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Spatio-Temporal fMRI Analysis Using
Markov Random Fields

Xavier Descombes,* Frithjof Kruggel, and D. Yves von Cramon

Abstract—Functional magnetic resonance images (fMRI’s) pro-
vide high-resolution datasets which allow researchers to obtain
accurate delineation and sensitive detection of activation areas
involved in cognitive processes. To preserve the resolution of
this noninvasive technique, refined methods are required in the
analysis of the data. In this paper, we first discuss the widely
used methods based on a statistical parameter map (SPM) anal-
ysis exposing the different shortcomings of this approach when
considering high-resolution data. First, the often used Gaussian
filtering results in a blurring effect and in delocalization of the
activated area. Secondly, the SPM approach only considers false
alarms due to noise but not rejections of activated voxels. We
propose to embed the fMRI analysis problem into a Bayesian
framework consisting of two steps: i) data restoration and ii)
data analysis. We, therefore, propose two Markov random fields
(MRF’s) to solve these two problems. Results on three protocols
(visual, motor and word recognition) are shown for two SPM-
approaches and compared with the proposed MRF-approach.

Index Terms—Bayesian framework, functional magnetic reso-
nance imaging (fMRI) analysis, Markov random fields (MRF’s),
signal analysis, signal restoration.

I. INTRODUCTION

RECENT developments in medical imaging technologies
allow researchers to study more elaborate cognitive tasks.

During the last years, the fMRI, being a noninvasive technique
with high spatial and temporal resolution has provided a
new interesting option to study cognitive phenomena [1]. A
widely used technique in fMRI consists of measuring the
blood oxygen level dependent (BOLD) contrast [2]. This
measure is related to the difference of concentration between
oxygenated and deoxygenated hemoglobin. The change in the
hemoglobin composition is related to neuronal activity and
produces a very localized slow variation of the fMRI signal.
It is possible to repeat a simple simulation over and over
again (for instance a visual stimulus) to improve the statistics.
However, with cognitive tasks, this becomes problematic (time
constraints, learning adaptation of the subject, etc.). There-
fore, corresponding to enormous improvements in technology
refined techniques from statistics and image processing are
required to develop sensitive and robust methods to detect and
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characterize functional activity. The hemodynamic function is
the transfer response of the system under study. The coupling
of the neuronal activity to the vascular system can be modeled
by convolutions introducing blurring both in space and time
domains [3]. Therefore, although the time scale of neuronal
activity is milliseconds, the hemodynamic responses have
time constants of a few seconds. The purpose of our work
is not only to detect a signal correlated with a reference
boxcar function but also to get an accurate delineation of
the corresponding areas and to characterize and classify the
different hemodynamic functions for each activated voxel.

A general and widely used approach has been originally
developed for positron emission tomography (PET) images
and is currently applied to fMRI [4], [5]. This approach basi-
cally entails three steps. A Gaussian filtering is first computed
in the space domain in order to increase the signal-to-noise
ratio (SNR). This filter decreases the level of noise but also
spoils the underlying signal. Therefore, this step is avoided
when the noise level is not too high. A statistical parametric
map (SPM) is then derived using different statistical tests (-
test, Kolmogorov–Smirnov test, etc.) which have been recently
compared in [6]. These SPM are then converted into a-map
modeled by a Gaussian random field (GRF) with unit variance.
The clusters above a given threshold are then analyzed using
the theory of excursion sets [4], the Euler’s characteristics [7]
or Monte Carlo simulations [8] (see [9] for a complete review).
For a given threshold, a-value reflecting the significance
of the detected activation is then assigned to each cluster
essentially depending on its size. A recent survey of those
techniques can be found in [10].

However, this approach, although quite general, can be
embedded in a more general framework if we consider the
huge amount of methods developed in image and signal pro-
cessing. More elaborate techniques should improve the results
obtained with a Gaussian filtering and thresholding. Therefore,
some new approaches have appeared in the literature since a
couple of years. The famous MUltiple SIgnal Classification
(MUSIC) algorithm developed in signal processing is applied
to fMRI analysis in [11]. Using a hierarchical description of
the -map, a multiscale detection is proposed in [12]. Some
regression based on techniques can be used for matching the
signal to a reference waveform leading to parameter maps
which characterize the activation [13].

In this paper, we propose a new approach based on Markov
random fields (MRF’s). MRF’s have been introduced in image
processing by Besag in 1974 [14]. Since then, they have widely
been used, especially for image segmentation, classification
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and image restoration [15], [16], [17]. The main advantage
of MRF’s lies in their ability to take contextual information
into account. A pixel will be classified with respect to its grey
level value but also with respect to the value of its neighbors.
The dependency between neighboring pixels is modeled by
local interactions. All these interactions lead to a global energy
which is minimized using an optimization algorithm such as
simulated annealing (SA). Derived algorithms are particularly
robust to noise due to the contextual dependency. A first
approach based on MRF’s has been proposed to analyze
statistical maps from PET studies in [18]. In this approach
a SPM is segmented into three classes (nonactivated voxels,
positively activated voxels and negatively activated voxels),
leading to an “intelligent smoothing of the pixel labeling.” We
propose to integrate MRF’s earlier in the procedure to take
advantage of the contextual information at each step. We first
propose to restore a fMRI time series using a spatio-temporal
MRF. This restoration increases the SNR as for a Gaussian
filtering but does not introduce artifacts (blurring, loss of fine
structures, etc.). From the restored signal we then compute the
hemodynamic function. Some parameters characterizing the
hemodynamic function are extracted for each time series and
analyzed by a second MRF leading to an activation map and
three parameter maps.

