
 1

Induction of High-level Behaviors from Problem-solving
Traces using Machine Learning Tools

Vivien Robinet, Gilles Bisson, Mirta B. Gordon, Benoît Lemaire

Laboratoire TIMC-IMAG
Faculté de Médecine

38706 La Tronche Cedex, France
first name.last name@imag.fr

Abstract: This paper applies machine learning techniques to student modeling. It
presents a method for discovering high-level student behaviors from a very large set of
low-level traces corresponding to problem-solving actions in a learning environment.
Basic actions are encoded into sets of domain-dependent attribute-value patterns called
cases. Then a domain-independent hierarchical clustering identifies what we call general
attitudes, yielding automatic diagnosis expressed in natural language, addressed in
principle to teachers. The method can be applied to individual students or to entire groups,
like a class. We exhibit examples of this system applied to thousands of students' actions
in the domain of algebraic transformations.

Keywords:. Computer-assisted instruction, Machine learning, Education, Mining
methods and algorithms

1 Introduction

Many learning environments are able to store very detailed traces of students' activities thus
producing huge sets of low-level data. However, identifying high-level behaviors from these
data is not straightforward, especially if the concepts of the domain knowledge are not
explicitly encoded together with the corresponding traces. In this paper we present a general
approach that aims at discovering patterns of student behaviors. Its principles are applicable
whenever the information carried by the traces may be split as finite sequences of {initial state,
final state} pairs, where the final states are the result of basic student transformations performed
on the corresponding initial states. Within this context, final states are the initial states of
subsequent {initial state, final state} pairs (unless they are at the end of the sequence).

Our approach is based on a two-steps procedure:
• a domain-dependent representation of the information carried by the traces, which

encodes each {initial state, final state} pair produced by the student, as a triplet
{context, action, outcome} that we call a case;

• a domain-independent machine-learning procedure, based on a clustering technique
generating the high-level patterns, that we call attitudes.

The output of our system are students' attitudes, which are generalizations of the cases. They
are represented within the same formalism as the cases, i.e. {context, action, outcome}.
Furthermore, attitudes are automatically translated into natural language expressions
understandable by teachers as well as students themselves. Attitudes might be used as inputs to
a tutoring system, for instance for generating or selecting a new set of exercises, which may be
eventually coupled with the learning environment. Figure 1 displays the general architecture,
composed of the learning environment (1), the encoder (2) and the machine learning
construction of attitudes (3).

 2

Fig. 1. General architecture of our approach

The paper is organized as follows: in section 2 we present the general overview of our

approach. The specific learning environment for algebra learning on which we demonstrate our
method is presented in section 3. Section 4 presents the domain-dependent encoding procedure
and the data representation. The machine-learning procedure and the results are reported on
section 5. In section 6 we compare our system to some related work. Finally, we conclude and
present possible extensions of our work on section 7.

 3

2 General principles of our approach

Our system is intended to be hooked up to a large variety of learning environments that lack
an intelligent tracing system. In this section we provide an example to present the general
strategy used to identify high-level behaviors, named the attitudes, starting with a collection of
low-level traces adequately encoded as cases.

In the algebra learning context of our present application, a high-level behavior may be, for
instance, not modifying the inequation sign when moving a negative multiplicative term from
one side of an equation to the other. Since this may arise systematically or just by inattention,
we use a statistical approach to assess the significance of local behaviors over a large set of
students' cases. Our aim is to make relevant generalizations from low-level case descriptions to
high-level attitudes.

Let us show an example of an attitude automatically produced by our system from fifty
transformations performed by a student. These transformations are mainly movements of terms
in equations. A movement is a shortcut which is taught to students (at least in France) to shrink
the number of resolution steps. Beginners are taught that to solve an equation such as 7x-4=3,
they have to apply the same operation to both sides (adding 4), but later in the studies they are
taught that they have to "move" the -4 from one side to the other, while changing its sign. An
automatically generated description of an attitude produced by our system (typically, our
system identifies around 5 to 6 attitudes for each student) looks as follows: Incoherent attitude
consisting in moving a positive term in additive position in an equation. This movement is
performed with or without changing its sign. The final position is additive. The expression
"with or without" reflects the fact that the system performed a generalization of a sub-part of
the student's action ("changing its sign"). Before detailing our method, we first present the
algebra learning environment used to collect the student traces.

