Lecture 3.

HTTP v1.0
application layer protocol

into details

HTTP 1.0: RFC 1945, T. Berners-Lee, R. Fielding, H. Frystyk, may 1996
HTTP 1.1: RFC 2068, 2616

Univer
deg

t\- S
G.Bianchi, G.Neglia, V.Mancuso ! mg‘ gPalermo



Generalities

Ascii protocol
= Uses plain text
=» case sensitive

=>GET Islegal

= get IS not...
=> Messages and delivery order:
= First: HTTP request
= Follows: HTTP response
=> Messages + entity bodies:
= structured sequence of octets

= Any content (web pages, images, resources, etc)
= transmitted on TCP
—>But TCP not mandatory: any reliable transport connection is ok

Um}‘e;%_

G.Bianchi, G.Neglia, V.Mancuso



Request/Response

Client Server
HTTP request
HTTP —m—m—— == = = = = HTTP
.. Can you give me /people/bianchi/index.htm? ..
Application Application
Process HTTP response Process
(Browser) | = = = = = == (HTTP Daemon)
Here it is: “<HTML> blablabla ...”
Socket Socket
PORT: 1024 PORT: 80
IP: 194.121.63.2 IP: 131.175.21.1

TCP connection

Of course HTTP ignores IP & PORT: These info belong to lower layers,
and have already been used to address the web server and enable connection!

Universi '[? N
G.Bianchi, G.Neglia, V.Mancuso degh Studi giPalermo



Request/Response syntax

= Request-Line (mandatory)

GET /docs/pippo.html HTTP/1.0

= Full “absolute” path required
= Protocol version required

=> Status-Line (mandatory)

HTTP/1.0 200 OK
= Protocol version, status code, and reason phrase

= Headers (optional, one or more, any order)

= general header

—> General information (es: date, no-cache)

= Request header

—>allows client to optionally pass
additional information about the
request, and about the client
itself that could not be stored in
the request line

= Response header

—>allows server to optionally pass
additional information about the
response, and about the server

itself that could not be stored in
the status line

= entity header (information about entity eventually transferred)

= null line

= entity body (one or more, separated by null lines)

G.Bianchi, G.Neglia, V.Mancuso

Unn‘«%_



Request: Examples

GET /test/index.html?foo=bar+baz&name=steve HTTP/1.0\r\n

Connection: Keep-Alive\r\n

User-Agent: Mozilla/4.07 [en] (X11; I; Linux 2.0.36 i1686)\r\n

Host: ninja.cs.berkeley.edu:5556\r\n

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*\r\n
Accept-Encoding: gzip\r\n

Accept-Language: en\r\n

Accept-Charset: is0-8859-1,*,utf-8\r\n

\r\n

XXXXXXXXKXXXXXKXXXKXXXXXXK

Response:

HTTP/1.0 200 OK

Server: Netscape-Enterprise/2.01

Date: Thu, 04 Feb 1999 00:28:19 GMT
Accept-ranges: bytes

Last-modified: Wed, 01 Jul 1998 17:07:38 GMT
Content-length: 1848

Content-type: text/ntml

\r\n

XXXXXXXXKXXXXXXXKXXXXXXX

G.Bianchi, G.Neglia, V.Mancuso



HTTP methods

= GET: retrieve a page
= GET+If-Modified-Since to refresh cache entities
= HEAD: identical to GET, but with no body retrieve
= full header information retrieved, though
= Usage: testing hyperlinks validity.
= POST: append information to selected URL.
= used to send user data (collected through forms) ...
= ...10 a data-accepting process (or gateway to some other protocol).

In addition (not really used: big security issues if not careful):
= PUT: overwrites a page with new content

= DELETE: removes a page
= LINK, UNLINK (never used: not included in HTTP/1.1)

Universi
G.Bianchi, G.Neglia, V.Mancuso deg]



Status codes

= 2XX: success

= action successfully received,understood, and accepted
—200=0K, 204=no content, 201=created, 202=accepted, ...
= 3xx: redirection

= further action must be taken to complete the request

- 301=moved permanently, 302=moved temporarily, 304=not
modified

= 4xx: client Error

= request contains bad syntax or cannot be fulfilled

—>400=Dbad request, 404=not found, 401=unauthorized,
403=forbidden, ...

