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Spatio-Temporal fMRI Analysis Using
Markov Random Fields

Xavier Descombes,* Frithjof Kruggel, and D. Yves von Cramon

Abstract—Functional magnetic resonance images (fMRI's) pro- characterize functional activity. The hemodynamic function is
vide high-resolution datasets which allow researchers to obtain the transfer response of the system under study. The coupling
accurate delineation and sensitive detection of activation areas of the neuronal activity to the vascular system can be modeled

involved in cognitive processes. To preserve the resolution ofb luti . ducing blurring both i d ti
this noninvasive technique, refined methods are required in the PY COnvolutions introducing blurring both in space and time

analysis of the data. In this paper, we first discuss the widely domains [3]. Therefore, although the time scale of neuronal
used methods based on a statistical parameter map (SPM) anal- activity is milliseconds, the hemodynamic responses have
ysis exposing the different shortcomings of this approach when time constants of a few seconds. The purpose of our work

considering high-resolution data. First, the often used Gaussian . . .
filtering results in a blurring effect and in delocalization of the is not only to detect a signal correlated with a reference

activated area. Secondly, the SPM approach only considers false Poxcar function_ but also to get an accurate delineatiqn of
alarms due to noise but not rejections of activated voxels. We the corresponding areas and to characterize and classify the
propose to embed the fMRI analysis problem into a Bayesian different hemodynamic functions for each activated voxel.
framework consisting of two steps: i) data restoration and ii) A general and widely used approach has been originally

data analysis. We, therefore, propose two Markov random fields d | d f . . hv (PET) i
(MRF's) to solve these two problems. Results on three protocols d€veloped for positron emission tomography (PET) images

(visual, motor and word recognition) are shown for two SPM- and is currently applied to fMRI [4], [S]. This approach basi-
approaches and compared with the proposed MRF-approach.  cally entails three steps. A Gaussian filtering is first computed

Index Terms—Bayesian framework, functional magnetic reso- N the space domain in order to increase the signal-to-noise
nance imaging (fMRI) analysis, Markov random fields (MRF’s), ratio (SNR). This filter decreases the level of noise but also
signal analysis, signal restoration. spoils the underlying signal. Therefore, this step is avoided
when the noise level is not too high. A statistical parametric
map (SPM) is then derived using different statistical tests (

_ . _ . test, Kolmogorov—Smirnov test, etc.) which have been recently
ECENT developments in medical imaging technologies, ,nare in [6]. These SPM are then converted interaap

allow researchers to study more elaborate cognitive tas“r?odeled by a Gaussian random field (GRF) with unit variance.

D”L'nﬁ.tme last yelars,éhe fMRI, t;elng al npnln\(]aswe te‘?g”'g"\%e clusters above a given threshold are then analyzed using
with high spatial ‘and temporal resolution has provide fle theory of excursion sets [4], the Euler’s characteristics [7]

new interesting option to study cognitive phenomena [1]. or Monte Carlo simulations [8] (see [9] for a complete review).

widely used technique in fMRI consists of measuring thEor a given threshold, a-value reflecting the significance

blood oxygen level depenq ent (BOLD) contrast- [2]. Th'%f the detected activation is then assigned to each cluster
measure is related to the difference of concentration between

oxygenated and deoxygenated hemoglobin. The change in ?ﬁsen_tlally depending on _|ts size. A recent survey of those
. 2 - techniques can be found in [10].
hemoglobin composition is related to neuronal activity an . .
However, this approach, although quite general, can be

produces a very localized slow variation of the fMRI signal.mb dded in a mor neral framework if w nsider th
It is possible to repeat a simple simulation over and over edde a more general framewol € consider the
uge amount of methods developed in image and signal pro-

again (for instance a visual stimulus) to improve the statistics. 2", . )
However, with cognitive tasks, this becomes problematic (tin? ssing. More elaborate techniques should improve the results
' ! ytained with a Gaussian filtering and thresholding. Therefore,

constraints, learning adaptation of the subject, etc.). The hes h din the li :
fore, corresponding to enormous improvements in technolo 9me NEwW approaches have appeared in the |teratu.r.e since a
ple of years. The famous MUItiple Signal Classification

refined techniques from statistics and image processing . L o .
required to develop sensitive and robust methods to detect 4i’S!C) algorithm developed in signal processing is applied

to fMRI analysis in [11]. Using a hierarchical description of
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and image restoration [15], [16], [17]. The main advantagk. Signal Restoration
of MRF's lies in their ability to take contextual information The aim of Gaussian filtering as a preprocessing step is

into account. A pixel will be classified with respect to i_ts dreYs increase the signal-to-noise ratio (SNR). Usually applied
level value but also with respect to the value of its neighborgnen averaging over several subjects, filtering can also be
The dependency between neighboring pixels is modeled Qe in case of very noisy data which we generally find

Iocgl |n.tera(.:t|.on_s. AIIth.ese mtera.ctu_)nsllead to alglobal energ)th fMRI single subject data. However, if such a filter

which is minimized using an optimization algorithm such asgnsiderably reduces the level of noise, it also may spoil
simulated annealing (SA). Derived algorithms are particularlye signal and results in a loss of resolution. Indeed, the
robust to noise due to the contextual dependency. A fifgh ssjan filter is a low pass filter and as such is not adapted

approach based on MRF's has been proposed to analyzgjiscontinuities. Several artifacts can result on images after
statistical maps from PET studies in [18]. In this approacllﬂtering [see Fig. 1(c) and (d)], as follows:
a SPM is segmented into three classes (nonactivated voxels, loss of fine objects;
positively activated voxels and negatively activated voxels), | blurring of edges: '

leading to an “intelligent smoothing of the pixel labeling.” We fusion of neighbo1ring objects;
propose to integrate MRF’s earlier in the procedure to take '

advantage of the contextual information at each step. We first displacement of objects.