3 Algebra Learning Environment

The APLUSIX learning environment [1] allows students to solve algebraic problems using an
equation editor. Given algebraic equations or inequations to be solved, students using APLUSIX

proceed step by step as they would do on a notebook. The only imposed constraint is that the
expressions entered at any resolution step must be well formed from a syntactic point of view.
Figure 2 presents a snapshot of the system, showing a proposed exercise and a student's
resolution in three steps. APLUSIX stores all of the student's intermediate results, indicated on
the figure as step 1 and step 2 of the resolution. Of course, the granularity of the data
continuously varied since the transformation from one student's step to the next one may
involve implicit mental operations and/or several simultaneous algebraic transformations. For
example, the second step combines two actions: the multiplicative term -4 was moved from the
LHS to the denominator of the RHS of the equation without changing the sense of the
inequality, and the fraction was then simplified.

 4

Fig. 2. Snapshot of an APLUSIX screen, showing the resolution of an exercise, through a decomposition
into 2 steps. Each step may correspond to many elementary algebraic transformations.

In order to implement a systematic treatment and provide an automatic student model, we

need to homogenize the granularity of collected data. This is done by introducing whenever
necessary virtual elementary steps based on domain knowledge. In the particular case of our
algebra learning environment, these steps are produced by ANAIS, a particular software
developed by the APLUSIX team, which decomposes the complex student's steps into
intermediate elementary steps. To this end, it contains a full set of elementary algebraic rules
identified by experimented teachers and didactic experts as being usually implemented by
students. These rules are algebraic transformations, that may be either correct (for instance,
(a+b)² → a²+2ab+b², or incorrect (for instance xn → nx).

ANAIS strives to describe the student transformations from one step to the next one as
resulting from the successive application of rules obtained through a best-first search in the
space of all possible algebraic transformations. Accordingly, the student's production is
segmented into {initial state, final state} pairs, where each final state stems from the
corresponding initial state after the application of a single elementary transformation rule. Each
pair of states is labeled as correct or incorrect according to the semantic of the rule that has been
used to generate it. As a result, we obtain a consistent and homogeneous data set "enriched"
with the ANAIS' virtual steps. This set is the input to our system. For example, if a student has
performed the following transformation: -4x < 2 → x < -1/2, ANAIS identifies two steps:

• -4x < 2 → x < 2/(-4) (incorrect)
• x < 2/(-4) → x <-1/2 (correct)

Thus, the two corresponding {initial state, final state} pairs are: {-4x < 2, x < 2/(-4))}, labeled
incorrect, and {x < 2/(-4), x < -1/2} labeled correct. These are the inputs to our modeling
system.

Data used in this paper have been collected in a large scale experiment performed in middle
schools in Brazil during the fall 2003-2004. A total number of 2 700 students were asked to
solve between 3 and 10 algebraic problems using Aplusix. After segmentation with ANAIS, their
production represents 111 258 {initial state, final state} pairs, corresponding to an average of 41
resolution steps per student.

 5

4 Data Representation: the Domain-dependent Encoder

In this step we transform each domain-dependent {initial state, final state} pair into a generic
case, that is to say a triplet {context, action, outcome}, where:

• context represents the relevant part of the initial state with respect to the semantics
of the transformation performed by the student;

• action represents the action itself, based on an automatic analysis of the differences
between initial state and final state and using the correctness label described above;

• outcome represents the relevant part of the final state.
Each item of the case triplet is encoded as a set of attributes, in order to find regularities and

identify general behaviors using machine-learning approaches. We organize the attributes
describing these components into three categories, reflecting three different levels of location in
the initial and final states. These categories are:

• argument: descriptors of the element(s) directly concerned by the transformation
between the initial and the final state;

• local term (simply called term hereafter): descriptors of the elements that are close
to the argument;

• expression: descriptors of global properties of the state.
Coming from our domain of algebra learning, here is an example (Figure 3) where we show

the three descriptor levels of the initial state of an incorrect transformation.

Fig. 3. The three different levels of location: argument, term and expression

In the domain of movements in algebraic equations, we defined 25 attributes to express the
context, 6 for the action and 6 for the outcome, totalizing 37 attributes for each case. Depending
on their nature, attributes may take different discrete values. Table 1 contains the list of the
most relevant ones for the transformation described in Figure 3. Note that the non-relevant
attributes are not detailed here: being unchanged by the action, they remain thus identical in the
context and the outcome.

