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Abstract

This supplementary material details the notions of Riemannian geometry that
are underlying the paper Barycentric Subspace Analysis on Manifolds. In particular,
it investigates the Hessian of the Riemannian square distance whose definiteness
controls the local regularity of the barycentric subspaces. This is exemplified on the
sphere and the hyperbolic space.

1 Riemannian manifolds

A Riemannian manifold is a differential manifold provided with a smooth collection of
scalar products 〈 . | .〉x on each tangent space TxM at point x of the manifold, called the
Riemannian metric. In a chart, the metric is expressed by a symmetric positive definite
matrix G(x) = [gij(x)] where each element is given by the dot product of the tangent
vector to the coordinate curves: gij(x) = 〈 ∂i | ∂j 〉x. This matrix is called the local repre-
sentation of the Riemannian metric in the chart x and the dot products of two vectors v
and w in TxM is now 〈 v | w 〉x = vT G(x) w = gij(x)viwj using the Einstein summation
convention which implicitly sum over the indices that appear both in upper position (com-
ponents of [contravariant] vectors) and lower position (components of covariant vectors
(co-vectors)).

1.1 Riemannian distance and geodesics

If we consider a curve γ(t) on the manifold, we can compute at each point its instantaneous
speed vector γ̇(t) (this operation only involves the differential structure) and its norm
‖γ̇(t)‖γ(t) to obtain the instantaneous speed (the Riemannian metric is needed for this
operation). To compute the length of the curve, this value is integrated along the curve:

Lba(γ) =

∫ b

a

‖γ̇(t)‖γ(t) dt =

∫ b

a

(
〈 γ̇(t) | γ̇(t)〉γ(t)

) 1
2
dt
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The distance between two points of a connected Riemannian manifold is the minimum
length among the curves joining these points. The curves realizing this minimum are called
geodesics. Finding the curves realizing the minimum length is a difficult problem as any
time-reparameterization is authorized. Thus one rather defines the metric geodesics as
the critical points of the energy functional E(γ) = 1

2

∫ 1

0
‖γ̇(t)‖2 dt. It turns out that they

also optimize the length functional but they are moreover parameterized proportionally
to arc-length.

Let [gij] = [gij]
(-1) be the inverse of the metric matrix (in a given coordinate system) and

Γijk = 1
2
gim (∂kgmj + ∂jgmk − ∂mgjk) the Christoffel symbols. The calculus of variations

shows the geodesics are the curves satisfying the following second order differential system:

γ̈i + Γijkγ̇
j γ̇k = 0.

The fundamental theorem of Riemannian geometry states that on any Riemannian
manifold there is a unique (torsion-free) connection which is compatible with the metric,
called the Levi-Civita (or metric) connection. For that choice of connection, shortest paths
(geodesics) are auto-parallel curves (”straight lines”). This connection is determined in
a local coordinate system through the Christoffel symbols: ∇∂i∂j = Γkij∂k. With these
conventions, the covariant derivative of the coordinates vi of a vector field is vi;j = (∇jv)i =
∂jv

i + Γijkv
k.

In the following, we only consider the Levi-Civita connection and we assume that the
manifold is geodesically complete, i.e. that the definition domain of all geodesics can be
extended to R. This means that the manifold has no boundary nor any singular point that
we can reach in a finite time. As an important consequence, the Hopf-Rinow-De Rham
theorem states that there always exists at least one minimizing geodesic between any two
points of the manifold (i.e. whose length is the distance between the two points).

1.2 Normal coordinate systems

Let x be a point of the manifold that we consider as a local reference and v a vector of the
tangent space TxM at that point. From the theory of second order differential equations,
we know that there exists one and only one geodesic γ(x,v)(t) starting from that point
with this tangent vector. This allows to wrap the tangent space onto the manifold, or
equivalently to develop the manifold in the tangent space along the geodesics (think of
rolling a sphere along its tangent plane at a given point). The mapping expx(v) = γ(x,v)(1)
of each vector v ∈ TxM to the point of the manifold that is reached after a unit time
by the geodesic γ(x,v)(t) is called the exponential map at point x. Straight lines going
through 0 in the tangent space are transformed into geodesics going through point x on
the manifold and distances along these lines are conserved.