The paper is organized as follows. In section two, we
analyze the SPM-based approach. We highlight the different
points which can be improved using MRF’s. We add basic
definitions relative to MRF’s and present the most widely
used models for image segmentation and image restoration
in Section III. In Sections IV and V, we explain the two
MRF’s for respectively restoring the fMRI data and analyzing
the hemodynamic function. We then present results on fMRI
for respectively a visual, a motor, and a word recognition
protocols. Finally we conclude on future direction of MRF’s
applied to fMRI analysis.

II. THE SPM-BASED APPROACH

Although several approaches have been proposed to analyze
functional images, the SPM framework is the most widely
used. The usual approach to analyze temporal series in func-
tional images (PET or fMRI) can be divided in the following
three main steps:

• Gaussian filtering (optional);
• computation of a statistical map converted into a-map;
• thresholding of the -map using spatial extent and/or

heights of local maxima.

When considering the different methods developed in image
processing, we can remark that each of these three steps can be
embedded in a more general framework, which can be stated
as follows:

• signal restoration;
• signal analysis;
• decision theory.

Selecting tools from these three huge domains of investigation
we can define more powerful algorithms which improve the
results of each step using more general frameworks.

A. Signal Restoration

The aim of Gaussian filtering as a preprocessing step is
to increase the signal-to-noise ratio (SNR). Usually applied
when averaging over several subjects, filtering can also be
useful in case of very noisy data which we generally find
with fMRI single subject data. However, if such a filter
considerably reduces the level of noise, it also may spoil
the signal and results in a loss of resolution. Indeed, the
Gaussian filter is a low pass filter and as such is not adapted
to discontinuities. Several artifacts can result on images after
filtering [see Fig. 1(c) and (d)], as follows:

• loss of fine objects;
• blurring of edges;
• fusion of neighboring objects;
• displacement of objects.

To reduce these artifacts, size and standard deviation of the
filter are taken as small as possible. The restoration step is
also sometimes suppressed when the noise is not too severe.
However, noise reduction can be very useful for the analysis
step and should be performed if possible.

Noise reduction is a particular case of signal restoration
which can be interpreted as an inverse problem. Such a
problem arises as soon as a signal issued from a given sensor
is analyzed. Therefore, it has been largely studied in image
processing, signal processing, astronomy or nuclear physics.
A first class of methods consists in defining a filter which
preserve the discontinuities while reducing noise. The-filter
proposed by Lee [19] is one of the most efficient of these
methods [20] [see Fig. 1(e)].

Another approach is to reach a compromise between the
data and somea priori knowledge on the underlying image.
Here, several methods have been proposed to find a regularized
solution to the problem under consideration. The main idea
of these methods is to search a solution which is as close
as possible to the data and has regularity properties. Some
a priori knowledge (about smoothness, homogeneity, amount
of edges, etc.) is injected to the solution in order to model
these regularity properties. Among these methods, MRF’s are
very popular because of their ability to manage regularity
properties. Moreover, statistical tools to estimate parameters
or to optimize the model (reach the solution) are well defined
and efficient. Using MRF’s,a priori properties are modeled by
interactions between neighboring pixels. Using well-adapted
interactions, we can reduce noise without blurring effect [see
Fig. 1(f)].

In this paper, we propose to restore the fMRI signal using
an edge preserving MRF. Moreover, the restoration will be
achieved in the spatio-temporal space to consider contextual
information both in the space domain and in the time domain.

B. Statistical Map Analysis Based on Thresholding

The signal being restored, the time series is analyzed by
performing statistical tests. Several tests are proposed (-test,
KS-test, correlation, etc) in the literature [5], [21], [10] and
have been compared in [6]. In fact, these tests quantify a “dis-
tance” between two distributions, the first one corresponding
to the baseline and the other to a stimulation state. The time
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Example of image restoration on synthetic data. (a) Original data,
(b) noisy data Gaussian noise(� = 20), (c) restoration with a Gaussian filter
(� = 1), (d) restoration with a Gaussian filter(� = 2), (e) restoration with
a sequence of�-filters, and (f) restoration with a MRF.