propose to restore a fMRI time series using a spatio-tempo?_-a reduce these artifacts, size ar_wd standard dewgﬂon of the
MRF. This restoration increases the SNR as for a Gaussfafel are taken as small as possible. The restoration step is
filtering but does not introduce artifacts (blurring, loss of fin@!SC sometimes suppressed when the noise is not too severe.
structures, etc.). From the restored signal we then compute fHRVEVEr, noise reduction can t?e very useful for the analysis
hemodynamic function. Some parameters characterizing fiep gnd shoulgl be_ performgd if possible. . _
hemodynamic function are extracted for each time series andV0iS€ reduction is a particular case of signal restoration

analyzed by a second MRF leading to an activation map af@ich can be interpreted as an inverse problem. Such a
three parameter maps. problem arises as soon as a signal issued from a given sensor

The paper is organized as follows. In section two, wis analyzed. Therefore, it has been largely studied in image

analyze the SPM-based approach. We highlight the differeffPcessing, signal processing, astronomy or nuclear physics.
points which can be improved using MRF's. We add basfe first class of methods consists in defining a filter which
definitions relative to MRF’s and present the most wideljr€Serve the discontinuities while reducing noise. FHidter

used models for image segmentation and image restoratfJRPoSed by Lee [19] is one of the most efficient of these

in Section Ill. In Sections IV and V, we explain the twoMethods [20] [see Fig. 1(e)]. ,

MRF’s for respectively restoring the fMRI data and analyzin Another approagh s to reach a compromise _betyveen the
fta and soma priori knowledge on the underlying image.

the hemodynamic function. We then present results on fM _ '
for respectively a visual, a motor, and a word recognitioHere’ several methods have been proposed to find a regularized

protocols. Finally we conclude on future direction of MRF'$olUtion to the problem under consideration. The main idea
applied to fMRI analysis. of these methods is to search a solution which is as close

as possible to the data and has regularity properties. Some
a priori knowledge (about smoothness, homogeneity, amount
of edges, etc.) is injected to the solution in order to model
these regularity properties. Among these methods, MRF's are
Although several approaches have been proposed to analyg@g/ popular because of their ability to manage regularity
functional images, the SPM framework is the most widelgroperties. Moreover, statistical tools to estimate parameters
used. The usual approach to analyze temporal series in fuggto optimize the model (reach the solution) are well defined
tional images (PET or fMRI) can be divided in the followingand efficient. Using MRF'sa priori properties are modeled by
three main steps: interactions between neighboring pixels. Using well-adapted
¢ Gaussian filtering (optional); interactions, we can reduce noise without blurring effect [see
e computation of a statistical map converted inte-map; Fig. 1(f)].
« thresholding of thez-map using spatial extent and/or In this paper, we propose to restore the fMRI signal using
heights of local maxima. an edge preserving MRF. Moreover, the restoration will be
When considering the different methods developed in imagéhieved in the spatio-temporal space to consider contextual
processing, we can remark that each of these three steps catfiffgmation both in the space domain and in the time domain.
embedded in a more general framework, which can be stated

Il. THE SPM-BASED APPROACH

as follows: B. Statistical Map Analysis Based on Thresholding
* signal restoration; The signal being restored, the time series is analyzed by
* S|gn_a_l analysis; performing statistical tests. Several tests are proposéssy,
* decision theory. KS-test, correlation, etc) in the literature [5], [21], [10] and

Selecting tools from these three huge domains of investigatibave been compared in [6]. In fact, these tests quantify a “dis-
we can define more powerful algorithms which improve thnce” between two distributions, the first one corresponding
results of each step using more general frameworks. to the baseline and the other to a stimulation state. The time
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less noisy and better matches the reference boxcar. Indeed,
the classic approaches consider two kinds of time samples
(activated and baseline periods) but the time dimension is not
taken into account in the statistical test during these periods. A
very high (with respect to low) value of a single time sample
(outlier of the noise distribution) during a stimulated (with
respect to baseline) period can considerably increase the result
of the statistical test leading to a false alarm. The reverse is
also true and leads to false negative responses. One can argue
that once the detection of activated areas is performed, the
time dimension can be recovered by studying the underlying
@) (b) signal. However, this implies that activated areas have been
accurately detected. The detection itself can be improved by
using the time information during the analysis process. A
statistical test based on correlation can be derived for any
kind of waveforms using for example several time delays.
However, in that case, the detection depends on the quality
of the waveforms choice.

The final detection is usually performed by thresholding the
statistical map converted into amap. A z-map is modeled
by a zero mean unit variance GRF of which the smoothness
parameter can be estimated from thenap using different
approximations [7], [22]. Clusters above a given threshold
© @ are then analyzed with respect to their size, their maximum
value or both of them [23]. To assess the significance of
a cluster, the probability that this event (a cluster of this
size above the chosen threshold) appears with such a GRF
in the search volume is given and referred as phealue.
Derived from a frequencist point of view, thigvalue de-
pends on the search volume. The knowledge on the search
volume (visual cortex for example) can be incorporate in a
prior using a Bayesian approach. Second, the significance
is referring to errors of type | (false alarms) only without
any considerations of the probability of the cluster to be a
signal. In practice, the-map is thresholded and the connected

Q) components with a size greater than a given number of

Fig. 1. Example of image restoration on synthetic data. (a) Original dat@oxels and/or with a high maximum value are considered
(b) noisy data Gaussian noie = 20), (c) restoration with a Gaussian filter y o activated. Using a Bayesian framework allows us to
(o = 1), (d) restoration with a Gaussian filtés = 2), (e) restoration with .~ . .
a sequence of-filters, and (f) restoration with a MRF. compare the probability of a given cluster to be assigned
as the noise with its probability to represent an underlying
signal. Finally, the clusters are usually only defined by their
size or sometimes by their size and maximum value. Using
a MRF approach, clusters are defined by the integral of the
signal, the length of edges and the contrast with respect to the
background.