The exponential map is defined in the whole tangent space TxM (since the manifold is
geodesically complete) but it is generally one-to-one only locally around 0 in the tangent
space (i.e. around x in the manifold). In the sequel, we denote by −→xy = logx(y) the inverse
of the exponential map: this is the smallest vector (in norm) such that y = expx(

−→xy). It is
natural to search for the maximal domain where the exponential map is a diffeomorphism.
If we follow a geodesic γ(x,v)(t) = expx(t v) from t = 0 to infinity, it is either always
minimizing all along or it is minimizing up to a time t0 < ∞ and not any more after
(thanks to the geodesic completeness). In this last case, the point γ(x,v)(t0) is called a
cut point and the corresponding tangent vector t0 v a tangential cut point. The set of
tangential cut points at x is called the tangential cut locus C(x) ∈ TxM, and the set of
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cut points of the geodesics starting from x is the cut locus C(x) = expx(C(x)) ∈M. This
is the closure of the set of points where several minimizing geodesics starting from x meet.
On the sphere S2(1) for instance, the cut locus of a point x is its antipodal point and the
tangential cut locus is the circle of radius π.

The maximal bijective domain of the exponential chart is the domainD(x) containing 0
and delimited by the tangential cut locus (∂D(x) = C(x)). This domain is connected and
star-shaped with respect to the origin of TxM. Its image by the exponential map covers
all the manifold except the cut locus, which has a null measure. Moreover, the segment
[0,−→xy] is mapped to the unique minimizing geodesic from x to y: geodesics starting from
x are straight lines, and the distance from the reference point are conserved. This chart
is somehow the “most linear” chart of the manifold with respect to the reference point x.

When the tangent space is provided with an orthonormal basis, this is called an normal
coordinate systems at x. A set of normal coordinate systems at each point of the manifold
realize an atlas which allows to work very easily on the manifold. The implementation
of the exponential and logarithmic maps (from now on exp and log) is indeed the basis
of programming on Riemannian manifolds, and we can express using them practically all
the geometric operations needed for statistics [Pennec, 2006] or image processing [Pennec
et al., 2006].

The size of the maximal definition domain is quantified by the injectivity radius
inj(M, x) = dist(x, C(x)), which is the maximal radius of centered balls in TxM on
which the exponential map is one-to-one. The injectivity radius of the manifold inj(M)
is the infimum of the injectivity over the manifold. It may be zero, in which case the
manifold somehow tends towards a singularity (think e.g. to the surface z = 1/

√
x2 + y2

as a sub-manifold of R3).
In a Euclidean space, normal coordinate systems are realized by orthonormal coordi-

nates system translated at each point: we have in this case −→xy = logx(y) = y − x and
expx(

−→v ) = x + −→v . This example is more than a simple coincidence. In fact, most of
the usual operations using additions and subtractions may be reinterpreted in a Rieman-
nian framework using the notion of bipoint, an antecedent of vector introduced during the
19th Century. Indeed, vectors are defined as equivalent classes of bipoints in a Euclidean
space. This is possible because we have a canonical way (the translation) to compare
what happens at two different points. In a Riemannian manifold, we can still compare
things locally (by parallel transportation), but not any more globally. This means that
each “vector” has to remember at which point of the manifold it is attached, which comes
back to a bipoint.

2 Hessian of the squared distance

2.1 Computing the differential of the Riemannian log

On M/C(y), the Riemannian gradient ∇a = gab∂b of the squared distance d2y(x) =

dist2(x, y) with respect to the fixed point y is well defined and is equal to ∇d2y(x) =
−2 logx(y). The Hessian operator (or double covariant derivative) ∇2f(x) from TxM to
TxM is the covariant derivative of the gradient, defined by the identity∇2f(v) = ∇v(∇f).
In a normal coordinate system at point x, the Christoffel symbols vanish at x, so that the
Hessian operator of the squared distance can be expressed with the standard differential
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Dx with respect to the point x:

∇2d2y(x) = −2(Dx logx(y)).

