Lecture 7.
TCP mechanisms for:

=» data transfer control / flow control
=» error control
=» congestion control

Graphical examples (applet java) of several algorithms at:
http://www.ce.chalmers.se/~fcela/tcp-tour.html

Um}‘e;%_

G.Bianchi, G.Neglia, V.Mancuso

Data transfer control over TCP
a double-face issue:

=>Bulk data transfer => Interactive

>HTTP, FTP, ... = TELNET, RLOGIN, ...
=goal: attempt to send =goal: attempt to send
data as fast as possible data as soon as possible
= problems: sender may =Problem: efficiency -
transmit faster than interactivity trade-off
receiver - The tinygrams issuel
>Flow control (1 byte payload / segment

- 20 TCP + 20 IP header)

Universi
G.Bianchi, G.Neglia, V.Mancuso deg]

TCP pipelining

= More than 1 segment “flying"
in the network

= Transfer efficiency
increases with W

thr = min(C W - MsS j

"RTT +MSS/C

=> So, why an upper limit on W?

Universi
G.Bianchi, G.Neglia, V.Mancuso deg]

Why flow control?

sender

---->

= Limited receiver buffer
= If MSS = 2KB = 2048 bytes
= And receiver buffer = 8 KB = 8192 bytes

= Then W must be lower or equal than 4 x MSS

=> A possible implementation:
= During connection setup, exchange W value.
= DOES NOT WORK. WHY?

G.Bianchi, G.Neglia, V.Mancuso

receiver

Window-based flow control

> receiver buffer capacity varies with timel

= Upon application process read()
[asynchronous, not depending on OS, not predictable]

From IP> Application process rea@

> MSS = 2KB = 2048 bytes

=> Receiver Buffer capacity = 10 KB = 10240 bytes

= TCP data stored in buffer: 3 segments

=> Receiver window = Spare room: 10-6 = 4KB = 4096 bytes
= Then, at this time, W must be lower or equal than 2 x MSS

Uni}‘«;%_ '

Receiver buffer

Receiver window

G.Bianchi, G.Neglia, V.Mancuso

Source port Destination port

32 bit Sequence number

32 bit acknowledgement number

Header 6 bit viAILIRIS|Y

length | Reserved |§|&|&|%|N|N Window size

checksum Urgent pointer

~O P

= Window size field: used to advertise receiver's
remaining storage capabilities
= 16 bit field, on every packet
= Measure unit: bytes, from O (included) to 65535
= Sender rule: LastByteSent - LastByteAcked <= RcvWindow.
= W=2048 means:

- I can accept other 2048 bytes since ack, i.e. bytes [ack, ack+W-1]

- also means: sender may have 2048 bytes outstanding (in multiple
segments)

' A o
Unwemtg o
G.Bianchi, G.Neglia, V.Mancuso degh Studh Palermo

What is flow control needed for?

=>Window flow control guarantees receiver buffer
to be able to accept outstanding segments.

=>When receiver buffer full, just send back win=0

=>1n essence, flow control guarantees that
transmission bit rate never exceed receiver rate

=In average!

= Note that instantaneous transmission rate IS
arbitrary...

=as well as receiver rate is discretized (application
reads)

Universitéa
G.Bianchi, G.Neglia, V.Mancuso degh Stu

Sliding window

Dynamic window based reduces to
pure sliding window when receiver
app is very fast in reading data...

SEQ W=3

123 ||F4siFoe] (R i | 8 | | 9

G.Bianchi, G.Neglia, V.Mancuso

Dynamic window - example

sender receiver Rec. Buffer
B Exchanged param: MSS=2K, 0 4K
TCP CONN — sender ISN=2047, WIN=4K EMPTY
SETUP (carried by receiver SYN-ACK)
~—
Application ___,)
does a 2K write 2K, seq=2048 0 4K
_ 2K
| Ack=4096, win=2048
Application —=——p) IK
does a 3K write 2K, seq=4096
g FULL
Sender blocked | |}—_Ack=6144, win=0) Application
| Ack=6144, win=2048 does a 2K read
Sender unblocks
may send last 1K 1K, seq=6144