Table. 1. Representation of a case in the {context, action, outcome} formalism

Context Action Outcome
arg.side left
arg.location beginning
arg.polynomial false
arg.coefficient true
arg.implicitSign false
arg.operateur × arg.operateurChanged true arg.operateur +
arg.category multiplicat arg.categoryChanged true arg.category add
arg.negative true arg.signChanged true arg.negative false
term.polynomial true
expr.type equation expr.typeChanged false expr.type equation
expr.polynomial true
 expr.correct false

 6

The content of the table can be interpreted as follow: the context attributes say that the
argument is in the left hand side of the equation, at the beginning, it is not polynomial, it is an
integer with an explicit negative sign and the operator is multiplicative. The term is polynomial.
The expression is a polynomial equation. The outcome attributes say that, after the
transformation the operator of the argument is an addition, it belongs to an additive category
and is positive. The expression is still an equation. The action attributes are derived from the
context and outcome attributes. They indicate that the operator of the argument has been
changed by the student, that its category and its sign have also been modified. However, the
type of the expression remains the same. In addition, the last attribute indicates that this
transformation is algebraically incorrect.

It is worth noting that some of these attributes are redundant in this example, but they are
needed to describe other students’ behaviors. The aim is to use attributes that allow the model to
give a fine explanation of students’ behaviors, even if some of them are redundant. The
generalization process will select which of them best explain the transformation.

Provided the {initial state, final state} pairs are represented by cases of {context, action,
outcome} triplets, our approach can be fruitfully used to provide behavioral attitudes of the
students. Attitudes are generalizations of student's cases, performed by an independent module
we will present in the next section. Its role is to identify high-level behavior from this low-level
data.

5 Discovering Attitudes

5.1 Technique: Hierarchical Clustering

Cases are the basic material used by our system to uncover high-level student's behavior. Our
approach relies on an unsupervised learning algorithm to cluster similar cases into classes
hereafter called attitudes. The goal is to get a set of a few classes, representative of typical
student's behavior. We use a hierarchical clustering technique [2]. This algorithm groups
together the two most similar (according to a distance detailed below cf. 5.3) cases into a
working cluster that replaces the corresponding cases. The procedure is applied again and again
on the set of remaining cases and working clusters. The latter are candidate attitudes: they
generalize the underlying cases. The algorithm stops when the closest similarity between
elements reaches a given threshold.

Our attribute-based representation is combined with a statistical counting that keeps trace of
the number of cases that share the same attribute value in the working cluster or attitude. We
keep track of this statistical information to characterize the way attributes are generalized, and
whether this generalization is significant or not as we explained in part 2, the goal being to
distinguish between systematic or occasional student's actions. Cases have one and only one
counter set to 1 for each attribute, the one corresponding to the actual value of the attribute.
When we group together two cases or working clusters, the counters of the attribute values are
updated. Table 2 contains an example in which case 12 is grouped with working cluster 6,
giving a new working cluster that generalizes (and replaces) both of them. The attribute values
in the attitudes represent the numbers of cases sharing the corresponding attribute value in the
cluster.

 7

Table. 2. Generalization of one case and one working cluster producing a new working cluster

5.2 Different kinds of attitudes

An attitude is a generalization of underlying cases. The attribute "expr.correct" has a
particular meaning. It is not used during the generalization process, but is very important to
characterize the attitudes obtained. We distinguish two kinds of attitudes:

• coherent attitudes, that are either correct or incorrect;
• incoherent attitudes which contain a statistically significant proportion of correct

and incorrect cases. The fact that both proportions are significantly not equal to zero
implies that it is probably not an isolated case but rather a more systematic behavior.

5.3 The distance

To compare the pairs of cases or working clusters we use a distance index taking into account
the differences between the context part, the action part and the outcome part of the two case
triplets considered. This distance relies on a coefficient α emphasizing the context part or the
action/outcome part (cf. Equation 1). If the context part is given more weight, the algorithm
tends not to cluster attitudes that have distant contexts. The system is then more likely to
discover incoherent behaviors (i.e. attitudes in which the student performs different actions in
similar contexts). In the other way, if the action and outcome parts are given more weight, the
system does not tend to group attitudes with distant actions, even if contexts are similar. This
would lead to the discovery of coherent behaviors (i.e. attitudes in which the student performs
similar actions in different contexts). The general distance DAtt between two cases or attitudes
A i and Aj is the following (ctx, act and out stand for context, action and outcome):

() () ()() () () ()() () ()()() (), , 1 , , .1Att i j i j i j i jD A A dist ctx A ctx A dist act A act A dist out A out A Eqα α= × + − × +

where the distance dist between sets of attributes of a given category, depends on the frequency
of values for each attributes. Each attribute d is weighted by an integer pd :

() (), , : frequency of value for attribute , ,, ,

,, ,
: number of accurrences of attribute

###
, with .2i d m m dj d mi d m

i j d
d m i di d j d

d

VVV
dist V V p Eq

VV V

 = × −

∑ ∑ ∑∑ ∑

Now we are going to explain how the clustering can be used to analyze not only the

individual behavior of each student (cf. 5.4) but also to provide a snapshot of the behavior of a
group of student (cf. 5.5).