The points x and y = expx(v) are called conjugate if D expx(v) is singular. It is known
that the cut point (if it exists) occurs at or before the first conjugate point along any
geodesic [Lee, 1997]. Thus, D expx(v) has full rank inside the tangential cut-locus of
x. This is in essence why there is a well posed inverse function −→xy = logx(y), called the
Riemannian log, which is continuous and differentiable everywhere except at the cut locus
of x. Moreover, its differential can be computed easily: since expx(logx(y)) = y, we have
D expx|−→xyD logx(y) = Id, so that

D logx(y) =
(
D expx|−→xy

)−1
(1)

is well defined and of full rank on M/C(x).
We can also see the Riemannian log logx(y) = −→xy as a function of the foot-point x, and

differentiating expx(logx(y)) = y with respect to it gives: Dx expx|−→xy+D expx|−→xy .Dx logx(y) =
0. Once again, we obtain a well defined and full rank differential for x ∈M/C(y):

Dx logx(y) = −
(
D expx|−→xy

)−1
Dx expx|−→xy . (2)

The Hessian of the squared distance can thus be written:

1

2
∇2d2y(x) = −Dx logx(xi) =

(
D expx|−→xy

)−1
Dx expx|−→xy .

If we notice that J0(t) = D expx|t−→xy (respectively J1(t) = Dx expx|t−→xy) are actually matrix

Jacobi field solutions of the Jacobi equation J̈(t) + R(t)J(t) = 0 with J0(0) = 0 and
J̇0(0) = Idn (respectively J1(0) = Idn and J̇1(0) = 0), we see that the above formulation
of the Hessian operator is equivalent to the one of Villani [2011][Equation 4.2]: 1

2
∇2d2y(x) =

J0(1)(-1)J1(1).

2.2 Taylor expansion of the Riemannian log

In order to better figure out what the dependence of the Hessian of the squared Rieman-
nian distance on curvature, we compute here the Taylor expansion of the Riemannian log
function. Following Brewin [2009], we consider a normal coordinate system centered at x
and xv = expx(v) a variation of the point x. We denote by Rihjk(x) the coefficients of the
curvature tensor at x and by ε a conformal gauge scale that encodes the size of the path
in terms of ‖v‖x and ‖−→xy‖x normalized by the curvature (see Brewin [2009] for details).

In a normal coordinate system centered at x, we have the following Taylor expansion
of the metric tensor coefficients:

gab(v) =gab −
1

3
Rcabdv

cvd − 1

6
∇eRcabdv

evcvd

+

(
− 1

20
∇e∇fRcabd +

2

45
Rg
cadR

h
ebfδgh

)
vcvdvevf +O(ε5).

(3)
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A geodesic joining point z to point z + δz has tangent vector:

[logz(z + ∆z)]a = ∆za +
1

3
zb∆zc∆zdRa

cbd +
1

12
zbzc∆zd∆ze∇dR

a
bce

+
1

6
zbzc∆zd∆ze∇bR

a
dce +

1

24
zbzc∆zd∆ze∇aRbdce

+
1

12
zb∆zc∆zd∆ze∇cR

a
dbe +O(ε4).

Using z = v and z + ∆z = −→xy (i.e. ∆z = −→xy − v) in a normal coordinate system
centered at x, and keeping only the first order terms in v, we obtain the first terms of the
series development of the log:[

logx+v(y)
]a

= −→xya − va +
1

3
Ra
cbdv

b−→xyc−→xyd +
1

12
∇cR

a
dbev

b−→xyc−→xyd−→xye +O(ε4). (4)

Thus, the differential of the log with respect to the foot point is:

− [Dx logx(y)]ab = δab −
1

3
Ra
cbd
−→xyc−→xyd − 1

12
∇cR

a
dbe
−→xyc−→xyd−→xye +O(ε3) (5)

Since we are in a normal coordinate system, the zeroth order term is the identity matrix,
like in the Euclidean space, and the first order term vanishes. The Riemannian curvature
tensor appear in the second order term and its covariant derivative in the third order
term. The important point here is to see that the curvature is the leading term that
makes this matrix departing from the identity (i.e. the Euclidean case) and which may
lead to the non invertibility of the differential.

3 Example on spheres

We consider the unit sphere in dimension n ≥ 2 embedded in Rn+1 and we represent points
of M = Sn as unit vectors in Rn+1. The tangent space at x is naturally represented by
the linear space of vectors orthogonal to x: TxSn = {v ∈ Rn+1, vTx = 0}. The natural
Riemannian metric on the unit sphere is inherited from the Euclidean metric of the
embedding space Rn+1. With these conventions, the Riemannian distance is the arc-
length d(x, y) = arccos(xTy) = θ ∈ [0, π]. Denoting f(θ) = 1/sinc(θ) = θ/sin(θ), the
spherical exp and log maps are:

expx(v) = cos(‖v‖)x+ sinc(‖v‖)v (6)

logx(y) = f(θ) (y − cos(θ)x) with θ = arccos(xTy). (7)

Notice that f(θ) is a smooth function from ]− π; π[ to R that is always greater than one
and is locally quadratic at zero: f(θ) = 1 + θ2/6 +O(θ4).

