
G.Bianchi, G.Neglia, V.Mancuso

Lecture 3.Lecture 3.

HTTP v1.0 HTTP v1.0
applicationapplication layerlayer protocolprotocol

intointo detailsdetails

HTTP 1.0: RFC 1945, HTTP 1.0: RFC 1945, T.T. BernersBerners--LeeLee, R. , R. FieldingFielding, , H.H. FrystykFrystyk, , maymay 19961996
HTTP 1.1: RFC 2068, 2616 HTTP 1.1: RFC 2068, 2616

G.Bianchi, G.Neglia, V.Mancuso

GeneralitiesGeneralities
Ascii protocol

uses plain text
case sensitive

GET is legal
get is not…

Messages and delivery order:
First: HTTP request
Follows: HTTP response

Messages + entity bodies:
structured sequence of octets
Any content (web pages, images, resources, etc)
transmitted on TCP

But TCP not mandatory: any reliable transport connection is ok

G.Bianchi, G.Neglia, V.Mancuso

RequestRequest//ResponseResponse

HTTP
Application

Process
(Browser)

Socket

Client

HTTP
Application

Process
(HTTP Daemon)

Socket

Server
HTTP request

HTTP response

Can you give me /people/bianchi/index.htm?

Here it is: “<HTML> bla bla bla …”

TCP connection

PORT: 1024
IP: 194.121.63.2

PORT: 80
IP: 131.175.21.1

Of course HTTP ignores IP & PORT: These info belong to lower layers,
and have already been used to address the web server and enable connection!

G.Bianchi, G.Neglia, V.Mancuso

RequestRequest//ResponseResponse syntaxsyntax
Request-Line (mandatory)
GET /docs/pippo.html HTTP/1.0

Full “absolute” path required
Protocol version required

Status-Line (mandatory)
HTTP/1.0 200 OK

Protocol version, status code, and reason phrase

Headers (optional, one or more, any order)
general header

General information (es: date, no-cache)

entity header (information about entity eventually transferred)

null line
entity body (one or more, separated by null lines)

Request header
allows client to optionally pass
additional information about the
request, and about the client
itself that could not be stored in
the request line

Response header
allows server to optionally pass
additional information about the
response, and about the server
itself that could not be stored in
the status line

G.Bianchi, G.Neglia, V.Mancuso

ExamplesExamples
GET /test/index.html?foo=bar+baz&name=steve HTTP/1.0\r\n
Connection: Keep-Alive\r\n
User-Agent: Mozilla/4.07 [en] (X11; I; Linux 2.0.36 i686)\r\n
Host: ninja.cs.berkeley.edu:5556\r\n
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*\r\n
Accept-Encoding: gzip\r\n
Accept-Language: en\r\n
Accept-Charset: iso-8859-1,*,utf-8\r\n
\r\n
xxxxxxxxxxxxxxxxxxxxxx

Request:

HTTP/1.0 200 OK
Server: Netscape-Enterprise/2.01
Date: Thu, 04 Feb 1999 00:28:19 GMT
Accept-ranges: bytes
Last-modified: Wed, 01 Jul 1998 17:07:38 GMT
Content-length: 1848
Content-type: text/html
\r\n
xxxxxxxxxxxxxxxxxxxxxxx

Response:

G.Bianchi, G.Neglia, V.Mancuso

HTTP HTTP methodsmethods
GET: retrieve a page

GET+If-Modified-Since to refresh cache entities
HEAD: identical to GET, but with no body retrieve

full header information retrieved, though
Usage: testing hyperlinks validity.

POST: append information to selected URL.
used to send user data (collected through forms) ...
...to a data-accepting process (or gateway to some other protocol).