= 5xx: server error

= server failed to fulfill an apparently valid request

—>500=internal server error, 501=not implemented,
502=bad gateway, 503=service unavailable, ...

G.Bianchi, G.Neglia, V.Mancuso



HTTP/1.0 General Headers

optionally sent by either client & server

= Date
= Date: Sun, 06 Nov 1994 08:49:37 GMT

= 3 accepted date formats (the first is the preferred one):

—>Sun, 06 Nov 1994 08:49:37 GMT
» RFC 822, updated by RFC 1123
» Fixed-length field

—> Sunday, 06-Nov-94 08:49:37 GMT
» RFC 850, obsoleted by RFC 1036

—>Sun Nov 6 08:49:37 1994
» ANSI C’s asctime() format

= Pragma

= Pragma: no-cache

= Implementation-specific directives

- The word “pragma” taken from programming languages (directives to
compiler)

= No-cache is the only popularly used pragma

Universi
G.Bianchi, G.Neglia, V.Mancuso deg]



HTTP/1.0 Headers

for resource handling & caching

=> If-Modified-Since - sent by client
= If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT
= For conditional GET (see next slide)

= Last-Modified - returned by server
= Last-Modified: Sat, 29 Oct 1994 19:43:31 GMT
= Date and time the server “believes” the data was modified

= semantically imprecise - file modification? Record timestamp? Date In
case file dynamically generated?

= Expires - sent by server
= Expires: Thu, 14 Dec 2000 16:00:00 GMT

= Date after which a resource should be considered stale
=>primitive caching expiration date functionality
—> Allows to quantify how “volatile” a resource is

= cannot force clients to update view, only on refresh

G.Bianchi, G.Neglia, V.Mancuso




Conditional GET

If-Modified-Since header field

allows local caching

Return code;
200 - success

If-Modified-Since: 18W

\

Last-Modified:
20/11/2000

304 - not modified
no body returned

If-Modified-Since: 22/11/2000

Universi
G.Bianchi, G.Neglia, V.Mancuso deg]



HTTP/1.0 Headers

for redirection & back-tracking

= Location - returned by server
= Location: http://www.unipa.it
= indicates URL for automatic redirection to the resource
= used in case of 3xx redirections

=> Referer - sent by client
= Referer: http://cerbero.elet.polimi.it

= specifies address from which request was generated
- i.e. the page you come from
—> none if request entered from keyboard

= Applications: back button, caching optimization, logging statistics, etc
= All sort of privacy issues! Must be careful with this...

G.Bianchi, G.Neglia, V.Mancuso



HTTP/1.0 Headers

for information disclosure (1)

= From - sent by client
= From: bianchi@elet.polimi.it
= specify mailbox of human behind user agent
= Not really used (privacy issues)

=> User-Agent - sent by client
= User-Agent: Mozilla/4.07 [en] (X11; I; Linux 2.0.36 1686)
= identifies client software

= why? Optimize layout, send based on capability of client
—> Multi-channel portals build on this idea

G.Bianchi, G.Neglia, V.Mancuso




HTTP/1.0 Headers

for information disclosure (2)

=> Server - returned by server
= Server: Netscape-Enterprise/2.01

= Identifies server software (origin server — no proxy info)
—> Used for measurement & statistics
—> Allows hackers to better prepare an attack :-)

=> Allow - returned by server
= lists set of supported methods
= Allow: GET, HEAD
= never used in practice - clients know what they can do

G.Bianchi, G.Neglia, V.Mancuso



HTTP/1.0 Headers

for authentication

= WWW-Authenticate - sent by server C S
= WWW-Authenticate: <challenge> HTTP request

= Es: WWW-Authenticate: basic realm="WallyWorld"