Attributes Case 12 Working Cluster 6 Working Cluster (6&12)

 left right + left right → left right
arg.side

 0 1 1 3 1 4

 beg. mid. end alone beg. mid. end alone beg. mid. end alone
arg.location

 0 1 0 0 0 1 3 0 0 2 3 0

 true false true false true false
arg.complex

 1 0 0 1 1 1

 true false true false true false arg.polynom
ial 1 0 3 0 4 0

 … … … … … …
…

 8

5.4 Individual Attitudes

We applied this method on 111 258 transformations collected from 2 700 students in Brazil.
Figure 4 displays the hierarchical clustering of all the transformations produced by student
#1497 based on fifty transformations. The full tree (Figure 4) is shown for illustrative purposes.
The algorithm was actually stopped at the dashed line that represents the chosen generality
level, which corresponds to a similarity threshold of 0.38. This threshold appears to be a good
value according to the conducted tests. We use colors and shapes of the nodes to represent the
most relevant attributes.

• The color indicates the correctness of the node (correct: light gray, incorrect: dark
gray, both: middle gray).

• The shape represents the operator (+: triangle, -: square, *: pentagon, /: circle).

Let us describe some of the five attitudes obtained (with our threshold) in this example.
• Attitude #1 corresponds to a correct and coherent behavior. Its attributes indicate

that the student knows how to solve simple equations (where
"argument.squareRoot", "argument.power" and "argument.fraction" are false) in
which a negative term ("argument.negative"=true) has to be moved. It is the case of
transformations like : 6x-3=2x+4 → 6x=2x+4+3 where the argument is represented
in bold. The student correctly moves the argument to the other side, whatever its
position ("argument.side" and "argument.position" are generalized) or its coefficient
("arg.coefficient" is generalized), the argument of the outcome is still in additive
position ("argument.categoryChanged"=false), but the sign has changed
("argument.signChanged"=true).

• Attitude #5 is an example of an incoherent attitude. In a similar case (simple
equations), but with a positive argument ("argument.negative"=false), the student
sometimes fails to change the sign of the argument.

Fig.4. Hierarchical clustering of cases for student #1497. Five attitudes have been kept. Leaves contain
one or more identical cases.

 9

The aim of discovering attitudes is mainly to allow teachers to obtain a precise diagnosis
about students. In order to produce a more legible diagnosis of each student's production, we
transform the attitudes' attribute values into a natural language text (Figure 5), by concatenating
predefined sentences. We also automatically generate two examples and a small comment about
the coherence or incoherence for each attitude. Whenever the attitude is incoherent, an
algorithm goes back down through the hierarchical tree until reaching the first node that
clustered two coherent attitudes. It then looks for attributes that discriminate between both
attitudes. These attributes are also provided because they may be correlated with the reason for
the student's incoherent behavior. Here is an example of such a diagnosis generated
automatically by our system:

Attitude #40 based on 14 transformations (8 correct, 6 incorrect)

Diagnostic:
Incoherent attitude consisting in moving a positive term in additive position in
an equation, this movement is performed with or without changing its sign. The
final position is additive.

Examples:
 r-v=nx --------> r-v-nx=0
 v-r=n --------> v-r+n=0

Explanation:
This student does not seem to have a coherent attitude with this context, which
could be the sign of a deeper misunderstanding.

The possible causes could be:
- the term to be moved is on the right side of the equation;
- the term to be moved contains a polynomial part;

Fig.5. Natural language translation of an attitude of student #1497

Another usage of our automatic attitude discovery, currently under investigation, is to

automatically generate appropriate exercises for students in case of incorrect or incoherent
attitudes. For instance, the above mentioned attitude #5 would lead to the generation of an
exercise in which a positive term has to be moved to the other side of an equation. For example:
7x+4=11x+13.