Consider Fig. 3(a) as an activation map. In Fig. 3(b), we add
Gaussian noise so that it can be referred to:theap. Fig. 3(c)
and (d) shows the detection obtained using a threshold and
then removing small connected components. Details and fine
structures have not been detected. Moreover, as we only
dimension is lost here as the only information incorporated ignsider errors of type I, some holes spoil the activated areas.
the binary variable “stimulated” or “not stimulated” (base"neM/e have tried to app|y a-filter before thresh0|ding but the
Fig. 2 displays two synthetic time courses. For these twesult on Fig. 3(e) shows that lots of details have been lost
time courses we obtain the same value fot-t@st and the (see the fine structures on the bottom right quarter and the
same value for the correlation. Therefore, classic fMRI studigfds at the top left). Using an adapted MRF (the so-called
classify these two time courses either as noise or as sig@d#lien-model described in [24] and [25]), we can preserve the
with the same significance. However, the signal plotted afetails. Fig. 3(f) shows that we have detected the birds and
Fig. 2(b) seems more significant than on Fig. 2(a) as it most of the lines without having false alarms.

@ (b)

Fig. 2. Two signals with the samtetest value. (a) Noisy and (b) match the
stimulus.
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[ll. BACKGROUND ON MARKOV RANDOM FIELDS models the expected result and the data attachment (goodness
3:‘ fit) which is represented by the conditional probability
(

In this section, we derive basic definitions concerning ) '
MRF's. For a complete description we refer to [26] for d (X (1),---,X(n) | Y). We, thus, use the Bayes rule which
Slates that

physical approach and to [27] for a mathematical approa
The collective work [17] presents different applications of P

_ PX(), -, X(n) [ Y)P(Y)
MRF’s in image processing. )

Y| X(1),--,X(n)) = p(X(i),---,X(n))

An MRF is a discrete stochastic process whose global @)
properties are controlled by means of local properties. They are
defined by local conditional probabilities. In the last decade, AS X (1), -+, X(n) are known, to segment the image means
their use has proliferated in the engineering sciences [1#), Maximize the product in (1) numerator.
especially in image processing [15]. In our context,Y” is supposed to be a MRF so that the prior
P(Y) can be written as a Gibbs field
A. MRF’s and Gibbs Fields | . P(Y) = 1 exp— Z Viye,s € 0). @
Let us denote bys C Z” the set of siteglattice) and by Z oyt
A the set of stateggrey levels).Q = Q(S) = A° denotes the
set of the applications frons in A.  is called theuniverse 10 compute the data attachment mof¢X (1), - - -, X(n) |

Consider thes-algebrar = P(2) (set of the subsets db), Y’), we consider that the conditional probabilit_iéé(a:s(l)_,_
and P, a probability onr. An element of the universe is called "~ () | ¥.) are mutually independent and strictly positive.
an eventor a configurationin AS. It is denoted byss and In that way, we have

the state of the site by o,. o _ P(X(1),---,X(n) | Y)
Definition 1: A random field(3, P) is said to beMarkovian
if and only if = I Pl (1), 2o(n) | ws)
s€ES
Vs€s5, VAeAh =exp— Z —ln P(as(1), -, zs(n) | ys). (3)
e={s}CS

Plos=X|oy, Yte S —{s})=Plo, =| oy, VEEN,)
We then have
where N, is a finite subset ofS — {s} and is called the

neighborhoodof s. PY | X(1),---,X(n))

This means that if we know the values of the neighbors
of pixel s, the law of s, is completely defined and does not o 7 exp — Z V.(ys,s € ¢)
depend on the values outside the neighborhoosd. of ecC

Consider a subsét C P(s) and a familyV = {V_.,c € C},

whereV; is an application from2(c) = A° to R. _ Z InP(z,(1),- -, zs(n) | ys)|. ()
Definition 2: A random field (X, P) which satisfies the o=(s}

following property:
To minimize the energy we use a SA algorithm. This

Py = iexp—lU(E) algorithm is iterative and considers conditional probabilities
Z T ; ; i
1 v on each site. Using the Markov property, these conditional
= —exp ~2ccc Vel7s,5 € 0) probabilities only depend on the neighborhood. The main idea
Z T of SA algorithm is to accept increasing of the energy function
is called aGibbs field in order to escape from the local minima. The number and

Any elementc of C' is called aclique, V; is the associated height of these jumps of energy are controlled by a scaling
potential. 7" is a scale parameter referred tsmmperature parameter referred as temperatdfeThis temperature slowly
whereasl/(X) is the energy of the configuratian. decreases during iterations and convergence is obtained when

Adding the positivity constraint which states that no corf tends to 0. The SA algorithm converges toward the global
figuration has a probability equal to zero, the Hammersinimum of the energy function and does not depend on the
ley—Clifford theorem [28] establishes the equivalence betwefritialization [15]. It can be described as follows.