\4

G.Bianchi, G.Neglia, V.Mancuso

Performance: bounded by
receiver buffer size

= Up to 1992, common operating systems had
transmitter & receiver buffer defaulted at
4096

= e.g. Sun0S 4.1.3
= way suboptimal over Ethernet LANs

= raising buffer to 16384 = 40% throughput increase
(Papadopulos & Parulkar, 1993)

= e.g. Solaris 2.2 default

= most socket APIs allow apps to set (increase)
socket buffer sizes

= But theoretical maximum remains W=65535 bytes...

Universitéé_
G.Bianchi, G.Neglia, V.Mancuso degh Studi giPalermo

Maximum achievable throughput

(assuming infinite speed line...)

» 1000 W = 65535 bytes

o

s

= 100

5

o

L

o> 10 -

-

o

-

— 1 | | | | —
0 100 200 300 400 500

G.Bianchi, G.Neglia, V.Mancuso

Window Scale Option

=>Appears in SYN segment
= operates only If both peers understand option

=>allows client & server to agree on a
different W scale

=specified in terms of bit shift (from 1 to 14)
= maximum window: 65535 * 2b
=b=14 means max W = 1.073.725.440 bytes!!

Universitéa
G.Bianchi, G.Neglia, V.Mancuso degh Stu

Blocked sender deadlock problem

sender receiver Rec. Buffer
0 4K
FULL
BLOCKED
_ Application read
O 0 4K
3 2K
....................... @5
| Since ACK does not
REMAINS carry data, no ack
BLOCKED from sender
FOREVER!! expected....
v v

G.Bianchi, G.Neglia, V.Mancuso

Solution: Persist timer

= When win=0 (blocked sender), sender starts a
“persist” timer
~>Initially 500ms (but depends on implementation)

> When persist timer elapses AND no segment
received during this time, sender transmits “probe”

=Probe = 1byte segment; makes receiver reannounce
next byte expected and window size
—>this feature necessary to break deadlock
—~if receiver was still full, rejects byte
—~>otherwise acks byte and sends back actual win

- Persist time management (exponential backoff):
= Doubles every time no response is received
= Maximum = 60s

Universitéé_
G.Bianchi, G.Neglia, V.Mancuso degh Studi giPalermo

Interactive applications

keystroke
Header overhead:
Ve ‘ server
20 TCP header ack of datd
+

20 IP header
+

pyte
1 data gcho of data B
display <
ACk of
€Choeq byte

\/ \/
CLIENT SERVER
Interactive apps: create some tricky situations....

@am ccho

Unn‘«%_

G.Bianchi, G.Neglia, V.Mancuso

The silly window syndrome

Interactive

user (one byte —
SCENARIO at the time)
N
—

T

. Full
Bulk data TCP connection > recy
source
buffer

G.Bianchi, G.Neglia, V.Mancuso

The silly window syndrome

Fill up buffer until win:o> Eljjelr PO

— 1 byte read

Network loaded with || Ack=X, win=1
tinygrams (40bytes 1 byte

——}

header + 1 payload!!) . — E——

l—— Ack=X+1, win=0

Forever!
: — 1 byte read
l—— Ack=X+1, win=1
1 byte

Ack=X+2, win=0 Buffer FULL

I—

Universi
G.Bianchi, G.Neglia, V.Mancuso deg]

Silly window solution

= Problem discovered by David Clark
(MIT), 1982

=>easily solved, by preventing receiver
to send a window update for 1 byte
=>rule: send window update when:
—>receiver buffer can handle a whole MSS
or

—>half received buffer has emptied (if smaller than
MSS)

=>sender also may apply rule
—> by waiting for sending data when win low

Universitéa
G.Bianchi, G.Neglia, V.Mancuso degh Stu

Nagle’s algorithm
(RFC 896, 1984)

: yte
connection can haveonly —

ONE SMALL outstanding —, ack

segment
_g |) 2 byte
self-clocking algorithm:

on LANS, plenty of
tynigrams

LIV

LIV

on slow WANS, data
aggregation

G.Bianchi, G.Neglia, V.Mancuso

Comments about Nagle’s algo

=>Over ethernet:
=about 16 ms round trip time

= Nagle algo starts operating when user digits
more than 60 characters per second (!!)

