
G.Bianchi, G.Neglia, V.Mancuso

data transfer control / flow control
error control
congestion control

Lecture 7.Lecture 7.
TCP mechanisms for: TCP mechanisms for: 

Graphical examples (applet java) of several algorithms at:
http://www.ce.chalmers.se/~fcela/tcp-tour.html



G.Bianchi, G.Neglia, V.Mancuso

Data transfer control over TCPData transfer control over TCP
a doublea double--face face issueissue::

Bulk data transfer

HTTP, FTP, …
goal: attempt to send
data as fast as possible

problems: sender may
transmit faster than
receiver

Flow control

Interactive

TELNET, RLOGIN, ...
goal: attempt to send
data as soon as possible

Problem: efficiency -
interactivity trade-off

The tinygrams issue!
(1 byte payload / segment
– 20 TCP + 20 IP  header)



G.Bianchi, G.Neglia, V.Mancuso

TCP TCP pipeliningpipelining
More than 1 segment “flying”
in the network
Transfer efficiency 
increases with W

So, why an upper limit on W?

W=6

⎟
⎠
⎞

⎜
⎝
⎛

+
⋅

=
CMSSRTT

MSSWCthr
/

,min



G.Bianchi, G.Neglia, V.Mancuso

WhyWhy flowflow control?control?

Limited receiver buffer
If MSS = 2KB = 2048 bytes
And receiver buffer = 8 KB = 8192 bytes
Then W must be lower or equal than 4 x MSS

A possible implementation:
During connection setup, exchange W value.
DOES NOT WORK. WHY?

receiver

sender



G.Bianchi, G.Neglia, V.Mancuso

WindowWindow--basedbased flowflow controlcontrol

MSS = 2KB = 2048 bytes
Receiver Buffer capacity = 10 KB = 10240 bytes
TCP data stored in buffer: 3 segments
Receiver window = Spare room: 10-6 = 4KB = 4096 bytes

Then, at this time, W must be lower or equal than 2 x MSS

Receiver buffer

receiver buffer capacity varies with time!
Upon application process read() 
[asynchronous, not depending on OS, not predictable]

From IP Application process read()

Receiver window



G.Bianchi, G.Neglia, V.Mancuso

Window size field: used to advertise receiver’s 
remaining storage capabilities

16 bit field, on every packet
Measure unit: bytes, from 0 (included) to 65535
Sender rule: LastByteSent - LastByteAcked <= RcvWindow.

W=2048 means: 
I can accept other 2048 bytes since ack, i.e. bytes [ack, ack+W-1]
also means: sender may have 2048 bytes outstanding (in multiple

segments)

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number
6 bit

Reserved
Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N



G.Bianchi, G.Neglia, V.Mancuso

WhatWhat isis flowflow control control neededneeded forfor??
Window flow control guarantees receiver buffer 
to be able to accept outstanding segments.
When receiver buffer full, just send back win=0
in essence, flow control guarantees that
transmission bit rate never exceed receiver rate

in average!
Note that instantaneous transmission rate is
arbitrary…
as well as receiver rate is discretized (application
reads)



G.Bianchi, G.Neglia, V.Mancuso

S=7

SlidingSliding windowwindow

S=4
S=5
S=6

Dynamic window based reduces to
pure sliding window when receiver
app is very fast in reading data…

W=3

W=3

1 2 3 4 5 6 7 8 9

SEQ

Window “sliding” forward



G.Bianchi, G.Neglia, V.Mancuso

DynamicDynamic window window -- exampleexample
sender receiver Rec. Buffer

EMPTY
Exchanged param: MSS=2K, 
sender ISN=2047, WIN=4K 
(carried by receiver SYN-ACK)