(a) (b)

Fig. 2. Two signals with the samet-test value. (a) Noisy and (b) match the
stimulus.

dimension is lost here as the only information incorporated is
the binary variable “stimulated” or “not stimulated” (baseline).
Fig. 2 displays two synthetic time courses. For these two
time courses we obtain the same value for a-test and the
same value for the correlation. Therefore, classic fMRI studies
classify these two time courses either as noise or as signal
with the same significance. However, the signal plotted on
Fig. 2(b) seems more significant than on Fig. 2(a) as it is

less noisy and better matches the reference boxcar. Indeed,
the classic approaches consider two kinds of time samples
(activated and baseline periods) but the time dimension is not
taken into account in the statistical test during these periods. A
very high (with respect to low) value of a single time sample
(outlier of the noise distribution) during a stimulated (with
respect to baseline) period can considerably increase the result
of the statistical test leading to a false alarm. The reverse is
also true and leads to false negative responses. One can argue
that once the detection of activated areas is performed, the
time dimension can be recovered by studying the underlying
signal. However, this implies that activated areas have been
accurately detected. The detection itself can be improved by
using the time information during the analysis process. A
statistical test based on correlation can be derived for any
kind of waveforms using for example several time delays.
However, in that case, the detection depends on the quality
of the waveforms choice.

The final detection is usually performed by thresholding the
statistical map converted into a-map. A -map is modeled
by a zero mean unit variance GRF of which the smoothness
parameter can be estimated from the-map using different
approximations [7], [22]. Clusters above a given threshold
are then analyzed with respect to their size, their maximum
value or both of them [23]. To assess the significance of
a cluster, the probability that this event (a cluster of this
size above the chosen threshold) appears with such a GRF
in the search volume is given and referred as the-value.
Derived from a frequencist point of view, this-value de-
pends on the search volume. The knowledge on the search
volume (visual cortex for example) can be incorporate in a
prior using a Bayesian approach. Second, the significance
is referring to errors of type I (false alarms) only without
any considerations of the probability of the cluster to be a
signal. In practice, the-map is thresholded and the connected
components with a size greater than a given number of
voxels and/or with a high maximum value are considered
to be activated. Using a Bayesian framework allows us to
compare the probability of a given cluster to be assigned
as the noise with its probability to represent an underlying
signal. Finally, the clusters are usually only defined by their
size or sometimes by their size and maximum value. Using
a MRF approach, clusters are defined by the integral of the
signal, the length of edges and the contrast with respect to the
background.

Consider Fig. 3(a) as an activation map. In Fig. 3(b), we add
Gaussian noise so that it can be referred to the-map. Fig. 3(c)
and (d) shows the detection obtained using a threshold and
then removing small connected components. Details and fine
structures have not been detected. Moreover, as we only
consider errors of type I, some holes spoil the activated areas.
We have tried to apply a -filter before thresholding but the
result on Fig. 3(e) shows that lots of details have been lost
(see the fine structures on the bottom right quarter and the
birds at the top left). Using an adapted MRF (the so-called
Chien-model described in [24] and [25]), we can preserve the
details. Fig. 3(f) shows that we have detected the birds and
most of the lines without having false alarms.
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III. B ACKGROUND ON MARKOV RANDOM FIELDS

In this section, we derive basic definitions concerning
MRF’s. For a complete description we refer to [26] for a
physical approach and to [27] for a mathematical approach.
The collective work [17] presents different applications of
MRF’s in image processing.

An MRF is a discrete stochastic process whose global
properties are controlled by means of local properties. They are
defined by local conditional probabilities. In the last decade,
their use has proliferated in the engineering sciences [14],
especially in image processing [15].

A. MRF’s and Gibbs Fields

Let us denote by the set of sites(lattice) and by
the set of states(grey levels). denotes the

set of the applications from in . is called theuniverse.
Consider the -algebra (set of the subsets of ),
and , a probability on . An element of the universe is called
an eventor a configuration in . It is denoted by and
the state of the site by .

Definition 1: A random field is said to beMarkovian
if and only if

where is a finite subset of and is called the
neighborhoodof .

This means that if we know the values of the neighbors
of pixel , the law of is completely defined and does not
depend on the values outside the neighborhood of.

Consider a subset and a family ,
where is an application from to .

Definition 2: A random field which satisfies the
following property:

is called aGibbs field.
Any element of is called aclique, is the associated

potential. is a scale parameter referred astemperature,
whereas is the energy of the configuration.

Adding the positivity constraint which states that no con-
figuration has a probability equal to zero, the Hammers-
ley–Clifford theorem [28] establishes the equivalence between
MRF’s and Gibbs Fields.

B. The Bayesian Framework

The usual framework for segmentation using MRF’s is the
Bayes formalism. Let be the data, repre-
senting different images and be the segmented image (for
example a binary image represented activated and nonactivated
areas). The aim of segmentation is to maximize the conditional
probability . The known quantities
are thea priori model which is represented by and

models the expected result and the data attachment (goodness
of fit) which is represented by the conditional probability

. We, thus, use the Bayes rule which
states that

(1)

As are known, to segment the image means
to maximize the product in (1) numerator.