In addition (not really used: big security issues if not careful):

PUT: overwrites a page with new content
DELETE: removes a page
LINK, UNLINK (never used: not included in HTTP/1.1)

G.Bianchi, G.Neglia, V.Mancuso

Status Status codescodes
2xx: success

action successfully received,understood, and accepted
200=OK, 204=no content, 201=created, 202=accepted, …

3xx: redirection
further action must be taken to complete the request

301=moved permanently, 302=moved temporarily, 304=not
modified

4xx: client Error
request contains bad syntax or cannot be fulfilled

400=bad request, 404=not found, 401=unauthorized,
403=forbidden, ...

5xx: server error
server failed to fulfill an apparently valid request

500=internal server error, 501=not implemented,
502=bad gateway, 503=service unavailable, ...

Brilliant idea: unrecognized xnn codes treated as x00 codes!

G.Bianchi, G.Neglia, V.Mancuso

HTTP/1.0 General HeadersHTTP/1.0 General Headers
optionally sent by either client & serveroptionally sent by either client & server

Date
Date: Sun, 06 Nov 1994 08:49:37 GMT
3 accepted date formats (the first is the preferred one):

Sun, 06 Nov 1994 08:49:37 GMT
» RFC 822, updated by RFC 1123
» Fixed-length field

Sunday, 06-Nov-94 08:49:37 GMT
» RFC 850, obsoleted by RFC 1036

Sun Nov 6 08:49:37 1994
» ANSI C’s asctime() format

Pragma
Pragma: no-cache

implementation-specific directives
The word “pragma” taken from programming languages (directives to
compiler)

No-cache is the only popularly used pragma

G.Bianchi, G.Neglia, V.Mancuso

HTTP/1.0 HeadersHTTP/1.0 Headers
for resource handling & cachingfor resource handling & caching

If-Modified-Since – sent by client
If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT
For conditional GET (see next slide)

Last-Modified - returned by server
Last-Modified: Sat, 29 Oct 1994 19:43:31 GMT
Date and time the server “believes” the data was modified
semantically imprecise - file modification? Record timestamp? Date in
case file dynamically generated?

Expires - sent by server
Expires: Thu, 14 Dec 2000 16:00:00 GMT
Date after which a resource should be considered stale

primitive caching expiration date functionality
Allows to quantify how “volatile” a resource is

cannot force clients to update view, only on refresh

G.Bianchi, G.Neglia, V.Mancuso

ConditionalConditional GETGET
IfIf--ModifiedModified--SinceSince headerheader fieldfield

allowsallows locallocal cachingcaching

If-Modified-Since: 18/11/2000

If-Modified-Since: 22/11/2000

Last-Modified:
20/11/2000

Return code:
304 - not modified
no body returned

Return code:
200 - success
full body returned

G.Bianchi, G.Neglia, V.Mancuso

HTTP/1.0 HeadersHTTP/1.0 Headers
for redirection & backfor redirection & back--trackingtracking

Location - returned by server
Location: http://www.unipa.it
indicates URL for automatic redirection to the resource
used in case of 3xx redirections

Referer - sent by client
Referer: http://cerbero.elet.polimi.it
specifies address from which request was generated

i.e. the page you come from
none if request entered from keyboard

Applications: back button, caching optimization, logging statistics, etc
All sort of privacy issues! Must be careful with this…

G.Bianchi, G.Neglia, V.Mancuso

HTTP/1.0 HeadersHTTP/1.0 Headers
for information disclosure (1)for information disclosure (1)

From - sent by client
From: bianchi@elet.polimi.it
specify mailbox of human behind user agent
Not really used (privacy issues)

User-Agent - sent by client
User-Agent: Mozilla/4.07 [en] (X11; I; Linux 2.0.36 i686)
identifies client software
why? Optimize layout, send based on capability of client

Multi-channel portals build on this idea

G.Bianchi, G.Neglia, V.Mancuso

HTTP/1.0 HeadersHTTP/1.0 Headers
for information disclosure (2)for information disclosure (2)

Server - returned by server
Server: Netscape-Enterprise/2.01
identifies server software (origin server – no proxy info)

Used for measurement & statistics
Allows hackers to better prepare an attack :-)