MRF's and Gibbs Fields. 1) Initialize a random configuratioll = (y,), setT’ = Tp.
2) For each sites:

B. The Bayesian Framework a) Choose a random valueew different from the

The usual framework for segmentation using MRF's is the current valuecur.
Bayes formalism. LetX(1),---,X(n) be the data, repre- b) Compute the local energi€$(y; = cur | ;) and
senting different images and be the segmented image (for Uy, = new | NV,).
example a binary image represented activated and nonactivated c) If U(ys = new | N;) < U(ys = cur | N;) set
areas). The aim of segmentation is to maximize the conditional ys to new otherwise sef, to newwith probability
probability P(Y | X(1),---,X(n)). The known quantities exp—[2Y¥] where AU = Uy, = new | N;) —

are thea priori model which is represented h¥(Y") and Ulys = cur | Ny).
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3) If the stopping criterion is not reached decredsend
go to Step 2).

To adhere to the theoretical properties of convergence
should consider a logarithmic decrease of the temperatu
However, to obtain a faster algorithm we have considered

we use, this decrease rate is slow enough to achieve a g
solution.

In the next subsections, we recall the most popular MRHF
in image processing, for segmentation and restoration task

C. The Most Used MRF’s in Image Processing
The binary Ising andr.-ary Potts models are the most com

monly used for image segmentation. The energy associa Y «& e " %;&
with the Ising model is written as follows: RO - ’:‘." Lo g
’ ':.:':‘“;j?u g
U(ES) = - Z /3575'6315:315/ - h Z 6315:1‘5 (5) M’d‘:"-;ltr‘-——w’-vfd"-‘-'wm‘—-m e ationd b2 e

c={s,s'}eC s€ES

where g, /6, =, , represents the interaction between site
s and s’ which tend to result in homogeneous regions anf ey LT, P
héy, =, is the data driven term being a noisy binary s esidhediathareiic]
configuration).

The SA algorithm leads to a compromise between botj
terms by minimizing the energy. Adding priori spatial in- §
formation improves the segmentation obtained using a simy
maximum-likelihood (ML) approach (which is a threshold ing
the binary case) by regularizing the solution. The Ising mod§g
penalizes neighbors which are in a different state (have§
different value). Some more sophisticated models have al
been proposed [24]. The improvements obtained with resp
to thresholding are shown on Fig. 3.

In the restoration problem we consider that we have so
data X representing a noisy version a&f. The restoration '
process consists in recovering from X. In a probabilistic ©

framework, we are searching for the configuratignwhich Fig. 3. Example of image segmentation on synthetic data. (a) Original data,
(b) noisy data: Gaussian noi¢e = 50), (c) segmentation with a threshold

maximizes the cond|t|onal prObab'“W(Y | X)- Suppose_ we (th = 128) and deleting connected components smaller than five voxels,
have a model of the noise, namely we kn&W{X | Y). Using (d) segmentation with a thresholgth = 148) and deleting connected
Bayes law, the restoration process then consists in maximizﬁ@ponents smaller than three voxels, (e) segmentation with a sequence of
. o-Tilters followed by a thresholdth = 128), and (f) segmentation with a
the productP(X | Y)P(Y) where P(Y') represents the prior. ne ryctures preserving MRF [24]
Consider an additive independent Gaussian noise of mean

zero and standard deviatiom. The data attachment term

P(X | Y) is then written as follows: |
1 Ty — US)Q \ ’j
PX|Y)= Pz, | y,) = ———exp— ‘ | |
(375 - ys)2 1 2 : o
=exp— EE; <T + > ln(27ra ) . (6) — I

A first prior can be obtained using Gaussian interactions.
Consider two neighborsands’. The potential associated with 4
clique ¢ = {s, s’} is the written as follows: @) (b)

2 Fig. 4. Potentials for image restoration. (a) Gaussian potential and (b)
Vc(ysv ys’) = /j(ys - ys’) . (7) $-model.

Such a potential is shown on Fig. 4(a). When the difference
between two neighbors increases, the potential value increaldesvever, the energy associated with neighbors on both sides
as a quadratic function. The priori effect is then to smooth of an edge can be too high and the resulting restoration may
the data as the neighbors tend to have the same valiesult in a blurring effect despite of the data. To overcome
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this effect, one approach consists in defining a line process

on the dual lattice [29]. Between two neighboring pixels, a- .. )
binary variable is introduced and inhibits the interaction if an =1
edge is detected. This leads to two coupled MRF’s for which” g

been defined to preserve edges during the restoration process. - } ﬂ[/
In this paper, we considdr-functions [30], [31] [see Fig. 4(b)] Fig. 5. The 12 neighbors of the restoration model.