In our context, is supposed to be a MRF so that the prior
can be written as a Gibbs field

(2)

To compute the data attachment model
, we consider that the conditional probabilities

are mutually independent and strictly positive.
In that way, we have

(3)

We then have

(4)

To minimize the energy we use a SA algorithm. This
algorithm is iterative and considers conditional probabilities
on each site. Using the Markov property, these conditional
probabilities only depend on the neighborhood. The main idea
of SA algorithm is to accept increasing of the energy function
in order to escape from the local minima. The number and
height of these jumps of energy are controlled by a scaling
parameter referred as temperature:. This temperature slowly
decreases during iterations and convergence is obtained when

tends to 0. The SA algorithm converges toward the global
minimum of the energy function and does not depend on the
initialization [15]. It can be described as follows.

1) Initialize a random configuration , set .
2) For each site :

a) Choose a random valuenew different from the
current valuecur.

b) Compute the local energies and
.

c) If set
to new, otherwise set to newwith probability

where
.
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3) If the stopping criterion is not reached decreaseand
go to Step 2).

To adhere to the theoretical properties of convergence we
should consider a logarithmic decrease of the temperature.
However, to obtain a faster algorithm we have considered a
linear decrease of rate 0.95. For the kind of energy functions
we use, this decrease rate is slow enough to achieve a good
solution.

In the next subsections, we recall the most popular MRF’s
in image processing, for segmentation and restoration tasks.

C. The Most Used MRF’s in Image Processing

The binary Ising and -ary Potts models are the most com-
monly used for image segmentation. The energy associated
with the Ising model is written as follows:

(5)

where represents the interaction between sites
and which tend to result in homogeneous regions and

is the data driven term ( being a noisy binary
configuration).

The SA algorithm leads to a compromise between both
terms by minimizing the energy. Addinga priori spatial in-
formation improves the segmentation obtained using a simple
maximum-likelihood (ML) approach (which is a threshold in
the binary case) by regularizing the solution. The Ising model
penalizes neighbors which are in a different state (have a
different value). Some more sophisticated models have also
been proposed [24]. The improvements obtained with respect
to thresholding are shown on Fig. 3.

In the restoration problem we consider that we have some
data representing a noisy version of . The restoration
process consists in recovering from . In a probabilistic
framework, we are searching for the configurationwhich
maximizes the conditional probability . Suppose we
have a model of the noise, namely we know . Using
Bayes law, the restoration process then consists in maximizing
the product where represents the prior.

Consider an additive independent Gaussian noise of mean
zero and standard deviation. The data attachment term

is then written as follows:

(6)

A first prior can be obtained using Gaussian interactions.
Consider two neighborsand . The potential associated with
clique is the written as follows:

(7)

Such a potential is shown on Fig. 4(a). When the difference
between two neighbors increases, the potential value increases
as a quadratic function. Thea priori effect is then to smooth
the data as the neighbors tend to have the same value.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Example of image segmentation on synthetic data. (a) Original data,
(b) noisy data: Gaussian noise(� = 50), (c) segmentation with a threshold
(th = 128) and deleting connected components smaller than five voxels,
(d) segmentation with a threshold(th = 148) and deleting connected
components smaller than three voxels, (e) segmentation with a sequence of
�-filters followed by a threshold(th = 128), and (f) segmentation with a
fine structures preserving MRF [24].

(a) (b)

Fig. 4. Potentials for image restoration. (a) Gaussian potential and (b)
�-model.

However, the energy associated with neighbors on both sides
of an edge can be too high and the resulting restoration may
result in a blurring effect despite of the data. To overcome
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this effect, one approach consists in defining a line process
on the dual lattice [29]. Between two neighboring pixels, a
binary variable is introduced and inhibits the interaction if an
edge is detected. This leads to two coupled MRF’s for which
the derived optimization algorithms and parameter estimation
methods become complex. Therefore, some potentials have
been defined to preserve edges during the restoration process.
In this paper, we consider-functions [30], [31] [see Fig. 4(b)]

(8)

IV. A N EDGE PRESERVING RESTORATION PROCESS

In this section, we derive a spatio-temporal model to restore
fMRI time series. Activation areas can represent fine structures
following the cerebral cortex (typically two or three voxels
wide). Therefore, we pay particular attention to preserve edges
in the spatial domain. Moreover, this restoration is only a
preprocessing step. The aim of this preprocessing step is to
increase the SNR without spoiling the signal.

A. A Spatio-Temporal MRF

We consider a time series of 2-D slices. The spatial domain
is then reduced to a lattice on the plane. However, the
extension to a time series of volumes is straightforward but
requires more computation time. In the experiments we have
managed, this approximation is justified by the gap between
slices. So, we have developed a three-dimensional (3-D)
restoration model where the third dimension represents time.

1) Data Attachment:The datasets have been corrected for
motion-induced artifacts. The different slices have been regis-
tered onto a reference slice using an affine transformation.
This affine transformation is estimated by maximizing the
image cross correlation [32] with the Simplex algorithm. The
slow-time dependent fluctuations have been removed using a
highpass filter to correct baseline nonstationarities. We then
subtract the mean of the time series and normalize the signal
on each voxel to remove the fluctuations due to the anatomical
structures.

