
G.Bianchi, G.Neglia, V.Mancuso

Pipelining examples
and self-clocking

G.Bianchi, G.Neglia, V.Mancuso

PipeliningPipelining

ns ack_clock2.tcl <bw> <qu> <W> <stop>
ns ack_clock2.tcl 1.6Mb 30ms 100 10 1
ns ack_clock2.tcl 1.6Mb 30ms 100 17 1
ns ack_clock2.tcl 1.6Mb 30ms 100 18 1
ns ack_clock2.tcl 1.6Mb 30ms 100 36 1

Router

<bw>Mbps
ms

1.6Mbps
10ms

Packet size: 1000bytes

G.Bianchi, G.Neglia, V.Mancuso

SelfSelf--clockingclocking

The ACK policy makes the
protocol self-clocking:

it dynamically adapts its transmission speed
trying to satisfy a conservation principle: a
new packet for each old one leaving the
network

G.Bianchi, G.Neglia, V.Mancuso

SelfSelf--clocking (example)clocking (example)

ns ack_clock2.tcl 4.8Mb 30ms 100 17 1
ns ack_clock2.tcl 4.8Mb 30ms 100 18 1
ns ack_clock2.tcl 4.8Mb 30ms 100 36 1

Packet size: 1000bytes

Router

<bw>Mbps
ms

1.6Mbps
10ms

G.Bianchi, G.Neglia, V.Mancuso

SelfSelf--clocking: is it enough? clocking: is it enough?

ns congavd_motivation2.tcl 100 DropTail
false false 4

but…
ns ack_clock2.tcl 4.8Mb 30ms 10 36 1
ns congavd_motivation2.tcl 10 DropTail
false false 4

Packet size: 1000bytes

Router

4.8Mbps
30ms

1.6Mbps
10ms4.8Mbps

30ms

G.Bianchi, G.Neglia, V.Mancuso

TCP
congestion control

(very good summary in RFC 2581)

G.Bianchi, G.Neglia, V.Mancuso

The The problemproblem of of congestioncongestion
SENDERs

(bulk flows)
RECEIVERs

(large capacity)

Internal
network
congestion:
- queues build up
- delay increases
- RTOs expire
- more segments transmitted -> more congestion!

Advertise large win

Several outstanding segments

G.Bianchi, G.Neglia, V.Mancuso

The goal of The goal of congestioncongestion controlcontrol
SENDERs

(bulk flows)
RECEIVERs

(large capacity)

Bottleneck link rate C

N=4 TCP connections
Each should transmit at C/4 rate.

Since:

Each should adapt W accordingly…
How sources can be lead to know the RIGHT value of W??

RTT
MSSWthr ⋅

≈

G.Bianchi, G.Neglia, V.Mancuso

HistoryHistory of of congestioncongestion controlcontrol
Before 1986: the Internet meltdown!

No mechanisms employed to react to internal network
congestion

1986: Slow Start + Congestion avoidance
Van Jacobson, TCP Berkeley
Proposes idea to make TCP reactive to congestion

1988: Fast Retransmit (TCP Tahoe)
Van Jacobson, first implemented in 1988 BSD Tahoe
release

1990: Fast Recovery (TCP Reno)
Van Jacobson, first implemented in 1990 BSD Reno release

1995-1996: TCP NewReno
Floyd (based on Hoe’s idea), RFC 2582
Today the de-facto standard

G.Bianchi, G.Neglia, V.Mancuso

TCP TCP approachapproach forfor detectingdetecting
and and controllingcontrolling congestioncongestion

IP protocol does not implement mechanisms to
detect congestion in IP routers

Unlike other networks, e.g. ATM
necessary indirect ways (TCP is an end-to-end
protocol)
TCP approach: congestion detected by lack of acks

» couldn’t work efficiently in the 60s & 70s (error prone transmission
lines)

» OK in the 80s & 90s (reliable transmission)
» what about wireless networks???

