLay: A Neural Network Layer for Persis-
tence Diagrams and New Graph Topological
Signatures, C., Chazal, Ike, Lacombe, Royer,
Umeda, AISTATS, 2019]

Weight function learnt
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A persistence diagram D is made of all
(F(σ+),F(σ−)) ∈ R2 where σ+ (resp.
σ−) is positive (resp. negative), and F is
the filtration function.

Thus we can define the gradient of a point
p = (F(σ+),F(σ−)) ∈ D as

∇p = [∇F(σ+),∇F(σ−)]
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Learn filtrations

Ex: images filtered by a direction parameterized by angle
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What’s next?

• Representative cycles

• Zigzag persistence

• Multi-parameter persistence



Thanks!!