For the restored data we expect to get a value near
the mean of the different . If we use Gaussian potentials
for the data attachment, the energy will dramatically increase
if the pixel value is set too far from the data. The first-order
potentials are written as follows:

(9)

where is a strictly positive parameter.
2) Spatial a Priori Model: In the space domain we con-

sider pairwise interactions induced by the 8-connectivity. As
we do not want to blur the activated areas, we use edge-
preserving potentials defined by a-model on the pairwise
cliques induced by the 8-connectivity

(10)

where is a strictly positive parameter.

Fig. 5. The 12 neighbors of the restoration model.

3) Temporal a Priori Model: Using pairwise interaction
for regularization tends to decrease the range of the first
derivative. Even in case of an edge preserving potential, we
smooth the data by controlling the first derivative. To study
the time course of the signal we want to fit as closely as
possible the original first derivatives as the hemodynamic
function is defined by the first derivative of the signal.
However, we want to regularize this derivative in order to
regularize the time course of the hemodynamic function.
We define the temporal prior to minimize the variation of
the derivative, i.e., to minimize the second-order derivative

. So, we consider cliques
of three elements to get a potential depending on the second
derivative. We use -potentials on these cliques which are
written as follows:

(11)

where is a strictly positive parameter.
4) Neighborhood and Energy Function:The induced neigh-

borhood of the spatio-temporal MRF is a 12 connectivity
(see Fig. 5), in which each voxel has eight spatial neighbors
belonging to its own slice and four temporal neighbors located
at the same place but representing previous and next instants.

The global energy function of the MRF is written as follows:

(12)

Consider a given voxel outside the boundaries. The
local energy on given its neighbors which is used in the
SA algorithm is written as follows:

(13)
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Example of the restoration process of fMRI. (a) Original data
(thirty-second slice), (b) restored data (thirty-second slice), (c) timecourse
of the signal for an activated and a closely located nonactivated voxel, (d)
timecourse at the same locations after restoration, (e)Z-map overlay of
original data, and (f)Z-map overlay of restored data.

B. Restoration Results

We have performed restoration on the data sets analyzed
in the next section. Fig. 6 shows one example obtained with
a visual stimulation protocol. Fig. 6(a) shows a native slice.
Fig. 6(b) is obtained after registration, normalization and
restoration. Fig. 6(c) and (d) shows the time series of an
activated and a nonactivated voxels respectively before and
after the restoration. Note that the normalization changes the
scale of the signal. The ratio between the activated voxel and
the noise of the nonactivated voxel has been increased by the
restoration process. Finally, Fig. 6(e) and (f) shows the result
of a thresholded -test before and after the restoration. The
increasing of the SNR obtained by the restoration results in
higher -scores and a higher sensitivity.

V. SIGNAL ANALYSIS AND ACTIVATION DETECTION

In this section, we analyze the restored data in order to
obtain a classification between activated and nonactivated

areas. We also extract and regularize parameters character-
izing the hemodynamic function at each activated voxel. This
step corresponds to the two last steps in the SPM-approach
(statistical test and thresholding using spatial extend).

A. Signal Model and Parameter Maps

We consider a time series with two periodical conditions
of period referred as baseline and stimulated state. The
analysis consists in detecting and characterizing any signal
which appear during the stimulated periods. We make the
assumption that at the end of a baseline period, the past is
forgotten, namely the signal does not depend on the previous
stimulated periods.

Let be the hemodynamic function of the voxel. The
signal is modeled by the following convolution:

(14)

where is a Gaussian noise, represents the stimulus
and is given by

if

if or (15)

We make the assumption that the support of the hemody-
namic function is included in the interval , namely is
null outside this interval. Then we have the following equation:

(16)

and:

if

if (17)

From the restored data we can compute the hemodynamic
function at each voxel. In fact, we have two noisy estimates
of for each interval [ ], one at time
and one at time . We compute the hemodynamic function
as the average of the two estimates:

(18)

We define several parameters characterizing the hemody-
namic function and regularize the associated maps. First we
define a map which indicates the presence of activation. This
map is driven by the norm of the hemodynamic function.
If this norm is lower than a threshold , we consider a
very low probability of any activation, if it is higher than

we tend to detect activation, between both the contextual
information has a higher weight in the decision. We consider
three labels on the activation map. The label 0 corresponds to
nonactivated voxels. The label refers to detected signals
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which do not match the convolution equation (16). In practice
it corresponds to signals for which the maximum of the
absolute value of the hemodynamic function corresponds to
a negative value. This occurs if the signal has significantly
decreases during the stimulated period. It can be due to a
response shorter than the stimulus or to an outliar of the noise
distribution. When analyzing the results, we cannot give any
cognitive or physiological interpretation of these areas. They
are, therefore, considered as false alarms. Finally, the label
1 corresponds to activation matching the model of (16). We
also define three parameter maps to characterize the different
kinds of activation. These parameters are i) the norm of the
hemodynamic function, ii) the maximum of the absolute value
of the hemodynamic function, and iii) the time when this
maximum occurs. So we have the four following 2-D maps:

: activation

(or grey levels set): norm

(or grey levels set): maximum

: time when the max occurs

B. A Two Level MRF

In this subsection we describe a MRF to regularize the four
maps. The structure of the site space has two levels. The first
one consists in the activation map whereas the lower level
is defined by the three parameter maps (norm, maximum and
time).