Controlling congestion: use a SECOND window
(congestion window)

Locally computed at sender
Outstanding segments: min(receiver_window, congestion_window)

G.Bianchi, G.Neglia, V.Mancuso

StartingStarting a TCP a TCP transmissiontransmission
A new offered flow may suddenly
overload network nodes

receiver window is used to avoid recv buffer overflow
But it may be a large value (16-64 KB)

Idea: slow start
Start with small value of cwnd
And increase it as soon as packets get through

» Arrival of ACKs = no packet losts = no congestion

Initial cwnd size:
Just 1 MSS!
Recent (1998) proposals for more aggressive starts (up to 4
MSS) have been found to be dangerous

G.Bianchi, G.Neglia, V.Mancuso

Slow start Slow start –– exponential increaseexponential increase

… … … … … … … … … …

Request http obj
Conn granted

Conn request

Cwnd=1

Cwnd=2

Cwnd=3
Cwnd=4

First start: set
congestion window

cwnd = 1MSS

send cwnd segments
assume cwnd <=
receiver win

upon successful
reception:

Cwnd +=1 MSS
i.e. double cwnd
every RTT
until reaching
receiver window
advertisement
OR a segment
gets lost

G.Bianchi, G.Neglia, V.Mancuso

DetectingDetecting congestioncongestion and and restartingrestarting
Segment gets lost

Detected via RTO expiration
Indirectly notifies that one of the network nodes along the path
has lost segment

» Because of full queue

Restart from cwnd=1 (slow start)
But introduce a supplementary control: slow
start threshold

sstresh = max(cwnd/2, 2MSS)

The idea is that we now KNOW that there is congestion in the
network, and we need to increase our rate in a more careful
manner…
ssthresh defines the “congestion avoidance” region

G.Bianchi, G.Neglia, V.Mancuso

CongestionCongestion avoidanceavoidance
If cwnd < ssthresh

Slow start region: Increase rate exponentially
If cwnd >= ssthresh

Congestion avoidance region : Increase rate linearly
At rate 1 MSS per RTT

Practical implementation:
cwnd += MSS*MSS/cwnd

Good approximation for 1 MSS per RTT
Alternative (exact) implementations: count!!

Which initial ssthresh?
» ssthresh initially set to 65535: unreachable!

In essence, congestion avoidance is flow control imposed by sender
while advertised window is flow control imposed by receiver

G.Bianchi, G.Neglia, V.Mancuso

CongestionCongestion avoidanceavoidance exampleexample
Cwnd = 1000 B = 1 MSS

Cwnd = 1000 + 1000x1000/1000 = 2000

Cwnd=2000 + 1000x1000/2000 = 2500
Cwnd=2500 + 1000x1000/2500 = 2900

Cwnd=2900 + 1000x1000/2900 = 3245
Cwnd= … = 3553
Cwnd= … = 3834

G.Bianchi, G.Neglia, V.Mancuso

SimplifiedSimplified exampleexample ((overalloverall))
Co

ng
es

tio
n

wi
nd

ow
 cw

nd
(in

 M
SS

)

Number of transmissions

1
2
3
4

6

8

10

12

14

16

1

Timeout:
cwnd = 1
ssthresh=8

Timeout:
cwnd = 1
ssthresh=6

G.Bianchi, G.Neglia, V.Mancuso

WhatWhat happenshappens AFTER RTO?AFTER RTO?
((withoutwithout fast fast retransmitretransmit))

Seq=100
Seq=150

Seq=50

Seq=350

ack=100

ack=100
ack=100
ack=100

RTO

Current cwnd = 6

set cwnd = 1 and rtx seq=100

ack=400!
And then, restart normally with cwnd=2 and send seq=400,450

ack=100
ack=100

G.Bianchi, G.Neglia, V.Mancuso

TCP TAHOETCP TAHOE
((withwith fast fast retransmitretransmit))

Seq=100
Seq=150

Seq=50

Seq=350

ack=100

ack=100
ack=100
ack=100

RTO

Current cwnd = 6

set cwnd = 1 and rtx seq=100

ack=400!
And then, restart normally

with cwnd=2 and send
seq=400,450

ack=100
ack=100

Seq=100

Same as before, but shorter time to recover packet loss!