0 4K
TCP CONN

SETUP
Application
does a 2K write 2K, seq=2048 0 4K

2K
Ack=4096, win=2048

Application
does a 3K write 2K, seq=4096

Sender blocked Ack=6144, win=0

0 4K
FULL

Application
does a 2K readAck=6144, win=2048

0 4K
2K

Sender unblocks
may send last 1K 1K, seq=6144



G.Bianchi, G.Neglia, V.Mancuso

Performance: Performance: boundedbounded byby
receiverreceiver buffer buffer sizesize

Up to 1992, common operating systems had
transmitter & receiver buffer defaulted at 
4096

e.g. SunOS 4.1.3
way suboptimal over Ethernet LANs

raising buffer to 16384 = 40% throughput increase
(Papadopulos & Parulkar, 1993)
e.g. Solaris 2.2 default

most socket APIs allow apps to set (increase) 
socket buffer sizes

But theoretical maximum remains W=65535 bytes…



G.Bianchi, G.Neglia, V.Mancuso

MaximumMaximum achievableachievable throughputthroughput
((assumingassuming infinite infinite speedspeed lineline……))

W = 65535 bytes

1

10

100

1000

0 100 200 300 400 500
RTT (ms)

Th
ro

ug
hp

ut
 (M

bp
s)



G.Bianchi, G.Neglia, V.Mancuso

Window Scale Window Scale OptionOption

Appears in SYN segment
operates only if both peers understand option

allows client & server to agree on a 
different W scale

specified in terms of bit shift (from 1 to 14)
maximum window: 65535 * 2b 

b=14 means max W = 1.073.725.440 bytes!!



G.Bianchi, G.Neglia, V.Mancuso

BlockedBlocked sendersender deadlockdeadlock problemproblem
sender receiver Rec. Buffer

0 4K
FULL

Application read
0 4K

2K

BLOCKED

ACK=X, WIN=2K

REMAINS
BLOCKED
FOREVER!!

Since ACK does not
carry data, no ack
from sender
expected….



G.Bianchi, G.Neglia, V.Mancuso

SolutionSolution: : PersistPersist timertimer
When win=0 (blocked sender), sender starts a 
“persist” timer 

Initially 500ms (but depends on implementation)
When persist timer elapses AND no segment
received during this time, sender transmits “probe”

Probe = 1byte segment; makes receiver reannounce
next byte expected and window size

this feature necessary to break deadlock
if receiver was still full, rejects byte
otherwise acks byte and sends back actual win

Persist time management (exponential backoff):
Doubles every time no response is received
Maximum = 60s



G.Bianchi, G.Neglia, V.Mancuso

InteractiveInteractive applicationsapplications
ideal ideal rloginrlogin operationoperation: 4 : 4 transmittedtransmitted segmentssegments per 1 byte!!!!!per 1 byte!!!!!

keystroke

display

server

echo

CLIENT SERVER

Data byte

Echo of data byte

Ack of data byte

Ack of echoed byte

Header overhead:

20 TCP header
+

20 IP header
+

1 data

Interactive apps: create some tricky situations….



G.Bianchi, G.Neglia, V.Mancuso

The The sillysilly window window syndromesyndrome

Bulk data
source

TCP connection Full 
recv

buffer

Interactive
user (one byte
at the time)SCENARIOSCENARIO



G.Bianchi, G.Neglia, V.Mancuso

The The sillysilly window window syndromesyndrome

Ack=X, win=1
1 byte read

1 byte read

Network loaded with
tinygrams (40bytes 

header + 1 payload!!)

Forever!

1 byte
Buffer FULLAck=X+1, win=0

Ack=X+1, win=1

Buffer FULL
1 byte

Ack=X+2, win=0

Buffer FULLFill up buffer until win=0



G.Bianchi, G.Neglia, V.Mancuso

SillySilly window window solutionsolution
Problem discovered by David Clark
(MIT), 1982
easily solved, by preventing receiver 
to send a window update for 1 byte
rule: send window update when:

receiver buffer can handle a whole MSS
or

half received buffer has emptied (if smaller than
MSS)

sender also may apply rule
by waiting for sending data when win low



G.Bianchi, G.Neglia, V.Mancuso

NagleNagle’’s s algorithmalgorithm
(RFC 896, 1984)(RFC 896, 1984)