1) Data Attachment:From the restored volume we can
compute data for each parameter map. In fact, we compute the
hemodynamic function by taking the derivative of the signal
and estimating the norm, the maximum of the absolute value
and the time when this maximum occurs. These estimates
represent the data and are denoted and .
We define first-order potentials stating that the result should be
close to the data. Therefore, we consider Gaussian potentials
for the norm and the maximum maps. The time parameter
depends on the time resolution of the fMRI experiment and
typically does not exceed eight different values. We use a
potential more adapted to this kind of state space

(19)

(20)

(21)

As stated previously the activation map can take three values
1, 0, 1). The data attachment term of the activation map

depends on the norm estimate and the sign of the maximum
of the absolute value of the hemodynamic function. A given
voxel is attracted to the value zero, if the estimate norm
is lower than a threshold and to 1 or 1 is the estimate
norm is greater than . Between these two values the data
attachment is lower and the prior will take a higher weight
to take the decision. These values define the sensitivity and
the specificity of the result and can be related to the threshold
used in the SPM-approach. Taking low values leads to more
activation areas than for higher values. If we increase the
interval between and we increase the influence of the

Fig. 7. Function defining the first-order potential of the activation map (see
text for details).

prior model. A very localized high response will be detected
as well as a smaller response on a wider area. We do not have
access to a-value for this procedure. However, some Monte
Carlo simulations could provide this information. In practice,

and are set by defining the percentage of activation
which is considered as significant.

The derived potential is written as follows:

(22)

where is defined on Fig. 7 and where equal to
one, if and to zero, otherwise.

2) The Prior Model: We now define interactions within the
activation map. The activation map can be modeled by an
image consisting of homogeneous areas: the background and
several clusters, the activated areas. We define a prior widely
used in image segmentation. Activation areas are expected to
be small and finely structured. To avoid over regularization,
the parameter maps are used to inhibit interactions between the
activated areas and the background. Using the 8-connectivity
we consider a Potts model of pairwise interactions. In this
way, our model favors activated areas that are homogeneous
regions. The associated potential is written as follows:

(23)

We now have to define interactions on the parameter maps.
We first address the value zero in the parameter maps to
nonactivated voxels. Other values represent the variation of the
parameter in activated areas. We regularize the parameter maps
inside activated areas of the same class or inside nonactivated
areas but do not consider interactions between activated and
nonactivated voxels or between activated voxels belonging to
different classes (1 and 1).

We first define pairwise interactions between the activation
map and the different parameter maps. These interactions
penalize configurations for which a given voxel is different
from zero on a given parameter map and is equal to zero
on the activation map (nonactivated voxel). This term avoids
inconsistencies between the different maps. The associated
potentials are written as follows:

(24)

(25)

(26)
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Fig. 8. Neighborhood of a parameter map site.

Fig. 9. Neighborhood of an activation map site.

Then we define regularizing constraints inside each parame-
ter map. However, to avoid interactions between activated and
nonactivated voxels or between activated voxels of different
classes, these constraints also depend on the activation map.
We perform a smoothing inside each cluster but this smoothing
is not spoiled by adjacent nonactivated voxels. The norm
and the maximum parameters lie in the same scale defined
by the grey levels. The potentials associated with these two
parameters are of the same kind and are chosen Gaussian
to get a strong smoothing inside a given activated area. We
can consider such a smoothing because we have inhibited the
interactions between the activation areas and the background.
As for the data attachment term, the potential associated with
the time parameter is adapted to a state space containing few
values

(27)

(28)

The induced neighborhood depends on the map. Fig. 8
shows the neighborhood of a voxel belonging to a parameter
map, and Fig. 9 shows the neighborhood of a voxel belonging
to the activation map.

VI. RESULTS ON fMRI

We have validated these new methods on several data
sets and for several protocols. The data have been obtained
with a 3.0 Tesla Medspec 30/100 scanner from Bruker Medi-
zintechnik GmbH (Ettlingen, Germany). Experiments have
been performed at the Max Planck Institute of Cognitive

Fig. 10. Coding colors for the two activation classes (green: label�1, orange
label1). Scale: min (red, green): 2.0, max (white, blue): 6.0 (z-value fort-test
and regression analysis). Scale: min (red, green): 2%, max (white, blue): 4%
(percentage for activation for the MRF analysis).

Neuroscience in Leipzig. The functional data sets contain
64 two-dimensional (2-D) scans of a gradient-echo FLASH
sequence with TR ms, TE ms and FOV cm
[33], [34]. The original matrices contain 12864 voxels and
have been zero-filled before the Fourier transform to yield a
spatial resolution of 1.93 mm 1.93 mm and a slice thickness
of 5 mm with 2 mm gap. The overlays are shown on 2-D
high resolution 512 512 anatomical slices acquired with a

-weighted MDEFT sequence [35].
For each dataset we have 64 time samples with 5-s intervals.

