
G.Bianchi, G.Neglia, V.Mancuso

Understanding TCP 
connection management



G.Bianchi, G.Neglia, V.Mancuso

Application
(client)

Socket
TCP software

Application
(server)

Socket
TCP software

INTERNET

TCP

“Logical” connection
only end hosts are aware!

State variables:
- conn status
- MSS
- windows
- …

buffer space 
normally 4 to 16 Kbytes
64+ Kbytes possible

TCP connectionTCP connection

Connection described by client&server status
Connection SET-UP duty: 

1) initializes state variables
2) reserves buffer space



G.Bianchi, G.Neglia, V.Mancuso

Connection establishment: Connection establishment: 
simplestsimplest approachapproach (non TCP)(non TCP)

Connection request

Connection granted

Transmit data

time
time



G.Bianchi, G.Neglia, V.Mancuso

DelayedDelayed duplicate duplicate problemproblem
REQ

ACK

Data

REQ
duplicate

duplicate

Application: 
transactional (sell 
100000$ stocks)

Selling other 100000$
stocks!!!!! 

USER BANK

Data
What is this?
Oh my God!
Too late!!!

ACK



G.Bianchi, G.Neglia, V.Mancuso

SolutionSolution: : threethree way way handshakehandshake
TomlinsonTomlinson 19751975

SRC DEST
Connection request (seq=X)

Connection granted (seq=Y,ack=X)

Acknowledge + data (seq=X, ack=Y)

time
time



G.Bianchi, G.Neglia, V.Mancuso

DelayedDelayed duplicate detectionduplicate detection
SEQ X

SEQ Y, ACK X

Data SEQ X, ACK Y

SEQ X
duplicate

duplicate

Application: 
transactional (selling stocks)

What is this??? Should be
SEQ X, ACK Z!!!! STOP...

USER BANK

SEQ Z, ACK X

Data SEQ X, ACK Y
What is this?
Not too late: Reject SEQ X, ACK Z

Ah ah! Got the problem!

??? What a case: request with
same indicator X? anyway...



G.Bianchi, G.Neglia, V.Mancuso

SYN (synchronize sequence numbers): used
to open connection

SYN present: this host is setting up a connection
SEQ with SYN: means initial sequence number (ISN) 
data bytes numbered from ISN+1.

FIN: no more data to send
used to close connection

...more later about connection closing...

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number
6 bit

Reserved
Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N



G.Bianchi, G.Neglia, V.Mancuso

ThreeThree way way handshakehandshake in TCPin TCP
SRC DEST

Connection request (SYN, ISN=100)

Connection granted (SYN, ISN=350, ACK=101)

Data segment (seq=101, ACK=351)

time
time

Full duplex connection: opened in both ways
SRC: performs ACTIVE OPEN

DEST: Performs PASSIVE OPEN

ACTIVE
OPEN

PASSIVE
OPEN



G.Bianchi, G.Neglia, V.Mancuso

InitialInitial SequenceSequence NumberNumber
Should change in time

RFC 793 (but not all implementations are conforming) 
suggests to generate ISN as a sample of a 32 bit counter
incrementing at 4us rate

transmitted whenever SYN (Synchronize
sequence numbers) flag active

note that both src and dest transmit THEIR initial sequence 
number (remember: full duplex)

Data Bytes numbered from ISN+1
necessary to allow SYN segment ack



G.Bianchi, G.Neglia, V.Mancuso

MaximumMaximum SegmentSegment SizeSize -- MSSMSS
Announced at setup by both ends. 
Lower value selected.
MSS sent in the Options header of the SYN 
segment

clearly cannot (=ignored if happens) send MSS in a non SYN 
segment, as connection has been already setup
when SYN has no MSS, default value 536 used

goal: the larger the MSS, the better...
until fragmentation occurs
e.g. if host is on ethernet, sets MSS=1460

1500 max ethernet size - 20 IP header - 20 TCP header



G.Bianchi, G.Neglia, V.Mancuso

MSS MSS advertiseadvertise
Conn request (C_MSS, SYN, seq=C_ISN)

Conn granted (MSS, SYN, seq=S_ISN, ack=C_ISN+1)

Acknowledge (seq=C_ISN+1,ack=S_ISN+1)

time
time

CLIENT (C_MSS) SERVER (S_MSS)

If (S_MSS<C_MSS)
MSS = S_MSS;

else MSS = C_MSS;
Use
recv
MSS

Does not avoid fragmentation to occur WITHIN the network!!



G.Bianchi, G.Neglia, V.Mancuso

connection connection closingclosing::
anan impossibleimpossible problemproblem!!

CLOSE

ACK

TIMEOUT

CLOSE
TIMEOUT

CLOSED

Suitable Timeout 
settings & Extension
to three/four/plus way 
handshake do not
solve!!

TIMEOUT

OK: he has closed.
I close too: bye bye.

CLOSE
…...



G.Bianchi, G.Neglia, V.Mancuso

Connection Connection closingclosing in TCPin TCP
sincesince itit isis impossibleimpossible problemproblem, , useuse simplessimples

solutionsolution ((twotwo way way handshakehandshake))

Since connection full 
duplex, necessary two
half-closes (each a two-
way handshake) 
originating by both
sides
close notified with FIN 
flag on
FIN segment ACK-ed as
usual

Application close
Deliver EOF
to application

Application
close

FIN

ACK of FIN

FIN

ACK of FIN



G.Bianchi, G.Neglia, V.Mancuso

HalfHalf closeclose
maymay closeclose one direction one direction onlyonly -- seldomlyseldomly usedused

Supported by
system call
shutdown
instead of 
close

Application close

App close

FIN

ACK of FIN

FIN

ACK of FIN

EOF to app

data

Ack of data
App writeApp read

EOF to app

TIME_WAIT
(30s - 2m)



G.Bianchi, G.Neglia, V.Mancuso

Connection Connection statesstates -- ClientClient



G.Bianchi, G.Neglia, V.Mancuso

Connection Connection StatesStates -- ServerServer



G.Bianchi, G.Neglia, V.Mancuso

WhyWhy TIME_WAIT?TIME_WAIT?
MSL (Maximum Segment Lifetime): maximum time a 
segment can live in the Internet

no timers on IP packets! Only hop counter
RFC 793 specifies MSL=120s, but each implementation has its own
value (from 30s to 120s)

TIME_WAIT state: 2 x MSL
allows to “clean” the network of delayed packets
belonging to the connection
2xMSL because a lost FIN_ACK implies a new FIN from
server

during TIME_WAIT conn sock pair reserved
many implementations even more restictive (local port
non reusable)
clearly this may be a serious problem when restarting
server daemon (must pause from 1 to 4 minutes…)



G.Bianchi, G.Neglia, V.Mancuso

Header
length

checksum

32 bit Sequence number

Window size

Source port Destination port

32 bit acknowledgement number
6 bit

Reserved
Urgent pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

RST (Reset)
sent whenever a segment arrives and does not apparently 
belong to the connection
typical RST case: connection request arriving to port not in use

Sending RST within an active connection:
allows aborting release of connection (versus orderly release) 

any queued data thrown away
receiver of RST can notify app that abort was performed at other
end