—> Basic=scheme used (may specify enhanced schemes)

—> Challenge string: assigned by server to identify protected space
= included in 401 (unauthorized) response messages
= tells client to resend request with Authorization: header

—> Authorization must be valid for the current “challenge”

Response 401
Auth request

=> Authorization - sent by client
= Authorization: <credentials>

= Es: Authorization: basic QWxhZGRpbjpvcGVulHNIc2FtZQ==
—> <credentials> = Base64(username:password)

- Base64: coding done on 64 characters only. Response (OK)
» A..Z a...z 0...9 +/
» = used as special 65th symbol
» See RFC 1521

Authentication does not mean encryption!!

HTTP request
+ authorization

Univer
deg

t\- S
G.Bianchi, G.Neglia, V.Mancuso ! mg‘ gPalermo



Incrementally added hacks

not really “standard” and consistently implemented
but extensively used

=> Accept: image/gif, image/jpeg, text/*, *[*
= Used in a request, to specify which type of media can be accepted as
response
=> Accept-Encoding: gzip
= Allows to specify the encoding format acceptable for the client
=> Accept-Language: en
= Allows to specify the desided language for the response
= Retry-After: (date) or (seconds)
= Frequently associated to a 503 (service unavailable) response

=> [Set-]Cookie: Part_ Number="Rocket_Launcher_0001";
Version="1"; Path="/acme"

=> ... (many more) ...

G.Bianchi, G.Neglia, V.Mancuso



Cookies

> HTTP is stateless E)Fi?:mple (set by finance.yahoo.com):
= Need for cookies 5=838860881=IONA+GSPN+CNXT+SIL+
ALVR+INTC
= Cookie: small txt strings finance.yahoo.com/
= Store information necessary to retrieve user state 1024
—> Preference & personalization 3400107776
—> Save passwords for further visits 30338494
- And a lot more 644956128
29604307
= Temporary/permanent “

= Whether the cookie lasts for a single browsing session or beyond

= Set by HTTP response; later on send by HTTP requests:
= [Set-]Cookie: Part_ Number="Rocket_Launcher_0001"; Version="1"; Path="/acme*

= A LOT of privacy issues!
= WinXP: See your cookies in \C:\Documents and Settings\yourname\Cookies
-> Your cookie page SHOWS UP your navigation preferences!

= Malicious cookie settings from some sites
—> Goal: gain access to your personal information

G.Bianchi, G.Neglia, V.Mancuso



Cookie Overview

=>HTTP cookies are a mechanism for
creating and using session-persistent
state.

=>Cookies are simple string values that
are associated with a set of URL'’s.

=>Servers set cookies using an HTTP
header.

=>Client transmits the cookie as part of
HTTP request whenever an associated
URL is visited in the future.

Universitéa
G.Bianchi, G.Neglia, V.Mancuso degh Stu



Terminology and Usefulness

>Where are cookies used?
v'Shopping applications

v'Storing login information
v'Tracking pages visited by a user

G.Bianchi, G.Neglia, V.Mancuso



Terminology and Usefulness

=>How do cookies work?

Request ToT

Client “ 4 Origin

Server A

. Response Origin
Client )

Set-Cookie: XYZ Server A

. Request J Origin
Client .

Cookie: XYZ Server A

Universi
G.Bianchi, G.Neglia, V.Mancuso deg]




Anatomy of a cookie.

= Cookie has 6 parts:
=Name
=Value
= Domain
= Path
= EXxpiration
= Security flag

=>Name and Value are required, others
have default value.

Univer
deg

t\- S
G.Bianchi, G.Neglia, V.Mancuso ! mg‘ gPalermo



Cookie details

= Domain
= Indicates server name associated with cookie

= Can be partial

=2 EX: Cookie associated with “.unc.edu” will be returned to
any server with that ending

= Path

= [ndicates URL path name associated with cookie

= Can be partial
= Expire: Indicates when cookie will expire
=>Secure: Indicates only send when secure

Universitéa
G.Bianchi, G.Neglia, V.Mancuso degh Stu



Cookie header syntax

=>Header name is “Set-cookie”

= Header value is attribute/value
pairs

Set-cookie: name=cname; value=cvalue;
domain=.cs.unc.edu; path=/~kmp

G.Bianchi, G.Neglia, V.Mancuso




Setting a cookie.