Each period contains four samples under simulation (20 s)
and four baseline samples (20 s). Eight such periods make
up a time series. These experiments have been performed by
healthy volunteers from 20 to 30 yr. old.

The look up tables corresponding to the two activation
classes are shown on Fig. 10. The green scale corresponds
to the label ( 1), i.e., to signals which do not match the
convolution model, whereas the red-yellow-white scale is
used to code the activation matching the time course of the
stimulation protocol. For the SPM approaches the red-yellow-
white scale represents the-value from 2.0 (red) to 6.0 (white).
The MRF approach results show the norm of the activation
which has been scaled to fit the same look-up table.

For the three experiments we have compared the proposed
method with the SPM-approach. We first have used a-test
on original data or on data filtered with a Gaussian filter of
variance one when no significant activation was detected on
original data. The activation is obtained by thresholding the
derived -map using spatial extend. We have also compared
the results with a regression method based on a Gaussian
model of the hemodynamic function taking into account a
correction for lag and dispersion [36]. The signal is modeled
by the convolution of a Gaussian (the hemodynamic function)
with the stimulation function plus an independent additive
Gaussian noise. The mean of the hemodynamic function
(referred as to the lag), the standard deviation (referred as to
the dispersion) and the amplitude are estimated using a least
square procedure. This method has been applied on original
data.



DESCOMBESet al.: SPATIO-TEMPORAL fMRI ANALYSIS USING MRF’S 1037

A. Applicability of the Methods

Herein we only consider periodical ON-OFF experimental
designs, for which the three compared procedures can be
applied, and address the quality of the results. However,
the application range of the procedures is of importance for
future designs. The -test compares two distributions and
makes no assumptions about the time course of the signal.
It is not applicable if more than two conditions exist in the
experimental design. The regression analysis may be combined
with hemodynamic modeling to improve the specificity and
sensitivity of fMRI signal detection. In addition, it can take
several experimental conditions into account. The modeling
procedure, however, requires a certain number of timesteps
in a period of the experimental design (a trial) to allow a
successful adaption of the model function. In the proposed
approach we make the assumption of a periodical ON-OFF
sequence. However, this assumption is only required for the
definition of the hemodynamic response in (14), as we consider
the convolution with a step function. The Markovian approach
can be used with more complex experimental designs. We
currently investigate the restoration of the signal for different
experimental designs using MRF’s.

B. Visual Protocol

Subjects were asked to fixate a central point on an 8-Hz
alternating checker board pattern projected by a LCD system.
Three axial slices have been considered, the central slice
corresponding to the visual cortex. Fig. 11 shows the results
on two slices which cut the visual cortex approximately at 40
from the AC-PC plane. There is a cross validation of the three
methods as the results are consistent between the different
methods. Using a-test, the filtering step is not necessary
to detect activation. However, to obtain a good detection we
have used a low value for the threshold resulting
in false alarms in the precentral sulcus [see Fig. 11(a)]. This
activation is considered as false positive because there is no
neurophysiological reason for a precentral activation in such a
simple visual task. Indeed, none of the more specific methods
shows this activation. We could have used Gaussian filtering to
increase the threshold, however, this leads to blurred activated
areas. Using a regression analysis allows us to increase the
threshold without detecting false alarms. In the
proposed methods we get a higher activation [see Fig. 11(f)].
Note that “activated” voxels in extra cerebral compartments
are classified as false alarms, as for the sinus rectus on
Fig. 11(f).

C. Motor Protocol

A finger tapping task was performed by the subjects with a
rapid repetitive opposition movement of the first two fingers.
Fig. 12 shows results on two axial slices 36 with respect to 43
mm above the AC-PC plane. In this motor task, activation is
expected in the motor cortex, the ipsilateral sensory cortex
and the SMA. Only the MRF method detects these three
areas. Gaussian filtering leads to activated areas badly located
and spreading into the white matter [see Fig. 12(b)]. Using
MRF allows us to increase the sensitivity with respect to the

Fig. 11. Visual experiment.t-test on original data(a+b), regression analysis
on original data(c + d), MRF analysis on restored data(e + f).

regression analysis as most of the false alarms detected are
classified in green. We get a better activation in the motor
cortex and also detect some activation in the supplementary
motor area (SMA) [see Fig. 12(e)].

D. Word Protocol

A random series of words and pronounceable nonwords
was heard by the subjects during the stimulation period.
Their task was to count the nonwords during the stimulation.
Two sagittal slices through the center of the temporal lobe
on the left side are shown on Fig. 13. For this experiment,
the -map are not too noisy and Gaussian filtering can be
avoided. The underlying signal modeling of the regression
analysis and the Markovian approach allows us to increase the
sensitivity with respect to the-test. Lower activation along the
sulcus temporalis inferior (STI) is detected with the regression
analysis [see Fig. 13(c) and (d)].
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Fig. 12. Finger tapping experiment.t-test on filtered data(a+b), regression
analysis on original data(c+ d), MRF analysis on restored data(e + f).