=>disabling Nagle’s algorithm
= a feature offered by some TCP APIs
—>set TCP_NODELAY

=example: mouse movement over X-windows
terminal

G.Bianchi, G.Neglia, V.Mancuso

PUSH flag

Source port Destination port

32 bit Sequence number

32 bit acknowledgement number

Header 6 bit vIALIRIS|Y

length | Reserved |§|k|&|%|N|N Window size

checksum Urgent pointer

~O P

=>Used to notify

= TCP sender to send data

—>but for this an header flag NOT needed! Sufficient
a “push” type indication in the TCP sender API

= TCP recelver to pass received data to the
application

Uni'\/ergité
G.Bianchi, G.Neglia, V.Mancuso versita dipa]emo

Urgent data

Source port Destination port

32 bit Sequence number

32 bit acknowledgement number

Header 6 bit viARIRIS|Y

length | Reserved |§|&|&|%|N|N Window size

checksum Urgent pointer

~O P

= URG on: notifies rx that “urgent” data placed in segment.

= When URG on, urgent pointer contains position of last byte
of urgent data

—>or the one after the last, as some bugged implementations do??
—>and the first? No way to specify it!

=> receiver is expected to pass all data up to urgent ptr to app
—>interpretation of urgent data is left to the app

=>» typical usage: ctrlC (interrupt) in rlogin & telnet; abortin FTP

=>» urgent data Is a second exception to blocked sender

Universitéi
G.Bianchi, G.Neglia, V.Mancuso degh Studi g;Palerm

(s ;./j“ i

a3

TCP
Error control

G.Bianchi, G.Neglia, V.Mancuso

TCP: a reliable transport

=>TCP is a reliable protocol

=all data sent are guaranteed to be received
= very important feature, as IP is unreliable network layer

= employs positive acknowledgement
= cumulative ack

= selective ack may be activated when both peers
Implement it (use option)
=>does not employ negative ack
=>error discovery via timeout (retransmission timer)

= But “implicit NACK” Is avalilable

Universitéa
G.Bianchi, G.Neglia, V.Mancuso degh Stu

Error discovery

via retransmission timer expiration

time

Send Retransmission timer: Re-send
segment waits for acknowledgement segment

Fundamental problem:
setting the retransmission timer right!

G.Bianchi, G.Neglia, V.Mancuso

Lost data == lost ack

T DATA L T DATA
DVQ a(‘,\(
<IVCA>4§/

Retr Retr £A
timer timer

N Retr : N Retr :

SMit DATA SMit DATA
v \ 4 v

G.Bianchi, G.Neglia, V.Mancuso

although lost ack may be discovered via
subsequent acks

Retransm
: k1

B>
2

—t DATA 5
ACKZ
Data 1 & 2 OK /

Retransm
timer 2

Ty v

G.Bianchi, G.Neglia, V.Mancuso

Retransmission timer setting
RTO = retransmission TimeOut

| T D
RTO
- vA¢ ack
................ f'pvq
" Might
 have
Too late!!!! o
~ |~ Retransmit DATA
o TOO LONG
v ! |

\4

= TOO SHORT: unnecessary retransmission occurs, loading
the Internet with unnecessary packets

= TOO LONG: throughput impairment when packets lost
Uni\fde%_ '

G.Bianchi, G.Neglia, V.Mancuso

Retransmission timer setting

= Cannot be fixed by protocol! Two
reasons:

= different network scenarios have very different
performance
= LANS (short RTTSs)
—->WANSs (long RTTS)

=same network has time-varying performance (very

fast time scale)