=> A cookie is set using the “Set-cookie”
header in an HTTP response.

=>String value of the Set-cookie header
is parsed into semi-colon separated
fields that define the different parts of
the cookie.

=>Java servlet API has support for
cookies

= Cookie class
=addCookie method in HttpServletResponse
=>» Cookie is stored by the client.

Universitéa
G.Bianchi, G.Neglia, V.Mancuso degh Stu



Sending cookies

2> Every time a client makes an HTTP
request, it tests every cookie for a
match.

= Cookies match if...
= Cookie domain is suffix of URL server.
= Cookie expiration has not passed.
= Cookie path is prefix of URL path.
= Cookie security flag Is on and connection Is secure.

=>If a match is made, then name/value
pair of cookie is sent as “Cookie”
header in request.

Universitéa
G.Bianchi, G.Neglia, V.Mancuso degh Stu



Cookie Matching

> Biggest misunderstanding:
= Servers do not RETRIEVE cookies!

= Servers RECEIVE cookies previously
planted.

=>Step 1:

= Some response by server installs cookie with
“Set-cookie” header.

= Client saves cookie to disk.

G.Bianchi, G.Neglia, V.Mancuso



Cookie Matching

=>Step 2:

= Browser goes to some page which matches
specification of previously received cookie.

= Cookie name and value sent in request as
“Cookie” HTTP header.

=>Step 3:

= Servlet detects presence of cookie uses cookie
value as part of content generation.

Universitéa
G.Bianchi, G.Neglia, V.Mancuso degh Stu



An Example

> We can avoid explicit registration of
user id by using cookies.

= |f cookie Is present, use that to look up state.

= |f not, generate and set new cookie.
=>Advantages?

= Anonymous and transparent.
=>Disadvantages?

= |f user moves to different machine, can't get to
previously stored cart.

Universitéa
G.Bianchi, G.Neglia, V.Mancuso degh Stu



Content management issues

= Early days of the Internet (<1990)

= messages in english text
= No other media

=>Resources today:

= text
—>1n languages with accents (italian, french, german,...)
—>Non latin alphabets (Russian, Hebrew)
—>languages wihout alphabet (Chinese, Japanese)

= other resources (audio, video, images)
—>each media with various coding schemes

G.Bianchi, G.Neglia, V.Mancuso




Entity header

= Meta-information about the entity body
= Content-Type
= Content-Encoding
= MIME-like approach
= Problem of content management originally appeared in email.
= Solution: Multipurpose Internet Mail Extension (RFC 1521)
= Key idea: associate a content descriptor to each

content
Helper applications
» GIF | GIF viewer
Content type:
iImage/GIF
resource resource

G.Bianchi, G.Neglia, V.Mancuso degi ’[ugi aPalermo



HTTP content management

= Content-Type - sent by server
= MIME-like field, specifying the media-type.
= Format: type/subtype

= media type values registered in IANA (Internet Assigned Numbers
Authority).

= Content-Type: text/html
—>with optional charset parameter: default 1ISO-8859-1;
= Content-Type: image/jpeg
= nasty one: multipart/mixed
= Content-Encoding - sent by either

= selects an encoding (data compression scheme) for the transport, not the
content

= Content-Encoding: x-gzip (X-compress)
= resource typically stored with this coding, and is decoded before rendering
= sadly, no common support for encodings (Windows)

Um}‘e;%_

G.Bianchi, G.Neglia, V.Mancuso



Even a man can do it!

= telnet www.tti.unipa.it

= correct: telnet www.tti.unipa.it
80

= GET /index.html HTTP/1.0
=> (blank line)

G.Bianchi, G.Neglia, V.Mancuso



