Lecture 7.
TCP mechanisms for:

=» data transfer control / flow control
=» error control
=» congestion control

Graphical examples (applet java) of several algorithms at:
http://www.ce.chalmers.se/~fcela/tcp-tour.html
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Data transfer control over TCP
a double-face issue:

=>Bulk data transfer => Interactive

>HTTP, FTP, ... = TELNET, RLOGIN, ...
=goal: attempt to send =goal: attempt to send
data as fast as possible data as soon as possible
= problems: sender may =Problem: efficiency -
transmit faster than interactivity trade-off
receiver - The tinygrams issuel
>Flow control (1 byte payload / segment

- 20 TCP + 20 IP header)
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TCP pipelining

= More than 1 segment “flying"
in the network

= Transfer efficiency
increases with W

thr = min(C W - MsS j

"RTT +MSS/C

=> So, why an upper limit on W?
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Why flow control?

sender

---->

= Limited receiver buffer
= If MSS = 2KB = 2048 bytes
= And receiver buffer = 8 KB = 8192 bytes

= Then W must be lower or equal than 4 x MSS

=> A possible implementation:
= During connection setup, exchange W value.
= DOES NOT WORK. WHY?
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Window-based flow control

> receiver buffer capacity varies with timel

= Upon application process read()
[asynchronous, not depending on OS, not predictable]

From IP> Application process rea@

> MSS = 2KB = 2048 bytes

=> Receiver Buffer capacity = 10 KB = 10240 bytes

= TCP data stored in buffer: 3 segments

=> Receiver window = Spare room: 10-6 = 4KB = 4096 bytes
= Then, at this time, W must be lower or equal than 2 x MSS
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Receiver buffer

Receiver window
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Source port Destination port

32 bit Sequence number

32 bit acknowledgement number

Header 6 bit viAILIRIS|Y

length | Reserved |§|&|&|%|N|N Window size

checksum Urgent pointer

~O P

= Window size field: used to advertise receiver's
remaining storage capabilities
= 16 bit field, on every packet
= Measure unit: bytes, from O (included) to 65535
= Sender rule: LastByteSent - LastByteAcked <= RcvWindow.
= W=2048 means:

- I can accept other 2048 bytes since ack, i.e. bytes [ack, ack+W-1]

- also means: sender may have 2048 bytes outstanding (in multiple
segments)
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What is flow control needed for?

=>Window flow control guarantees receiver buffer
to be able to accept outstanding segments.

=>When receiver buffer full, just send back win=0

=>1n essence, flow control guarantees that
transmission bit rate never exceed receiver rate

=In average!

= Note that instantaneous transmission rate IS
arbitrary...

=as well as receiver rate is discretized (application
reads)
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Sliding window

Dynamic window based reduces to
pure sliding window when receiver
app is very fast in reading data...

SEQ W=3

123 ||F4siFoe] (R i | 8 | | 9
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Dynamic window - example

sender receiver Rec. Buffer
B Exchanged param: MSS=2K, 0 4K
TCP CONN — sender ISN=2047, WIN=4K EMPTY
SETUP (carried by receiver SYN-ACK)
~—
Application ___,)
does a 2K write 2K, seq=2048 0 4K
_ 2K
| Ack=4096, win=2048
Application —=——p ) IK
does a 3K write 2K, seq=4096
g FULL
Sender blocked | |}—_Ack=6144, win=0 ) Application
| Ack=6144, win=2048 does a 2K read
Sender unblocks
may send last 1K 1K, seq=6144

\4
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Performance: bounded by
receiver buffer size

= Up to 1992, common operating systems had
transmitter & receiver buffer defaulted at
4096

= e.g. Sun0S 4.1.3
= way suboptimal over Ethernet LANs

= raising buffer to 16384 = 40% throughput increase
(Papadopulos & Parulkar, 1993)

= e.g. Solaris 2.2 default

= most socket APIs allow apps to set (increase)
socket buffer sizes

= But theoretical maximum remains W=65535 bytes...
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Maximum achievable throughput

(assuming infinite speed line...)