-3
Vs, Ys) = ——7 (8) . : T ,
14 =g 3) Temporal a Priori Model: Using pairwise interaction
for regularization tends to decrease the range of the first
IV. AN EDGE PRESERVING RESTORATION PROCESS derivative. Even in case of an edge preserving potential, we

In this section, we derive a spatio-temporal model to restopg100th the data by controlling the first derivative. To study
fMRI time series. Activation areas can represent fine structulé® time course of the signal we want to fit as closely as
following the cerebral cortex (typically two or three voxeld?0ssible the original first derivatives as the hemodynamic
wide). Therefore, we pay particular attention to preserve eddggction is defined by the first derivative of the signal.
in the spatial domain. Moreover, this restoration is only However, we want to regularize this derivative in order to
preprocessing step. The aim of this preprocessing step isregularize the time course of the hemodynamic function.

increase the SNR without spoiling the signal. We define the temporal prior to minimize the variation of
the derivative, i.e., to minimize the second-order derivative
A. A Spatio-Temporal MRF 2y(s,t) —y(s,t — 1) —y(s,t + 1). So, we consider cliques

of three elements to get a potential depending on the second

. We consider a time series of 2-D slices. The spatial dOmatﬁ'%rivative. We used-potentials on these cliqgues which are
is then reduced to a lattice on the plane. However, ”\Written as follows:

extension to a time series of volumes is straightforward but
requires more computation time. In the experiments we have 4
managed, this approximation is justified by the gap between?s € S, V¢ € {1,---,n — 1}, V"(s,¢)
slices. So, we have developed a three-dimensional (3-D) _ —Bri (11)
restoration model where the third dimension represents time. 1| + 52/(2y(37t) —y(s,t—1) —y(s, t+ 1))2
1) Data Attachment:The datasets have been corrected for
motion-induced artifacts. The different slices have been regjs;

. . i “Where 3,; is a strictly positive parameter.
tered onto a reference slice using an affine transformation. P yp P

This affine transformation is estimated by maximizing thB 4) Neighborhood and Energy Functiofihe induced neigh-
image cross correlation [32] with the Simplex algorithm. Th orhood of the spatio-temporal MRF is a 12 connectivity

slow-time dependent fluctuations have been removed usin Sge Fig. 5), in which each voxel has eight spatial neighbors
. aep . X . ea}onging to its own slice and four temporal neighbors located
highpass filter to correct baseline nonstationarities. We th

. . . . he same place but representing previous and next instants.
subtract the mean of the time series and normalize the sign P P gp

on each voxel to remove the fluctuations due to the anatomical he global energy function of the MRF is written as follows:
structures. . B

For the restored datg(s,t) we expect to get a value near ” N
the mean of the diﬁereﬁ(s, Z). If we use Gaussian potentials U= Z Z Vst + Z Z (V¥(s,£5(1,0))
for the data attachment, the energy will dramatically increase °es = °es =0
if the pixel value is set too far from the data. The first-order + VP (5,40, 1)) + V(5,8 (1,1))
potentials are written as follows:

. HVEP(s 15 (L-1)) + D D Vist)  (12)
V(s,t) € Sx{0, -, n}V*(s,t) = a(y(s,t)—z(s,t))". (9) 5CS t=0
where « is a strictly positive parameter. . ) _ _

2) Spatial a Priori Model: In the space domain we con- COnsider a given voxe{s,t) outside the boundaries. The
sider pairwise interactions induced by the 8-connectivity. AQCal energy or(s, ) given its ne|gh‘bors which is used in the
we do not want to blur the activated areas, we use edged @lgorithm is written as follows:
preserving potentials defined bydmodel on the pairwise

cliques induced by the 8-connectivity UL(s,t | Nioy) = Z Vs, t+ey)
Vs € S, Yee {(1,0),(0,1),(1,-1),(1,1)} Vte€{0,---,n} «ct1.0.1)
5 + Z VP (s, t; (e ey))
VoP(s,t¢) = —Bsp 5. (10) €€{~1,0,1} x{~1,0,1},5£(0,0)
1482/ (y(s,t) — y(s + ¢, ) FVI (s, ).

where 3, is a strictly positive parameter. (13)
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areas. We also extract and regularize parameters character-
izing the hemodynamic function at each activated voxel. This
step corresponds to the two last steps in the SPM-approach
(statistical test and thresholding using spatial extend).

A. Signal Model and Parameter Maps

We consider a time series with two periodical conditions
of period 7" referred as baseline and stimulated state. The
analysis consists in detecting and characterizing any signal
which appear during the stimulated periods. We make the

@) (b) assumption that at the end of a baseline period, the past is
Native Timecaurse Timecourse afler MRF Restoration forgotten, namely the signal does not depend on the previous
BT - - 7 stimulated periods.

Let h, be the hemodynamic function of the voxel The
signal is modeled by the following convolution:

LIL ) = (s a4t = [ atobufe=)dr -+t

MNoh DA " A
w200 Y (AATARAN i ‘\/ EUNUS \' 1.\.,.‘-‘/\\,'.‘f“. I‘ |

+o000 0 noog A

; LA T VP I T N . L.
ar000 / VI {\ l [1”\ “ i “; | M AR AN
w L | IR (14)
Y KR P . o
i | oo . . . .
wol M M“ 211 wherens(t) is a Gaussian noise;(t) represents the stimulus
e - and is given b
© (@ gen By

z(t) =1, if ¢t €]0,7]
z(t)=0, ft=0 or te[T+1,2T] (15)
We make the assumption that the support of the hemody-

namic function is included in the interv@, '], namelyh is
null outside this interval. Then we have the following equation:

T
ys(t) = / hs(t — 1) dr + n1s(t) (16)
0
and:
dy, (¢ dn,(t .
v o+ O e,
dt dt
o N dy. (1) ds(t)
Fig. 6. Example of the restoration process of fMRI. (a) Original data prant —hs(t—=T)+ pranl if t €]T,2T[. (17)

(thirty-second slice), (b) restored data (thirty-second slice), (c) timecourse

of the signal for an activated and a closely located nonactivated voxel, (d)|:rom the restored data we can compute the hemodynamic
timecourse at the same locations after restoration,Zehap overlay of

original data, and (fZ-map overlay of restored data. function at each voxel. In fact, we have two noisy estimates
of hy(t) for each interval 07", 2(n 4+ 1)T ], one at timet
B. Restoration Results and one at tim&’ 4 ¢. We compute the hemodynamic function