—>when congestion occurs (RTT grows) and
disappears (RTT drops)

Universitéa
G.Bianchi, G.Neglia, V.Mancuso degh Stu

Adaptive RTT setting

= Proposed in RFC 793
=>based on dynamic RTT estimation
=sender samples time between sending SEQ and
receiving ACK (M)

=estimates RTT (R) by low pass filtering M
(autoregressive, 1 pole)

2R=a R+ (1-a) M a=09
=>setsRTO=R B =2 (recommended)

G.Bianchi, G.Neglia, V.Mancuso

Problem: constant value =2

SCENARIO 1: lightly loaded long-distance communication

l/,

RTO =2 x measured_RTT ~2 x 105 =210 TOO LARGE!

Propagation = 100
Queueing = mean 5, most in range 0-10

SCENARIO 2: mildly loaded short-distance communication

Propagation =1
Queueing = mean 10, most in range 0-50

RTO =2 x measured RTT ~2x11=22 WAY TOO SMALL!

G.Bianchi, G.Neglia, V.Mancuso

Problem: constant value =2

28.8 Kbps

600

SCENARIO 3:

w b N

o O O

o O O
| |

transmission delay
(ms)

slow speed links 500 _—
100 /
O I I I I
0 500 1000 1500 2000 2500

packet size (bytes)

Natural variation of packet sizes causes a large variation in RTT!

(from RFC 1122: utilization on 9.6 kbps link can improve from 10% up to 90%
With the adoption of Jacobson algorithm)

Universi
G.Bianchi, G.Neglia, V.Mancuso deg]

Jacobson RTO (1988)

idea: make it depend on measured variance!
Err = M-A
A := A + g Err
D :=D + h (|Err| - D)
RTO = A + 4D

=> g = gain (1/8)
= conceptually equivalent to 1-a., but set to slightly different value
=D = mean deviation

= conceptually similar to standard deviation, but cheaper (does not
require a square root computation)

=>h =1/4

=>Jacobson’s implementation: based on integer
arithmetic (very efficient)

LMW@@%i L
G.Bianchi, G.Neglia, V.Mancuso versita dipa]emo

Guessing right?
Karn’s problem

Scenario 1 Scenario 2
DATA -
vA¢ :
5 s N0z
RTO : RTO
M’?
R _ / ok
A v etr, ansmit DATA ‘ R 603/77/. s
M: ack ;M2 [
v L
v

G.Bianchi, G.Neglia, V.Mancuso

Solution to Karn’s problem

> Very simple: DO NOT update RTT when a segment
has been retransmitted because of RTO expiration!

= Instead, use Exponential backoff

= double RTO for every subsequent expiration of
same segment
—>When at 64 secs, stay
—>persist up to 9 minutes, then reset

G.Bianchi, G.Neglia, V.Mancuso

Need for implicit NACKs

=> TCP does not support Seg=5g

negative ACKs \seqj\,

=> This can be a serious Se 500 <,Q,>

drawback W

= Especially in the case of single ~ RTO N&YOO\’

packet loss Ns&%o\’

- Necessary RTO expiration to \Seqmo\’
start retransmit lost packet Seq=350

= As well as following onesl!! \q\>

= ISSUE: is there a way to 1 Retransmq Seq=10
have NACKs in an implicit N
manner???? v v _

Unwe g
G.Bianchi, G.Neglia, V.Mancuso tudi aIPa]ermo

The Fast Retransmit Algorithm

=> Idea: use duplicate ACKs!

= Receiver responds with an ACK
every time it receives an out-
of-order segment

= ACK value = last correctly
received segment

2> FAST RETRANSMIT
algorithm:
= if 3 duplicate acks are received
for the same segment, assume

that the next segment has been
lost. Retransmit it right away.

= Helps if single packet lost. Not
very effective with multiple
losses

=> And then? A congestion
control issue...

G.Bianchi, G.Neglia, V.Mancuso

RTO
ack=10

ack=100
ack=100

ack=100: FR

1