» 1000 W = 65535 bytes
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Window Scale Option

=>Appears in SYN segment
= operates only If both peers understand option

=>allows client & server to agree on a
different W scale

=specified in terms of bit shift (from 1 to 14)
= maximum window: 65535 * 2b
=b=14 means max W = 1.073.725.440 bytes!!
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Blocked sender deadlock problem

sender receiver Rec. Buffer
0 4K
FULL
BLOCKED
_ Application read
O 0 4K
3 2K
....................... @5
| Since ACK does not
REMAINS carry data, no ack
BLOCKED from sender
FOREVER!! expected....
v v
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Solution: Persist timer

= When win=0 (blocked sender), sender starts a
“persist” timer
~>Initially 500ms (but depends on implementation)

> When persist timer elapses AND no segment
received during this time, sender transmits “probe”

=Probe = 1byte segment; makes receiver reannounce
next byte expected and window size
—>this feature necessary to break deadlock
—~if receiver was still full, rejects byte
—~>otherwise acks byte and sends back actual win

- Persist time management (exponential backoff):
= Doubles every time no response is received
= Maximum = 60s
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Interactive applications

keystroke
Header overhead:
Ve ‘ server
20 TCP header ack of datd
+

20 IP header
+

pyte
1 data gcho of data B
display <
ACk of
€Choeq byte

\/ \/
CLIENT SERVER
Interactive apps: create some tricky situations....

@am ccho

Unn‘«%_
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The silly window syndrome

Interactive

user (one byte —
SCENARIO at the time)
N
—

T

. Full
Bulk data TCP connection > recy
source
buffer
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The silly window syndrome

Fill up buffer until win:o> Eljjelr PO

— 1 byte read

Network loaded with ||  Ack=X, win=1
tinygrams (40bytes 1 byte

——}

header + 1 payload!!) . — E——

l—— Ack=X+1, win=0

Forever!
: — 1 byte read
l—— Ack=X+1, win=1
1 byte

Ack=X+2, win=0 Buffer FULL

I—

Universi
G.Bianchi, G.Neglia, V.Mancuso deg]




Silly window solution

= Problem discovered by David Clark
(MIT), 1982

=>easily solved, by preventing receiver
to send a window update for 1 byte
=>rule: send window update when:
—>receiver buffer can handle a whole MSS
or

—>half received buffer has emptied (if smaller than
MSS)

=>sender also may apply rule
—> by waiting for sending data when win low
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Nagle’s algorithm
(RFC 896, 1984)

: yte
connection can haveonly —

ONE SMALL outstanding —, ack

segment
_g | ) 2 byte
self-clocking algorithm:

on LANS, plenty of
tynigrams

LIV

LIV

on slow WANS, data
aggregation
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Comments about Nagle’s algo

=>Over ethernet:
=about 16 ms round trip time

= Nagle algo starts operating when user digits
more than 60 characters per second (!!)

=>disabling Nagle’s algorithm
= a feature offered by some TCP APIs
—>set TCP_NODELAY

=example: mouse movement over X-windows
terminal
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PUSH flag

Source port Destination port

32 bit Sequence number

32 bit acknowledgement number

Header 6 bit vIALIRIS|Y

length | Reserved |§|k|&|%|N|N Window size

checksum Urgent pointer

~O P

=>Used to notify

= TCP sender to send data

—>but for this an header flag NOT needed! Sufficient
a “push” type indication in the TCP sender API

= TCP recelver to pass received data to the
application
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Urgent data

Source port Destination port

32 bit Sequence number

32 bit acknowledgement number

Header 6 bit viARIRIS|Y

length | Reserved |§|&|&|%|N|N Window size

checksum Urgent pointer

~O P

= URG on: notifies rx that “urgent” data placed in segment.

= When URG on, urgent pointer contains position of last byte
of urgent data

—>or the one after the last, as some bugged implementations do??
—>and the first? No way to specify it!

=> receiver is expected to pass all data up to urgent ptr to app
—>interpretation of urgent data is left to the app

=>» typical usage: ctrlC (interrupt) in rlogin & telnet; abortin FTP

=>» urgent data Is a second exception to blocked sender
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TCP
Error control
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TCP: a reliable transport

=>TCP is a reliable protocol

=all data sent are guaranteed to be received
= very important feature, as IP is unreliable network layer

= employs positive acknowledgement
= cumulative ack

= selective ack may be activated when both peers
Implement it (use option)
=>does not employ negative ack
=>error discovery via timeout (retransmission timer)

= But “implicit NACK” Is avalilable
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Error discovery

via retransmission timer expiration

time

Send Retransmission timer: Re-send
segment waits for acknowledgement segment

Fundamental problem:
setting the retransmission timer right!
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Lost data == lost ack