We have performed restoration on the data sets analyA%jthe average of the two estimates:
in t_he next_ sectiqn. Fig. 6 ShOWS one example obta_ined yvith ; 1 /dys(t) dys(t+T)
a visual stimulation protocol. Fig. 6(a) shows a native slicelts 5 -

dt dt
Fig. 6(b) is obtained after registration, normalization and 1
restoration. Fig. 6(c) and (d) shows the time series of an = 5@+ D=y (O)+ys(t + T+ 1) —y, (t+1)).
activated and a nonactivated voxels respectively before and (18)

after the restoration. Note that the normalization changes the

scale of the signal. The ratio between the activated voxel andNVe define several parameters characterizing the hemody-
the noise of the nonactivated voxel has been increased by fti@nic function and regularize the associated maps. First we
restoration process. Finally, Fig. 6(e) and (f) shows the resdifine a map which indicates the presence of activation. This
of a thresholded-test before and after the restoration. Thenap is driven by the norm of the hemodynamic function.
increasing of the SNR obtained by the restoration results linthis norm is lower than a threshold;, we consider a

higher z-scores and a higher sensitivity. very low probability of any activation, if it is higher than
n, we tend to detect activation, between both the contextual
V. SIGNAL ANALYSIS AND ACTIVATION DETECTION information has a higher weight in the decision. We consider

In this section, we analyze the restored data in order tioree labels on the activation map. The label O corresponds to
obtain a classification between activated and nonactivatednactivated voxels. The labell refers to detected signals
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which do not match the convolution equation (16). In practice fx
it corresponds to signals for which the maximum of the
absolute value of the hemodynamic function corresponds to
a negative value. This occurs if the signal has significantly
decreases during the stimulated period. It can be due to a
response shorter than the stimulus or to an outliar of the noise
distribution. When analyzing the results, we cannot give any
cognitive or physiological interpretation of these areas. They
are, therefore, considered as false alarms. Finally, the label
1 corresponds to activation matching the model of (16).

. 7. Function defining the first-order potential of the activation map (see
also define three parameter maps to characterize the d|ffer@ for details).
kinds of activation. These parameters are i) the norm of the

hemodynamic function, ii) the maximum of the absolute value .

of the hemodynamic function, and iii) the time when thi"°" rlrlwodel A lery localized high resO;I:)onse W'I\I/Vbeddeteftﬁd
maximum occurs. So we have the four following 2-D maps as well as a smaller response on a wider area. Ve do ot have

access to a-value for this procedure. However, some Monte
Vs €S, af(s)€{0,—1,1}: activation Carlo simulations could provide this information. In practice,
Vs €S, n(s)€ RT (or grey levels set): norm ny and ny are set by defining the percentage of activation
which is considered as significant.

The derived potential is written as follows:
Vs €S, V%s)=aq((als) =0)—(dn(s) <0)(a(s) =—1)

—(dm(s) > 0)(a(s) = 1)) fa(dn(s)) (22)

B. A Two Level MRF where f,(z) is defined on Fig. 7 and whefe: = y) equal to

In this subsection we describe a MRF to regularize the foghe, if = = y and to zero, otherwise.
maps. The structure of the site space has two levels. The f'rsk) The Prior Model: We now define interactions within the
one consists in the activation map whereas the lower levglivation map. The activation map can be modeled by an
is defined by the three parameter maps (norm, maximum &g¢hge consisting of homogeneous areas: the background and
time). several clusters, the activated areas. We define a prior widely

1) Data Attachment:From the restored volume we canysed in image segmentation. Activation areas are expected to
compute data for each parameter map. In fact, we compute e small and finely structured. To avoid over regularization,
hemodynamic function by taking the derivative of the signahe parameter maps are used to inhibit interactions between the
and estimating the norm, the maximum of the absolute valggtivated areas and the background. Using the 8-connectivity
and the time when this maximum occurs. These estimaigg consider a Potts model of pairwise interactions. In this
represent the data and are denotkds), d..(s) and d;(s). way, our model favors activated areas that are homogeneous

We define first-order potentials stating that the result should Rgjions. The associated potential is written as follows:
close to the data. Therefore, we consider Gaussian potentialsvs €S, Vue{{—10,1} x {=1,0,1}} — {(0,0)},

for the norm and the maximum maps. The time parameter

m n X

Vse S, m(s) € RY (or grey levels set): maximum
Vse S, i(s)e{l,---,T}: time when the max occurs

depends on the time resolution of the fMRI experiment and paa —_3 _ 23
typically does not exceed eight different values. We use a (s,) Pl (0(s) = als + 1) (23)
potential more adapted to this kind of state space We now have to define interactions on the parameter maps.