G.Bianchi, G.Neglia, V.Mancuso

MotivationsMotivations forfor fast fast recoveryrecovery

Seq=100
Seq=150

Seq=50

Seq=100

ack=100

3rd dupack

FAST RECOVERY:
The phase following fast
retransmit (3 duplicate acks
received)

TAHOE approach: slow start, to
protect network after congestion

However, since subsequent acks
have been received, no hard
congestion situation should be
present in the network: slow start
is a too conservative restart!

Seq=350

G.Bianchi, G.Neglia, V.Mancuso

Fast Fast recoveryrecovery rulesrules

Seq=100
Seq=150

Seq=50

Seq=100

cwnd = 6

Fast Retransmit
& recovery:

cwnd=3, ndup=3

Seq=350

FAST RECOVERY RULES:
Retransmit lost segment
Set cwnd = ssthresh =
cwnd/2
Restart with congestion
avoidance (linear)
start fast recovery phase:

Set counter for
duplicate packets
ndup=3
Use “inflated” window:

w = cwnd+ndup
Upon new dup_acks,
increase ndup, not cwnd
(and send new data)
Upon recovery ack,
“deflate” window
setting ndup=0

cwnd=3, ndup=4
Seq=400cwnd=3, ndup=5
Seq=450

Recovery ack=400
cwnd=3 Seq=500

G.Bianchi, G.Neglia, V.Mancuso

WhatWhat aboutabout multiple multiple losseslosses??
TCP Reno optimized for single
loss
Performance drawbacks with
multiple losses in same window
Improvement: NewReno

Distinguish recovery ack from
partial ack

Equal to the recovery ack, but
does not recover for all ndup
segments

Does not exit fast recovery
when partial ack received
Retransmit segment
immediately following partial
ack, assuming it was lost

Seq=100
Seq=150

Seq=50

Seq=100

Seq=350

Seq=400

Seq=300Partial ack (300)
Would have been
recovery ack if ack=400

G.Bianchi, G.Neglia, V.Mancuso

IdleIdle periodsperiods
After a long idle period
(exceeding one RTO), reset the
congestion window to one.

Time

Congestion
Window
CWND

Receiver Window

Idle
Interval

Timeout

1

SSThresh

G.Bianchi, G.Neglia, V.Mancuso

Timeout:

cw
nd

Number of transmissions

Timeout:

FurtherFurther TCP TCP issuesissues
Timeout = packet loss occurrence in an internal network router
TCP (both Tahoe & Reno) does not AVOID packet loss
Simply REACTS to packet loss

CONCLUSION: a TCP able to AVOID packet
loss should be much better…..

Toward next
Timeout…

G.Bianchi, G.Neglia, V.Mancuso

TCP Vegas (1995)TCP Vegas (1995)
Avoids packet loss by predicting it!

Approach: monitor RTT
when RTT shows increase, deduce that congestion is going
to occur
and thus preventively reduce cwnd
but not down to as low as slow start

A problem: DOES NOT WORK WHEN OTHER
TERMINALS USE TAHOE/RENO!!!!

Vegas reduces rate to avoid congestion
while Tahoe/Reno grab the available bandwidth!!

A typical problem in Internet Protocol design: need to live with legacy apps and protoc

G.Bianchi, G.Neglia, V.Mancuso

RecentRecent TrendsTrends in in congestioncongestion
controlcontrol

End to end TCP congestion
control not sufficient!
Active Queue Management
(1994, 1998+)

RED queueing discipline

G.Bianchi, G.Neglia, V.Mancuso

Standard (Standard (DropDrop--tailtail) buffer) buffer
managementmanagement

Queue occupancy

Drop
prob

B

100%

G.Bianchi, G.Neglia, V.Mancuso

RED buffer managementRED buffer management

Queue
occupancy

Drop
prob

B

100%

Tmin Tmax

G.Bianchi, G.Neglia, V.Mancuso

FairnessFairness withwith UDP UDP traffictraffic
A serious problem for TCP

in heavy network load, TCP reduces
transmission rate. Non congestion-controlled
traffic does not.
Result: in link overload, TCP throughput
vanishes!

G.Bianchi, G.Neglia, V.Mancuso

Mixing TCP & UDP Mixing TCP & UDP traffictraffic

Link 45 Mbps

TCP

UDP

UDP

TCP1

TCP2