5.5 Group Attitudes

Processing all students' cases produced 11 026 attitudes. Their global analysis identified
whether some of these attitudes were shared by several students. It is not possible to simply
draw a frequency chart because very few attitudes are fully identical among different students,
since they are the result of an induction process. It is thus necessary to aggregate individual
attitudes. To this end, we use the same mechanism as before because individual cases and
attitudes share the same formalism. The similarity threshold was set to a low value (0.1)
because the goal is not to generalize attitudes but rather to smooth the differences between
individual attitudes. Figure 6 displays the 38 most frequent attitudes. The y-axis indicates the
number of individual cases that compose each attitude, together with their correctness. The
number of students is also displayed.

 10

Fig. 6. Histogram of the 38 most frequent attitudes. Green and red bars represent numbers of correct
and incorrect cases; the blue bars are the number of students presenting the corresponding cases in their

productions.

In our data, the two most frequent attitudes are correct ones. They correspond to a movement
of a positive argument (attitude #11021, 1217 students) or a negative argument (attitude
#11022, 1188 students). Incorrect attitudes have also been identified. For instance, attitude
#10997 (565 students) is an additive movement of a negative argument from one side to the
other of an inequation, without changing its sign. There are also incoherent attitudes: attitude
#11023 (955 students) is an additive movement in an inequation in which the sign of a negative
argument is correctly changed, but the inequation sign is sometimes also reversed, probably
because of a confusion with multiplicative arguments.

6 Related work

Students’ data produced by interactive learning environments are quite often huge sequences
of low-level descriptions which should be automatically interpreted by changing the level of
granularity [3]. Several existing systems rely on machine learning techniques to discover
student knowledge behind such basic descriptions. Extracting regularities requires a rewriting
of student's productions in term of higher level domain-dependent attributes defined by experts.

Many systems build user models by means of supervised machine learning techniques based
on predefined profiles provided by domain experts. Profile Extractor [4] induces rules from pre-
classified examples, using a decision tree. Its goal is to discover preferences, needs and interests
of e-learning students. Our approach is quite different since our goal is to automatically
discover those profiles.

 11

Animalwatch [5] is closer to our system. Its domain is basic arithmetic. Animalwatch
analyzes a student data to predict whether she would be able to solve the problem and the time
it would take her. Animalwatch uses four kinds of variables, similar to our attributes:

• Student: student gender, scores to initial tests;
• Topic: type of operator (addition, substraction, etc.) and type of operands;
• Problem: problem difficulty, number and difficulty of prerequisites to solve the

problem (such as adding fractions, simplifying fractions), etc.
• Context: number of prior errors, best hint seen, etc.

After tests of several algorithms, such as a Bayesian classifier and a decision tree, the authors
finally use a simple linear regression to predict the two variables. The main difference between
Animalwatch and our system is that we are not attempting to predict performances but rather to
construct a cognitive profile of the student.

Web-EasyMath [6] also relies on machine learning algorithms to construct student models in
the domain of algebraic powers. The goal is to define at best a model for a new user. The
student is first required to pass a test about her knowledge of the four basic operations and to
assess her self-estimation on basic skills. A distance weighted k-nearest neighbor algorithm is
used to asses the concept knowledge level of the new student with respect to all the students
that belong to the same category.

With a more generic scope, Sison & Shimura [7] propose several features that might be used
to categorize systems that discover student knowledge from their behaviors. Let us define our
approach with respect to some of these features:

• student behavior complexity (from simple values to more complex expressions). The
student behavior is undoubtedly complex in our system;

• student behavior multiplicity (from single behavior to multiple behaviors) We are
not analyzing in depth a single behavior, our system rather considers a very large set
of behaviors;

• background knowledge construction (from completely specified to automatically
extended). In our case, the domain knowledge, either correct or incorrect, cannot be
extended by the system itself.

• student model construction (analytic or synthetic). Our approach is synthetic because
it is based on behavior generalization. However, the ANAIS software which attempts
to discover intermediate resolution steps is analytic.

Finally, our system can be analyzed with respect to Mayo & Mitrovic's classification [8].
They proposed a threefold classification of existing intelligent tutoring systems:

• expert-centric systems in which the internal representation of the domain is mainly
designed by an expert;

• efficiency-centric systems which are partially specified and contain parameters that
allow to optimize a certain criterion (evaluation time, memory used, etc.);

• data-centric systems which learn their structure using mainly data.
This classification was initially specific to Bayesian student modeling, but could be easily

extended to other approaches. In our case, an attitude in not a pre-defined expert object, but is
constructed by a generalization process using data produced by the student. Our approach could
therefore be considered in this classification as a data-centric student modeling approach.