s 2 We first address the value zero in the parameter maps to
s €5, V(s) = am(n(s) — du(s)) (19) nonactivated voxels. Other values represent the variation of the
V™ (s) = am(m(s) — dm(s))2 (20) parameter in activated areas. We regularize the parameter maps
Vi( . . ) T inside activated areas of the same class or inside nonactivated
5) = —ay COS((L( ) — di(s)) ) (21) or the . .
areas but do not consider interactions between activated and
As stated previously the activation map can take three valugsnactivated voxels or between activated voxels belonging to
(=1, 0, +1). The data attachment term of the activation magifferent classes«1 and 1).
depends on the norm estimate and the sign of the maximumwe first define pairwise interactions between the activation
of the absolute value of the hemodynamic function. A giveiap and the different parameter maps. These interactions
voxel a(s) is attracted to the value zero, if the estimate norfenalize configurations for which a given voxel is different
is lower than a threshold, and to—1 or +1 is the estimate from zero on a given parameter map and is equal to zero
norm is greater tham,. Between these two values the datan the activation map (nonactivated voxel). This term avoids
attachment is lower and the prior will take a higher weighhconsistencies between the different maps. The associated
to take the decision. These values define the sensitivity apétentials are written as follows:
the specificity of the result and can be related to the threshold ans
used in the SPM-approach. Taking low values leads to more Vs €S, VT(s) = a”’"’(a(s) 0) (n(s) 7 0) (24)
activation areas than for higher values. If we increase the V*(s) = aam (a(s) = 0) (m(s) #0)  (25)
interval betweem, andn, we increase the influence of the V(s) = aqi(a(s) = 0)(i(s) #0).  (26)
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[

Fig. 10. Coding colors for the two activation classes (green: laliglorange
label1). Scale: min (red, green): 2.0, max (white, blue): &.&vélue fort-test

and regression analysis). Scale: min (red, green): 2%, max (white, blue): 4%
(percentage for activation for the MRF analysis).

Fig. 9. Neighborhood of an activation map site. Neuroscience in Leipzig. The functional data sets contain
64 two-dimensional (2-D) scans of a gradient-echo FLASH

sequence with TR= 80.5 ms, TE= 40 ms and FOV= 25 cm

Then we define regular_izing cons_traints inside eac_h para §'], [34]. The original matrices contain 12864 voxels and
ter map. However, to avoid interactions between activated e been zero-filled before the Fourier transform to yield a
nonactivated voxels or between activated voxels of differeg atial resolution of 1.93 mm 1.93 mm and a slice thickness

classes, these constraints also depend on the activation M mm with 2 mm gap. The overlays are shown on 2-D
We perform a smoothing inside each cluster but this smoothiﬂ%h resolution 51% 512 z';matomical slices acquired with a
is not spoiled by adjacent nonactivated voxels. The nor, weighted MDEFT sequence [35]

and the maximum parameters lie in the same scale definelt]i . . .
. . ; or each dataset we have 64 time samples with 5-s intervals.
by the grey levels. The potentials associated with these t\go

parameters are of the same kind and are chosen GaUSSIach period contains four samples under simulation (20 s)

a ; . ;
to get a strong smoothing inside a given activated area. \%H four baseline samples (20 s). Eight such periods make

can consider such a smoothing because we have inhibited Re time series. These experiments have been performed by

interactions between the activation areas and the backgrou'ﬂl Ithy volunteers from 20 to 30 yr. old.

As for the data attachment term, the potential associated Wi(ih he look up tables corresponding to the two activation

the time parameter is adapted to a state space containing fedrocs a€ ShOW’_‘ on Fig._ 10. The _green scale corresponds
P P P g to the label 1), i.e., to signals which do not match the

values : . .
convolution model, whereas the red-yellow-white scale is

Vse S, Vue{-1,0,1} x {-1,0,1} — {(0,0)} used to code the activation matching the time course of the

Vs, s + u) stimulation protocol. For the SPM approaches the red-yellow-

white scale represents thevalue from 2.0 (red) to 6.0 (white).

- ﬁna(”(s) —nls+ u)) (a(s) =a(s+u) # 0) @7) The MRF approach results show the norm of the activation

V(s s+u) which has been scaled to fit the same look-up table.
= Bina(m(s) — m(s +u)) (a(s) = a(s +u) # 0) (28) For the three experiments we have compared the proposed
Via(s, s +u) method with the SPM-approach. We first have usetitest

) ) T on original data or on data filtered with a Gaussian filter of
= —Pia cos (('L(S) —i(s+ “))ﬁ) (a(s) = a(s +u) #0).  variance one when no significant activation was detected on
. . ._ofjginal data. The activation is obtained by thresholding the
The induced neighborhood depends on the map. Fig, rived z-map using spatial extend. We have also compared

shows the neighborhood of a voxel belonging to a Parameigl results with a regression method based on a Gaussian

[?)at%ea;gtil\:/gfic?nsac;vgs the neighborhood of a voxel belong|%de| of the hemodynamic function taking into account a
' correction for lag and dispersion [36]. The signal is modeled

by the convolution of a Gaussian (the hemodynamic function)

VI. ResuLTs ONfMRI with the stimulation function plus an independent additive

We have validated these new methods on several d&aussian noise. The mean of the hemodynamic function
sets and for several protocols. The data have been obtaifderred as to the lag), the standard deviation (referred as to
with a 3.0 Tesla Medspec 30/100 scanner from Bruker Medhe dispersion) and the amplitude are estimated using a least
zintechnik GmbH (Ettlingen, Germany). Experiments haveguare procedure. This method has been applied on original

been performed at the Max Planck Institute of Cognitivdata.
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A. Applicability of the Methods

Herein we only consider periodical ON-OFF experime
designs, for which the three compared procedures ca
applied, and address the quality of the results. Howe
the application range of the procedures is of importance
future designs. The-test compares two distributions a
makes no assumptions about the time course of the si
It is not applicable if more than two conditions exist in -
experimental design. The regression analysis may be com
with hemodynamic modeling to improve the specificity ¢
sensitivity of fMRI signal detection. In addition, it can ta
several experimental conditions into account. The mode
procedure, however, requires a certain number of time:
in a period of the experimental design (a trial) to allov
successful adaption of the model function. In the propc
approach we make the assumption of a periodical ON-
sequence. However, this assumption is only required fol
definition of the hemodynamic response in (14), as we con
the convolution with a step function. The Markovian appro
can be used with more complex experimental designs.
currently investigate the restoration of the signal for diffel
experimental designs using MRF’s.