1 byte 1 byte

ack

W
AIT

2 byte

ack

W
AIT

3 byte

NAGLE RULE: a TCP 
connection can have only
ONE SMALL outstanding

segment

self-clocking algorithm: 

on LANs, plenty of 
tynigrams

on slow WANs, data 
aggregation



G.Bianchi, G.Neglia, V.Mancuso

CommentsComments aboutabout NagleNagle’’s s algoalgo
Over ethernet:

about 16 ms round trip time
Nagle algo starts operating when user digits
more than 60 characters per second (!!!) 

disabling Nagle’s algorithm
a feature offered by some TCP APIs

set TCP_NODELAY
example: mouse movement over X-windows 
terminal



G.Bianchi, G.Neglia, V.Mancuso

PUSH PUSH flagflag

Used to notify
TCP sender to send data

but for this an header flag NOT needed! Sufficient
a “push” type indication in the TCP sender API

TCP receiver to pass received data to the 
application

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number
6 bit

Reserved
Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N



G.Bianchi, G.Neglia, V.Mancuso

UrgentUrgent datadata

URG on: notifies rx that “urgent” data placed in segment.
When URG on, urgent pointer contains position of last byte
of urgent data 

or the one after the last, as some bugged implementations do??
and the first? No way to specify it!

receiver is expected to pass all data up to urgent ptr to app
interpretation of urgent data is left to the app

typical usage: ctrlC (interrupt) in rlogin & telnet; abort in FTP 
urgent data is a second exception to blocked sender

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number
6 bit

Reserved
Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N



G.Bianchi, G.Neglia, V.Mancuso

TCP
Error control



G.Bianchi, G.Neglia, V.Mancuso

TCP: a TCP: a reliablereliable transporttransport
TCP is a reliable protocol

all data sent are guaranteed to be received
very important feature, as IP is unreliable network layer

employs positive acknowledgement
cumulative ack
selective ack may be activated when both peers
implement it (use option)

does not employ negative ack
error discovery via timeout (retransmission timer)
But “implicit NACK” is available



G.Bianchi, G.Neglia, V.Mancuso

Error Error discoverydiscovery
via via retransmissionretransmission timer timer expirationexpiration

timeSend
segment

Retransmission timer:
waits for acknowledgement

Re-send
segment

Fundamental problem:
setting the retransmission timer right!



G.Bianchi, G.Neglia, V.Mancuso

LostLost data    ==    data    ==    lostlost ackack

ack

DATA

Retransmit DATA

Retr
timer

DATA

Retransmit DATA

Retr
timer



G.Bianchi, G.Neglia, V.Mancuso

althoughalthough lostlost ackack maymay bebe discovereddiscovered via via 
subsequentsubsequent acksacks

Ack 1

DATA 1
Retransm

timer 1

Retransm
timer 2

DATA 2

Ack 2
Data 1 & 2 OK



G.Bianchi, G.Neglia, V.Mancuso

RetransmissionRetransmission timer timer settingsetting
RTO = RTO = retransmissionretransmission TimeOutTimeOut

ack

DATA

Retransmit DATA

RTO

TOO SHORT

Too late!!!!

ack

DATA

Retransmit DATA

RTO

TOO LONG

Might
have
txed!!!!