VII. CONCLUSION

In this paper we have proposed a new approach to restore
and analyze fMRI data using MRF’s in a Bayesian framework
and showed that MRF’s and more generally tools from image
processing can represent a good alternative to the SPM ap-
proach. We have applied this approach in two steps. Firstly,
we apply a signal restoration algorithm to improve the SNR.
We define a 3-D MRF where the third dimension represents
time. We use some -functions as potentials in the space
domain in order to preserve discontinuities due to edges. After
this restoration step, one can apply the SPM approach. The
sensitivity of the detection is improved as the SNR is increased
but, contrary to low pass filters, the MRF restoration dœs not
spoil the signal. One possible extension of this model can be
to incorporate a convolution in the associated inverse problem.
In that way, we expect to improve the resolution of the initial

Fig. 13. Word recognition experiment.t-test on original data(a + b),
regression analysis on original data(c + d), MRF analysis on restored data
(e + f).

data in the space domain. The open question concerns the
model of the convolution kernel.

Secondly, we analyze the signal to detect and characterize
activated voxels. Using MRF’s allows us to perform the
detection in the same process as for the analysis. We do
not make any assumption about the shape of the response
of the activated voxels. Statistical test or correlation using
the constant-wise function of baseline and activated periods
as a reference are only sensitive to a mean activation during
the stimulation periods. They lack robustness with respect
to outliers. Analyzing the signal after the detection can be
valid only if activated voxels are really detected. Moreover,
MRF’s allow us to detect lower signals as they manage some
contextual information. The analysis of the hemodynamic
response is achieved using three parameters, the norm, the
maximum and the time when this maximum occurs. The
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analysis of these three parameters depends of course on
the activation detection, but we consider that the activation
also depends on these parameters. When the values of these
parameters in neighboring voxels are far from each other,
the probability of detection is lower as the associated hemo-
dynamic responses are not consistent in the spatial domain.
Therefore, we consider a two level MRF modeling interactions
between the activation map and the three parameter maps. The
detection of an activated area, thus, depends on the norm of
the hemodynamic response and some contextual information
on this norm but also on the consistency of the hemodynamic
function parameters along this area.

Our current research concerns the analysis of more com-
plex experimental protocols thanON-OFF sequences and the
classification of the activated voxels with respect to the shape
of their hemodynamic function. We work on the definition
of several different classes. A first class may characterize the
BOLD effect in vessels (veins) and some other classes may
represent different types of neuronal responses.
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la segmentation d’images Bayesienne Premi`ere partie: Modelisation,”
Traitement du Signal, vol. 14, no. 4, pp. 373–382, 1997.

[26] H. O. Georgii, “Gibbs measures and phase transitions,”De Gruyter—
Studies in Mathematics, vol. 9, 1998.

[27] X. Guyon,Champs al´eatoires sur un r´eseau : Modelisations, statistique
et applications, Techniques Stochastiques, Editions Masson, 1992.

[28] J. M. Hammersley and P. Clifford, “Markov random fields on finite
graphs and lattices,” unpublished, 1971.

[29] D. Geman, S. Geman, C. Graffigne, and P. Dong, “Boundary detection
by constrained optimization,”IEEE Trans. Pattern Anal. Machine Intell.,
vol. 12, pp. 609–628, July 1990.

[30] S. Geman and D. McClure, “Statistical methods for tomographic image
reconstruction,” inProc. 46th Session of ISI, 1987, pp. 22–26.

[31] S. Geman and G. Reynolds, “Constrained restoration and recovery of
discontinuities,”IEEE Trans. Pattern Anal. Machine Intell., vol. 14, pp.
367–383, Mar. 1992.

[32] K. J. Friston, S. Williams, R. Howard, R. S. J. Frackowiak, and R.
Turner, “Movement-related effects fMRI timeseries,”Magn. Reson. in
Med., vol. 35, pp. 346–355, 1996.

[33] A. Haase, J. Frahm, D. Matthaei, W. Hänicke, and K. D. Merboldt,
“Flash imaging. Rapid NMR imaging using low flip-angle pulses,”J.
Magn. Reson., vol. 67, pp. 258–266, 1986.

[34] K. Ugurbil, M. Garwood, J. Ellermann, K. Hendrich, R. Hinke, X. Hu,
S. G. Kim, R. Menon, H. Merkle, S. Ogawa, and R. Salmi, “Imaging at
high magnetic fields: Initial experiences at 4T,”Magn. Reson. Quart.,
vol. 9, pp. 259–277, 1993.

[35] J. H. Lee, M. Garwood, R. Menon, G. Adriany, P. Andersen, C.
L. Truwit, and K. Ugurbil, “High contrast and fast three-dimensional
magnetic resonance imaging at high fields,”Magn. Reson. in Medicine,
vol. 34, pp. 308–312, 1995.

[36] J. Rajapakse, F. Kruggel, J. Maisog, and Y. von Cramon, “Modeling
hemodynamic response for analysis of function MRI time-series,”
submitted for publication.