3.1 Hessian of the squared distance on the sphere

To compute the gradient and Hessian of functions on the sphere, we first need a chart
in a neighborhood of a point x ∈ Sn. We consider the unit vector xv = expx(v) which
is a variation of x parametrized by the tangent vector v ∈ TxSn (i.e. verifying xTv = 0).
In order to extend this mapping to the embedding space to simplify computations, we
consider that v is the orthogonal projection of an unconstrained vector w ∈ Rn+1 onto
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the tangent space at x: v = ( Id − xxT)w. Using the above formula for the exponential
map, we get at first order xv = x− v + O(‖v‖2) in the tangent space or xw = x + ( Id−
xxT)w +O(‖w‖2) in the embedding space.

It is worth verifying first that the gradient of the squared distance θ2 = d2y(x) =
arccos2 (xTy) is indeed∇d2y(x) = −2 logx(y). We considering the variation xw = expx((Id−
xxT)w) = x+ ( Id− xxT)w +O(‖w‖2). Because Dx arccos(yTx) = −yT/

√
1− (yTx)2, we

get:

Dw arccos2 (xT

wy) =
−2θ

sin θ
yT( Id− xxT) = −2f(θ)yT( Id− xxT),

and the gradient is as expected:

∇d2y(x) = −2f(θ)( Id− xxT)y = −2 logx(y). (8)

To obtain the Hessian, we now compute the Taylor expansion of logxw(y). First, we
have

f(θw) = f(θ)− f ′(θ)

sin θ
yT( Id− xxT)w +O(‖w‖2),

with f ′(θ) = (1− f(θ) cos θ)/ sin θ. Thus, the first order Taylor expansion of logxw(y) is:

logxw(y) =

(
f(θ)− f ′(θ)

sin θ
yT( Id− xxT)w

)
( Id− xxT − ( Id− xxT)wxT − xwT( Id− xxT)) y +O(‖w‖2)

so that

−2Dw logxw(y) =
f ′(θ)

sin θ
( Id− xxT)yyT( Id− xxT)− f(θ) (xTy Id + xyT) ( Id− xxT)

Now, since we have computed the derivative in the embedding space, we have obtained
the Hessian with respect to the flat connection of the embedding space, which exhibits a
non-zero normal component. In order to obtain the Hessian with respect to the connection
of the sphere, we need to project back on TxSn (i.e. multiply by ( Id− xxT) on the left)
and we obtain:

1

2
Hx(y) =

(
1− f(θ) cos θ

sin2 θ

)
( Id− xxT) yyT( Id− xxT) + f(θ) cos θ( Id− xxT)

= ( Id− xxT)

(
(1− f(θ) cos θ)

yyT

sin2 θ
+ f(θ) cos θ Id

)
( Id− xxT),

To simplify this expression, we note that ‖(Id−xxT)y‖2 = sin θ, so that u = ( Id−xxT)y
sin θ

=
logx(y)

θ
is a unit vector of the tangent space at x (for y 6= x so that θ > 0). Using this

unit vector and the intrinsic parameters logx(y) and θ = ‖ logx(y)‖, we can rewrite the
Hessian:

1

2
Hx(y) = f(θ) cos θ( Id− xxT) +

(
1−f(θ) cos θ

θ2

)
logx(y) logx(y)T (9)

= uuT + f(θ) cos θ( Id− xxT − uuT) (10)

The eigenvectors and eigenvalues of this matrix are now very easy to determine. By
construction, x is an eigenvector with eigenvalue µ0 = 0. Then the vector u (or equiva-
lently logx(y) = f(θ)( Id− xxT)y = θu) is an eigenvector with eigenvalue µ1 = 1. Lastly,
every vector u which is orthogonal to these two vectors (i.e. orthogonal to the plane
spanned by 0, x and y) has eigenvalue µ2 = f(θ) cos θ = θ cot θ. This last eigenvalue is
positive for θ ∈ [0, π/2[, vanishes for θ = π/2 and becomes negative for θ ∈]π/2π[. We
retrieve here the results of [Buss and Fillmore, 2001, lemma 2] expressed in a more general
coordinate system.