Allow - returned by server
lists set of supported methods
Allow: GET, HEAD
never used in practice - clients know what they can do

G.Bianchi, G.Neglia, V.Mancuso

WWW-Authenticate - sent by server
WWW-Authenticate: <challenge>
Es: WWW-Authenticate: basic realm="WallyWorld"

Basic=scheme used (may specify enhanced schemes)
Challenge string: assigned by server to identify protected space

included in 401 (unauthorized) response messages
tells client to resend request with Authorization: header

Authorization must be valid for the current “challenge”

Authorization - sent by client
Authorization: <credentials>
Es: Authorization: basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

<credentials> = Base64(username:password)
Base64: coding done on 64 characters only.

» A…Z a…z 0…9 + /
» = used as special 65th symbol
» See RFC 1521

HTTP/1.0 HeadersHTTP/1.0 Headers
for authenticationfor authentication

HTTP request

Response 401
Auth request

C S

HTTP request
+ authorization

Response (OK)

Authentication does not mean encryption!!

G.Bianchi, G.Neglia, V.Mancuso

Incrementally added hacksIncrementally added hacks
not really not really ““standardstandard”” and consistently implementedand consistently implemented

but extensively usedbut extensively used

Accept: image/gif, image/jpeg, text/*, */*
Used in a request, to specify which type of media can be accepted as
response

Accept-Encoding: gzip
Allows to specify the encoding format acceptable for the client

Accept-Language: en
Allows to specify the desided language for the response

Retry-After: (date) or (seconds)
Frequently associated to a 503 (service unavailable) response

[Set-]Cookie: Part_Number="Rocket_Launcher_0001";
Version="1"; Path="/acme"
… (many more) …

G.Bianchi, G.Neglia, V.Mancuso

CookiesCookies
HTTP is stateless

Need for cookies

Cookie: small txt strings
Store information necessary to retrieve user state

Preference & personalization
Save passwords for further visits
And a lot more

Temporary/permanent
Whether the cookie lasts for a single browsing session or beyond

Set by HTTP response; later on send by HTTP requests:
[Set-]Cookie: Part_Number="Rocket_Launcher_0001"; Version="1"; Path="/acme“

A LOT of privacy issues!
WinXP: See your cookies in \C:\Documents and Settings\yourname\Cookies

Your cookie page SHOWS UP your navigation preferences!
Malicious cookie settings from some sites

Goal: gain access to your personal information

Example (set by finance.yahoo.com):
PRF
s=8388608&t=IONA+GSPN+CNXT+ISIL+
ALVR+INTC
finance.yahoo.com/
1024
3400107776
30338494
644956128
29604307
*

G.Bianchi, G.Neglia, V.Mancuso

Cookie OverviewCookie Overview

HTTP cookies are a mechanism for
creating and using session-persistent
state.
Cookies are simple string values that
are associated with a set of URL’s.
Servers set cookies using an HTTP
header.
Client transmits the cookie as part of
HTTP request whenever an associated
URL is visited in the future.

G.Bianchi, G.Neglia, V.Mancuso

Terminology and UsefulnessTerminology and Usefulness

Where are cookies used?
Shopping applications
Storing login information
Tracking pages visited by a user

G.Bianchi, G.Neglia, V.Mancuso

Terminology and UsefulnessTerminology and Usefulness

How do cookies work?

Client

Client

Client

Origin
Server A

Origin
Server A

Origin
Server A

Request

Response
Set-Cookie: XYZ

Request
Cookie: XYZ

G.Bianchi, G.Neglia, V.Mancuso

Anatomy of a cookie.Anatomy of a cookie.

Cookie has 6 parts:
Name
Value
Domain
Path
Expiration
Security flag

Name and Value are required, others
have default value.