TOO SHORT: unnecessary retransmission occurs, loading
the Internet with unnecessary packets
TOO LONG:  throughput impairment when packets lost



G.Bianchi, G.Neglia, V.Mancuso

RetransmissionRetransmission timer timer settingsetting

Cannot be fixed by protocol! Two
reasons:

different network scenarios have very different
performance

LANs (short RTTs)
WANs (long RTTs)

same network has time-varying performance (very
fast time scale)

when congestion occurs (RTT grows) and 
disappears (RTT drops)  



G.Bianchi, G.Neglia, V.Mancuso

AdaptiveAdaptive RTT RTT settingsetting
Proposed in RFC 793
based on dynamic RTT estimation

sender samples time between sending SEQ and 
receiving ACK (M)
estimates RTT (R) by low pass filtering M
(autoregressive, 1 pole)

R = α R + (1-α) M α = 0.9

sets RTO = R β β = 2 (recommended)



G.Bianchi, G.Neglia, V.Mancuso

ProblemProblem: : constantconstant valuevalue β=2β=2

Propagation = 100
Queueing = mean 5, most in range 0-10

RTO = 2 x measured_RTT ~ 2 x 105 = 210 TOO LARGE!

SCENARIO 1: lightly loaded long-distance communication

Propagation = 1
Queueing = mean 10, most in range 0-50

RTO = 2 x measured_RTT ~ 2 x 11 = 22 WAY TOO SMALL!

SCENARIO 2: mildly loaded short-distance communication



G.Bianchi, G.Neglia, V.Mancuso

ProblemProblem: : constantconstant valuevalue β=2β=2

SCENARIO 3: 
slow speed links

28.8 Kbps

0
100
200
300
400
500
600

0 500 1000 1500 2000 2500

packet size (bytes)

tra
ns

m
is

si
on

 d
el

ay
 

(m
s)

Natural variation of packet sizes causes a large variation in RTT!

(from RFC 1122: utilization on 9.6 kbps link can improve from 10% up to 90%
With the adoption of Jacobson algorithm)



G.Bianchi, G.Neglia, V.Mancuso

JacobsonJacobson RTO (1988)RTO (1988)
idea: idea: makemake itit dependdepend on on measuredmeasured variancevariance!!

g = gain (1/8)  
conceptually equivalent to 1-α, but set to slightly different value

D = mean deviation
conceptually similar to standard deviation, but cheaper (does not
require a square root computation)
h = 1/4

Jacobson’s implementation: based on integer
arithmetic (very efficient)

Err = M-A
A := A + g Err

D := D + h (|Err|  - D)
RTO = A + 4D



G.Bianchi, G.Neglia, V.Mancuso

GuessingGuessing rightright??
KarnKarn’’s s problemproblem

ack

DATA

Retransmit DATA

RTO

Scenario 1

M

ack

DATA
RTO

Scenario 2

M?
retransmitM?



G.Bianchi, G.Neglia, V.Mancuso

SolutionSolution toto KarnKarn’’s s problemproblem

Very simple: DO NOT update RTT when a segment
has been retransmitted because of RTO expiration!

Instead, use Exponential backoff
double RTO for every subsequent expiration of 
same segment

When at 64 secs, stay
persist up to 9 minutes, then reset



G.Bianchi, G.Neglia, V.Mancuso

NeedNeed forfor implicitimplicit NACKsNACKs

Seq=100

Retransmit Seq=100

RTO

Seq=150
Seq=200
Seq=250

Seq=50

Seq=350

Seq=300

TCP does not support 
negative ACKs
This can be a serious 
drawback

Especially in the case of single 
packet loss

Necessary RTO expiration to 
start retransmit lost packet

As well as following ones!!

ISSUE: is there a way to 
have NACKs in an implicit 
manner????



G.Bianchi, G.Neglia, V.Mancuso

The Fast The Fast RetransmitRetransmit AlgorithmAlgorithm

Seq=100
Seq=150

Seq=50

Seq=100

Idea: use duplicate ACKs!
Receiver responds with an ACK 
every time it receives an out-
of-order segment
ACK value = last correctly 
received segment

FAST RETRANSMIT 
algorithm:

if 3 duplicate acks are received 
for the same segment, assume 
that the next segment has been 
lost. Retransmit it right away.
Helps if single packet lost. Not 
very effective with multiple 
losses

And then? A congestion 
control issue…

ack=100

ack=100
ack=100

ack=100: FR

RTO