4 EXAMPLE ON THE HYPERBOLIC SPACE HN 7

4 Example on the hyperbolic space Hn

We consider in this section the hyperboloid of equation x20 + x21 . . . x
2
n = −1 (with x0 > 0

and n ≥ 2) embedded in Rn+1. Using the notations x = (x0, x̂) and the indefinite nonde-
generate symmetric bilinear form 〈 x | y 〉∗ = xTJy = x̂Tŷ − x0y0 with J = diag(−1, Idn),
the hyperbolic space can be seen as the sphere ‖x‖2∗ = −1 of radius -1 in the (n + 1)-
dimensional Minkowski space:

Hn = {x ∈ Rn,1/‖x‖2∗ = ‖x̂‖2 − x20 = −1}.

A point in M = Hn ⊂ Rn,1 can be parametrized by x = (
√

1 + ‖x̂‖2, x̂) for x̂ ∈ Rn.
This happen to be in fact a global diffeomorphism that provides a very convenient global
chart of the hyperbolic space. We denote π(x) = x̂ (resp. π(-1)(x̂) = (

√
1 + ‖x̂‖2, x̂)) the

coordinate map from Hn to Rn (resp. the parametrization map from Rn to Hn). The
Poincarré ball model is another classical models of the hyperbolic space Hn which can
be obtained by a stereographic projection of the hyperboloid onto the hyperplane x0 = 0
from the south pole (−1, 0 . . . , 0).

A tangent vector v = (v0, v̂) at point x = (x0, x̂) satisfies 〈 x | v 〉∗ = 0, i.e. x0v0 = x̂Tv̂,
so that

TxHn =

{(
x̂Tv̂√

1 + ‖x̂‖2
, v̂

)
, v̂ ∈ Rn

}
.

The natural Riemannian metric on the hyperbolic space is inherited from the Minkowski
metric of the embedding space Rn,1: the scalar product of two vectors u = (x̂Tû/

√
1 + ‖x̂‖2, û)

and v = (x̂Tv̂/
√

1 + ‖x̂‖2, v̂) at x = (
√

1 + ‖x̂‖2, x̂) is

〈 u | v 〉∗ = uTJv = −u0v0 + ûTv̂ = ûT

(
− x̂x̂T

1 + ‖x̂‖2
+ Id

)
v̂

The metric matrix expressed in the coordinate chart G = Id − x̂x̂T

1+‖x̂‖2 has eigenvalue 1,

with multiplicity n − 1, and 1/(1 + ‖x̂‖2) along the eigenvector x. It is thus positive
definite.

With these conventions, geodesics are the trace of 2-planes passing through the origin
and the Riemannian distance is the arc-length:

d(x, y) = arccosh(−〈 x | y 〉∗). (11)

The hyperbolic exp and log maps are:

expx(v) = cosh(‖v‖∗)x+
sinh(‖v‖∗)
‖v‖∗

v (12)

logx(y) = f∗(θ) (y − cosh(θ)x) with θ = arccosh(−〈 x | y 〉∗), (13)

where f∗(θ) = θ/sinh(θ) is a smooth function from R to (0, 1] that is always positive and
is locally quadratic at zero: f∗(θ) = 1− θ2/6 +O(θ4).

4.1 Hessian of the squared distance on the hyperbolic space

We first verify that the gradient of the squared distance d2y(x) = arccosh2 (− < x, y >∗)
is indeed ∇d2y(x) = −2 logx(y). Let us consider a variation of the base-point along the
tangent vector v at x verifying 〈 v | x〉∗ = 0:

xv = expx(v) = cosh(‖v‖∗)x+
sinh(‖v‖∗)
‖v‖∗

v = x+ v +O(‖v‖2∗).
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In order to extend this mapping to the embedding space around the paraboloid, we
consider that v is the projection v = w + 〈 w | x〉∗ x of an unconstrained vector w ∈ Rn,1

onto the tangent space at TxHn. Thus, the variation that we consider in the embedding
space is

xw = x+ ∂wxw +O(‖w‖2Q) with ∂wxw = w + 〈 w | x〉∗ x = ( Id + xxTJ)w

Now, we are interested in the impact of such a variation on θw = dy(xw) = arccosh (−〈 xw | y 〉∗).
Since arccosh′(t) = 1√

t2−1 , and
√

cosh(θ)2 − 1 = sinh(θ) for a positive θ, we have:

d/dt arccosh(t)|t=cosh(θ) = 1/
√

cosh(θ)2 − 1 = 1/sinh(θ).

so that

θw = θ − 1

sinh(θ)
〈 w + 〈 w | x〉∗ x | y 〉∗ +O(‖v‖2∗).