T DATA L T DATA
DVQ a(‘,\(
<IVCA>4§/

Retr Retr £A
timer timer

N Retr : N Retr :

SMit DATA SMit DATA
v \ 4 v
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although lost ack may be discovered via
subsequent acks

Retransm
: k1

B>
2

—t DATA 5
ACKZ
Data 1 & 2 OK /

Retransm
timer 2

Ty v
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Retransmission timer setting
RTO = retransmission TimeOut

| T D
RTO
- vA¢ ack
................ f'pvq
" Might
 have
Too late!!!! o
~ |~ Retransmit DATA
o TOO LONG
v ! |

\4

= TOO SHORT: unnecessary retransmission occurs, loading
the Internet with unnecessary packets

= TOO LONG: throughput impairment when packets lost
Uni\fde%_ '
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Retransmission timer setting

= Cannot be fixed by protocol! Two
reasons:

= different network scenarios have very different
performance
= LANS (short RTTSs)
—->WANSs (long RTTS)

=same network has time-varying performance (very

fast time scale)

—>when congestion occurs (RTT grows) and
disappears (RTT drops)
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Adaptive RTT setting

= Proposed in RFC 793
=>based on dynamic RTT estimation
=sender samples time between sending SEQ and
receiving ACK (M)

=estimates RTT (R) by low pass filtering M
(autoregressive, 1 pole)

2R=a R+ (1-a) M a=09
=>setsRTO=R B =2 (recommended)
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Problem: constant value =2

SCENARIO 1: lightly loaded long-distance communication

l/,

RTO =2 x measured_RTT ~2 x 105 =210 TOO LARGE!

Propagation = 100
Queueing = mean 5, most in range 0-10

SCENARIO 2: mildly loaded short-distance communication

Propagation =1
Queueing = mean 10, most in range 0-50

RTO =2 x measured RTT ~2x11=22 WAY TOO SMALL!
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Problem: constant value =2

28.8 Kbps

600

SCENARIO 3:

w b N

o O O

o O O
| |

transmission delay
(ms)

slow speed links 500 _—
100 /
O I I I I
0 500 1000 1500 2000 2500

packet size (bytes)

Natural variation of packet sizes causes a large variation in RTT!

(from RFC 1122: utilization on 9.6 kbps link can improve from 10% up to 90%
With the adoption of Jacobson algorithm)
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Jacobson RTO (1988)

idea: make it depend on measured variance!
Err = M-A
A := A + g Err
D :=D + h (|Err| - D)
RTO = A + 4D

=> g = gain (1/8)
= conceptually equivalent to 1-a., but set to slightly different value
=D = mean deviation

= conceptually similar to standard deviation, but cheaper (does not
require a square root computation)

=>h =1/4

=>Jacobson’s implementation: based on integer
arithmetic (very efficient)

LMW@@%i L
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Guessing right?
Karn’s problem

Scenario 1 Scenario 2
DATA -
vA¢ :
5 s N0z
RTO : RTO
M’?
R _ / ok
A v etr, ansmit DATA ‘ R 603/77/. s
M: ack ;M2 [
v L
v
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Solution to Karn’s problem

> Very simple: DO NOT update RTT when a segment
has been retransmitted because of RTO expiration!

= Instead, use Exponential backoff

= double RTO for every subsequent expiration of
same segment
—>When at 64 secs, stay
—>persist up to 9 minutes, then reset
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Need for implicit NACKs

=> TCP does not support Seg=5g

negative ACKs \seqj\,

=> This can be a serious Se 500 <,Q,>

drawback W

= Especially in the case of single ~ RTO N&YOO\’

packet loss Ns&%o\’

- Necessary RTO expiration to \Seqmo\’
start retransmit lost packet Seq=350

= As well as following onesl!! \q\>

= ISSUE: is there a way to 1 Retransmq Seq=10
have NACKs in an implicit N
manner???? v v _
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The Fast Retransmit Algorithm

=> Idea: use duplicate ACKs!

= Receiver responds with an ACK
every time it receives an out-
of-order segment

= ACK value = last correctly
received segment

2> FAST RETRANSMIT
algorithm:
= if 3 duplicate acks are received
for the same segment, assume

that the next segment has been
lost. Retransmit it right away.

= Helps if single packet lost. Not
very effective with multiple
losses

=> And then? A congestion
control issue...
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