 12

7 Conclusion
This paper presents a system allowing to automatically uncovering high-level attitudes of

students out of problem-solving traces produced in a learning environment. Our general purpose
approach makes the system applicable to many learning domains, under the assumptions that
the student actions can be represented as (context, action, outcome) triplets. The system's output
is a synthesis, directly understandable by teachers or didactic experts, of the knowledge of a
student or a class. The system can deal with incoherent behaviors and distinguish between
occasional or systematic student errors. The results may be used for automatically generating
new appropriate exercises.

The domain on which we applied our system is that of algebraic transformations, mainly
additive and multiplicative movements in equations and inequations. Applications to factoring
and reducing algebraic expressions are currently in progress.

Modeling student actions by means of a set of attributes is an important feature of our
approach. We could have used other formalisms. For instance, in our algebra domain, student
actions could have been pairs of equations represented as trees and we could have invented
formalisms for representing generalized actions. However, this formalism would have been too
much dependent on our domain and would not have been easily extended to other domains.
Attributes are a much more general way of representing student actions, especially at the low
level from which our approach can perform generalizations. This formalism allows a clear
distinction between the domain knowledge and the machine-learning process of building the
student's model. Attributes are obviously domain-dependent, but once they have been defined,
the machine-learning mechanism is ready to operate. As a consequence, the diagnosis will be
expressed in terms of the attributes, thus understandable by humans.

It is worth noting that attributes do not have to be cleverly designed in order to be
independent from each other: as we mentioned earlier, the generalization process will
automatically select those which best explain the student behavior, provided there are enough
examples. Our system is based on the hypothesis that student traces are temporal sequences of
states, which we know is not the case for every domain. Going from one state to the other is
done by only one action, the cause of a state being the only preceding state. This is probably our
strongest hypothesis, but we believe that many problem-solving learning environments are
based on this hypothesis.

Another limit of our approach is that it does not take into account the order in which the
student is exposed to exercises. This information may be very useful to model the time course
of learning, through the analysis of which attitudes appear or disappear on time. One approach
could be to rely on a incremental clustering system such as Cobweb [9]. The information about
student steps order are needed if we want to understand the student resolution strategies. It may
certainly give richer diagnosis.

Acknowledgements

It is a pleasure to thank David Renaudie [10] as well as all members of the Did@tic team of
the Leibniz Laboratory for their interest in this work, and fruitful discussions. This research has
been in part supported by a Cognitique grant from the French Ministry of Research.

 13

References

1. J-F. Nicaud, D. Bouhineau, T. Huguet, "The Aplusix-Editor: A New Kind of Software
for the Learning of Algebra," Proceedings of the 6th International Conference on Intelligent
Tutoring Systems. Lecture Notes In Computer Science, Springer Vol. 2363. Biarritz, France
and San Sebastian, Spain, 2002, pp. 178-187

2. A.K. Jain, M.N. Murty, P.J. Flynn, "Data Clustering: A Review," ACM Computing
Surveys, vol. 31, 1999, pp. 265-322

3. J. Mostow, "Some useful design tactics for mining ITS data," Proceedings of the
ITS2004 Workshop on Analyzing Student-Tutor Interaction Logs to Improve Educational
Outcomes, 2004

4. F. Esposito, O. Licchelli, G. Semeraro, "Discovering Student Models in e-learning
Systems," Journal of Universal Computer Science 10(1), 2004, pp. 47-57

5. J.E. Beck, B.P. Woolf, "High-level Student Modeling with Machine Learning,"
Proceedings of the Intelligent Tutoring Systems Conference, 2000, pp. 584-593

6. V. Tsiriga, M. Virvou, "Initializing the Student Model using Stereotypes and Machine
Learning," In Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics (2002)

7. R. Sison, M. Shimura, "Student Modeling and Machine Learning," International
Journal of AI and Education 9, 1998, pp. 128-158

8. M. Mayo, A. Mitrovic, "Optimising ITS Behavior with Bayesian Networks and
Decision Theory," International Journal of AI and Education 12, 2001, pp. 124-153

9. D.H. Fisher, "Knowledge Acquisition via Incremental Conceptual Clustering,"
Machine Learning 2, 1987, pp. 139-172

10. D. Renaudie, "Méthodes d'apprentissage automatique pour la modélisation de l'élève
en algèbre" (Machine learning methods for student modeling in algebra), doctoral
dissertation, University of Grenoble, 2005