This means that the directional derivative is

∂wθw = − 1

sinh(θ)
〈 w + 〈 w | x〉∗ x | y 〉∗ = − 1

sinh(θ)
〈 w | y − cosh(θ)x〉

so that ∂wθ
2
w = −2f∗(θ) 〈 w | y − cosh(θ)x〉∗ . Thus, the gradient in the embedding space

defined by < ∇d2y(x), w >∗= ∂wθ
2
w is as expected:

∇d2y(x) = −2f∗(θ)(y − cosh(θ)x) = −2 logx(y) (14)

To obtain the Hessian, we now compute the Taylor expansion of logxw(y). First, we
compute the variation of f∗(θw) = θw/ sinh(θw):

∂wf∗(θw) = f ′∗(θ) ∂wθw = − f ′∗(θ)

sinh(θ)
〈 w | y − cosh(θ)x〉∗ = −f

′
∗(θ)

θ
〈 w | logx(y)〉∗

with f ′∗(θ) = (1− f∗(θ) cosh θ)/ sinh θ = (1− θ coth θ)/ sinh θ. The variation of cosh θw is:

∂w cosh θw = sinh θ ∂wθw = −〈 w | y − cosh(θ)x〉∗ .

Thus, the first order variation of logxw(y) is:

∂w logxw(y) = ∂wf∗(θw)(y − cosh θx)− f∗(θ) (∂w cosh(θw)x+ cosh(θ)∂wxw)

= −f
′
∗(θ) sinh θ

θ2
〈 w | logx(y)〉∗ logx(y)

+ f∗(θ) (〈 w | y − cosh(θ)x〉∗ x− cosh(θ)(w + 〈 w | x〉∗ x))

= −(1− θ coth θ)

θ2
〈 w | logx(y)〉∗ logx(y) + 〈 w | logx(y)〉∗ x− θ coth(θ)(w + 〈 w | x〉∗ x)

This vector is a variation in the embedding space: it displays a normal component to
the hyperboloid 〈 w | logx(y)〉∗ x which reflects the extrinsic curvature of the hyperboloid
in the Minkowski space (the mean curvature vector is −x), and a tangential component
which measures the real variation in the tangent space:

( Id + xxTJ)∂w logxw(y) = −(1− θ coth θ)

θ2
〈 w | logx(y)〉∗ logx(y)− θ coth(θ)(J + xxT)Jw.
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Thus the intrinsic gradient is:

Dx logx(y) = −(1− θ coth θ)

θ2
logx(y) logx(y)TJ − θ coth(θ)( Id + xxTJ).

Finally, the Hessian of the square distance, considered as an operator from TxHn to TxHn,
is Hx(y)(w) = −2Dx logx(y)w. Denoting u = logx(y)/θ the unit vector of the tangent
space at x pointing towards the point y, we get in matrix form:

1

2
Hx(y) = uuTJ + θ coth θ(J + xxT − uuT)J

In order to see that the Hessian is symmetric, we have to lower an index (i.e. multiply on
the left by J) to obtain the bilinear form:

Hx(y)(v, w) = 〈 v |Hx(y)(w)〉∗ = 2vTJ (uuT + θ coth θ(J + xxT − uuT)) Jw.

The eigenvectors and eigenvalues of (half) the Hessian operator are now easy to de-
termine. By construction, x is an eigenvector with eigenvalue µ0 = 0 (restriction to
the tangent space). Then, within the tangent space at x, the vector u (or equivalently
logx(y) = θu) is an eigenvector with eigenvalue µ1 = 1. Lastly, every vector v which is
orthogonal to these two vectors (i.e. orthogonal to the plane spanned by 0, x and y) has
eigenvalue µ2 = θ coth θ. Since θ coth θ ≥ 1 (with equality only for θ = 0, we can conclude
that the Hessian of the squared distance is always positive definite and does never vanish
along the hyperbolic space. This was of course expected since it is well known that the
Hessian stay positive definite for negatively curved spaces Bishop and ONeill [1969]. As
a consequence, the squared distance is a convex function and has a unique minimum.
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