B. Visual Protocol

Subjects were asked to fixate a central point on an ¢
alternating checker board pattern projected by a LCD sys
Three axial slices have been considered, the central
corresponding to the visual cortex. Fig. 11 shows the re
on two slices which cut the visual cortex approximately &t
from the AC-PC plane. There is a cross validation of the tl
methods as the results are consistent between the diff
methods. Using &-test, the filtering step is not necess
to detect activation. However, to obtain a good detectior
have used a low value for the threshgid= 2.0) resulting
in false alarms in the precentral sulcus [see Fig. 11(a)].
activation is considered as false positive because there
neurophysiological reason for a precentral activation in sucn a
simple visual task. Indeed, none of the more specific methotlg. 11. Visual experimenttest on original datga+b), regression analysis
shows this activation. We could have used Gaussian filteringQ°1i9inal datac + d), MRF analysis on restored data + f).
increase the threshold, however, this leads to blurred activated
areas. Using a regression analysis allows us to increase fbgression analysis as most of the false alarms detected are
threshold (¢t = 3.5) without detecting false alarms. In theclassified in green. We get a better activation in the motor
proposed methods we get a higher activation [see Fig. 11(8brtex and also detect some activation in the supplementary
Note that “activated” voxels in extra cerebral compartmentaotor area (SMA) [see Fig. 12(e)].
are classified as false alarms, as for the sinus rectus on
Fig. 11(f). D. Word Protocol

A random series of words and pronounceable nonwords
was heard by the subjects during the stimulation period.

A finger tapping task was performed by the subjects with Eheir task was to count the nonwords during the stimulation.
rapid repetitive opposition movement of the first two fingerdwo sagittal slices through the center of the temporal lobe
Fig. 12 shows results on two axial slices 36 with respect to 48 the left side are shown on Fig. 13. For this experiment,
mm above the AC-PC plane. In this motor task, activation the z-map are not too noisy and Gaussian filtering can be
expected in the motor cortex, the ipsilateral sensory cortaxoided. The underlying signal modeling of the regression
and the SMA. Only the MRF method detects these thremalysis and the Markovian approach allows us to increase the
areas. Gaussian filtering leads to activated areas badly locatedsitivity with respect to thietest. Lower activation along the
and spreading into the white matter [see Fig. 12(b)]. Usirmylcus temporalis inferior (STI) is detected with the regression
MRF allows us to increase the sensitivity with respect to thenalysis [see Fig. 13(c) and (d)].

C. Motor Protocol
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) ) ) ) ] ) Fig. 13. Word recognition experiment-test on original data(a + b),
Fig. 12. Finger tapping experimenttest on filtered datéa 4-b), regression regression analysis on original dgta+ d), MRF analysis on restored data
analysis on original datéc + d), MRF analysis on restored data + f). (e + f).

VII. CONCLUSION data in the space domain. The open question concerns the

In this paper we have proposed a new approach to restotedel of the convolution kernel.

and analyze fMRI data using MRF'’s in a Bayesian framework Secondly, we analyze the signal to detect and characterize
and showed that MRF’s and more generally tools from imagetivated voxels. Using MRF's allows us to perform the
processing can represent a good alternative to the SPM dgtection in the same process as for the analysis. We do
proach. We have applied this approach in two steps. Firstljot make any assumption about the shape of the response
we apply a signal restoration algorithm to improve the SNRf the activated voxels. Statistical test or correlation using
We define a 3-D MRF where the third dimension represerifse constant-wise function of baseline and activated periods
time. We use someb-functions as potentials in the spaces a reference are only sensitive to a mean activation during
domain in order to preserve discontinuities due to edges. Afttde stimulation periods. They lack robustness with respect
this restoration step, one can apply the SPM approach. Teoutliers. Analyzing the signal after the detection can be
sensitivity of the detection is improved as the SNR is increasedlid only if activated voxels are really detected. Moreover,
but, contrary to low pass filters, the MRF restoration dcees niRF’s allow us to detect lower signals as they manage some
spoil the signal. One possible extension of this model can bentextual information. The analysis of the hemodynamic
to incorporate a convolution in the associated inverse problerasponse is achieved using three parameters, the norm, the
In that way, we expect to improve the resolution of the initiahaximum and the time when this maximum occurs. The
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analysis of these three parameters depends of course on co-variance averagingfMagn. Reson. in Medvol. 35, pp. 807-813,

the activation detection, but we consider that the activatiﬁ%
ese

also depends on these parameters. When the values of t
parameters in neighboring voxels are far from each other,
the probability of detection is lower as the associated hemd?
dynamic responses are not consistent in the spatial domain.
Therefore, we consider a two level MRF modeling interactions
between the activation map and the three parameter maps.
detection of an activated area, thus, depends on the normsj
the hemodynamic response and some contextual information
on this norm but also on the consistency of the hemodynanﬂ%]
function parameters along this area.

Our current research concerns the analysis of more com-
plex experimental protocols thapn-OFF sequences and theqy7)
classification of the activated voxels with respect to the shape
of their hemodynamic function. We work on the definitiorFls]
of several different classes. A first class may characterize the
BOLD effect in vessels (veins) and some other classes mag
represent different types of neuronal responses. [19]
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