G.Bianchi, G.Neglia, V.Mancuso

Cookie detailsCookie details
Domain

Indicates server name associated with cookie
Can be partial

Ex: Cookie associated with “.unc.edu” will be returned to
any server with that ending

Path
Indicates URL path name associated with cookie
Can be partial

Expire: Indicates when cookie will expire
Secure: Indicates only send when secure

G.Bianchi, G.Neglia, V.Mancuso

Cookie header syntaxCookie header syntax

Header name is “Set-cookie”
Header value is attribute/value
pairs

Set-cookie: name=cname; value=cvalue;
domain=.cs.unc.edu; path=/~kmp

G.Bianchi, G.Neglia, V.Mancuso

Setting a cookie.Setting a cookie.
A cookie is set using the “Set-cookie”
header in an HTTP response.
String value of the Set-cookie header
is parsed into semi-colon separated
fields that define the different parts of
the cookie.
Java servlet API has support for
cookies

Cookie class
addCookie method in HttpServletResponse

Cookie is stored by the client.

G.Bianchi, G.Neglia, V.Mancuso

Sending cookiesSending cookies
Every time a client makes an HTTP
request, it tests every cookie for a
match.
Cookies match if…

Cookie domain is suffix of URL server.
Cookie expiration has not passed.
Cookie path is prefix of URL path.
Cookie security flag is on and connection is secure.

If a match is made, then name/value
pair of cookie is sent as “Cookie”
header in request.

G.Bianchi, G.Neglia, V.Mancuso

Cookie MatchingCookie Matching

Biggest misunderstanding:
Servers do not RETRIEVE cookies!
Servers RECEIVE cookies previously
planted.

Step 1:
Some response by server installs cookie with
“Set-cookie” header.
Client saves cookie to disk.

G.Bianchi, G.Neglia, V.Mancuso

Cookie MatchingCookie Matching
Step 2:

Browser goes to some page which matches
specification of previously received cookie.
Cookie name and value sent in request as
“Cookie” HTTP header.

Step 3:
Servlet detects presence of cookie uses cookie
value as part of content generation.

G.Bianchi, G.Neglia, V.Mancuso

An ExampleAn Example

We can avoid explicit registration of
user id by using cookies.

If cookie is present, use that to look up state.
If not, generate and set new cookie.

Advantages?
Anonymous and transparent.

Disadvantages?
If user moves to different machine, can’t get to
previously stored cart.

G.Bianchi, G.Neglia, V.Mancuso

ContentContent management management issuesissues

Early days of the Internet (<1990)
messages in english text
No other media

Resources today:
text

in languages with accents (italian, french, german,…)
Non latin alphabets (Russian, Hebrew)
languages wihout alphabet (Chinese, Japanese)

other resources (audio, video, images)
each media with various coding schemes

G.Bianchi, G.Neglia, V.Mancuso

EntityEntity headerheader
Meta-information about the entity body

Content-Type
Content-Encoding

MIME-like approach
Problem of content management originally appeared in email.
Solution: Multipurpose Internet Mail Extension (RFC 1521)

Key idea: associate a content descriptor to each
content

resource

Content type:
image/GIF

Helper applications
GIF viewer

resource

GIF

G.Bianchi, G.Neglia, V.Mancuso

HTTP HTTP contentcontent managementmanagement
Content-Type - sent by server

MIME-like field, specifying the media-type.
Format: type/subtype
media type values registered in IANA (Internet Assigned Numbers
Authority).
Content-Type: text/html

with optional charset parameter: default ISO-8859-1;
Content-Type: image/jpeg
nasty one: multipart/mixed

Content-Encoding - sent by either
selects an encoding (data compression scheme) for the transport, not the
content
Content-Encoding: x-gzip (x-compress)
resource typically stored with this coding, and is decoded before rendering
sadly, no common support for encodings (Windows)

G.Bianchi, G.Neglia, V.Mancuso

EvenEven a man can do a man can do itit!!

telnet www.tti.unipa.it
correct: telnet www.tti.unipa.it

80
GET /index.html HTTP/1.0
(blank line)

