Lecture 2-ter.

A communication example
Managing a HTTP v1.0 connection

Universi
G.Bianchi, G.Neglia, V.Mancuso deg

Managing a HTTP request

User digits URL and press return (or clicks...).
What happens (HTTP 1.0):

1. Browser opens a TCP transport session with server

2. Within this transport session, Client sends HTTP
request and receives HTTP response

3. Once finished HTTP message exchange, Server closes
transport session

4. Client parses page, and iterates the above process for
additional requested objects within the page

Universitéa
G.Bianchi, G.Neglia, V.Mancuso degh Stu

Step 1 - opening transport
session: client side, step a

CLIENT DNS SERVER
Browser
http:/ IP: 151.100.37.2
cerbero.elet.polimi.it/
people/bianchi/ DNS .
research.html SEIVEl | IS==
Socket, =z
UDP port 53
151.100.37.9 DNS server has a socket
{o accept new requests,

the socket corresponds to
the well known UDP port 53

(a listen port)
b St giPalermo

EE
Qv
e

G.Bianchi, G.Neglia, V.Mancuso

Step 1 - opening transport
session: client side, step a

CLIENT
Browser
http://
cerbero.elet.polimi.it/
people/bianchi/
research.html

Socket

DNS SERVER

IP: 151.100.37.2

UDP Port

53561

151.100.37.9

Socket,
UDP port 53

Browser asks DNS client to resolve cerbero.elet.polimi.it
DNS client opens a UDP socket, Port # is given by OS

G.Bianchi, G.Neglia, V.Mancuso

Unna«%_

Step 1 - opening transport
session: client side, step a

CLIENT
Browser DNS SERVER
http://
cerbero.elet.polimi.it/ IP: 151.100.37.2
people/bianchi/
research.html Fo—— DNS | | E]
UDP Rort SEIVEr | =
251 DNS client asks server u§§C§§f£ 53
151.100.37.9 to resolve location
cerbero.elet.polimi.it ‘

Uses UDP packet
SRC <151.100.37.9,port=53561>, DEST <151.100.37.2, port 53>

> ‘ S ’lh"

- . o

Univer
deg)

t\- S
G.Bianchi, G.Neglia, V.Mancuso ! mg‘ gPalermo

Step 1 - opening transport
session: client side, step a

CLIENT
Browser DNS SERVER
http://
cerbero.elet.polimi.it/ IP: 151.100.37.2
people/bianchi/
research.html F—— DNS | | E]
UDP Rort SEIVver | Do
Socket, =
23241 UDP port 53
S DNS server responds

with [P address 131.175.15.1

Uses UDP packet
SRC <151.100.37.2, port 53>, DEST <151.100.37.9,port=53561>

> ‘ S ’lh"

- . o

Univer
deg)

t\- S
G.Bianchi, G.Neglia, V.Mancuso ! mg‘ gPalermo

Step 1 - opening transport
session: client side, step a

CLIENT
Browser
http://
cerbero.elet.polimi.it/
people/bianchi/
research.html

5

DNS SERVER

IP: 151.100.37.2

i

151.100.37.9

Socket,
UDP port 53

DNS solver gives the answer and closes the UDP socket

G.Bianchi, G.Neglia, V.Mancuso

Unl'g;%_

Step 1 - opening transport
session: client side, step b

CLIENT
Browser
htpil IP: 131.175.21.1
cerbero.elet.polimi.it/
people/bianchi/
research.html

TCP port 80

151.100.37.9 Web server has a socket
to accept new requests,
the socket corresponds to
the well known TCP port 80

(a I'Ste@gort)? el
G.Bianchi, G.Neglia, V.Mancuso glmpa]ermo

Step 1 - opening transport
session: client side, step b

CLIENT

Browser
http://
cerbero.elet.polimi.it/
people/bianchi/

research.ntmi"c 1

TCP Port
62356

151.100.37.9

local 151.100.37.9:62356
remote 131.175.21.1:80

IP: 131.175.21.1

The browser open a TCP socket towards <131.175.21.1,80>,
the sender port is given by the OS,

the socket is identified by the quintuple, it is a connection port

G.Bianchi, G.Neglia, V.Mancuso

Univer 13 &
degh Studh Palermo

Step 1 - opening transport
session: client side, step b

CLIENT
Browser
http://
cerbero.elet.polimi.it/
people/bianchi/

research.ntmi" 1

TCP Port
623b6

151.100.37.9

local 151.100.37.9:62356
remote 131.175.21.1:80

IP: 131.175.21.1

TCP port 80

|

Browser sends TCP conn reg
to server 131.175.21.1 port 80

G.Bianchi, G.Neglia, V.Mancuso

TCP connection

<151.100.37.9, 2345>,<131.175.21.1,80>

Uniyersi
3 #Palermo

opening transport session:
server side

= httpd (http daemon) process listens for arrival of
connection requests from port 80.

= Upon connection request arrival, server decides
whether to accept it, and send back a TCP
connection accept

=This opens a TCP connection, uniquely identified by
client address+port and server address+port 80

G.Bianchi, G.Neglia, V.Mancuso degi S’mgi aPalermo

Step 1 - opening transport
session: server side, step b

CLIENT

Browser
http://
cerbero.elet.polimi.it/
people/bianchi/

research.htm

{\--prf

623

TCP gort

D6

151.100.37.9

G.Bianchi, G.Neglia, V.Mancuso

local 131.175.21.1:80
remote 151.100.37.9:62356

IP: 131.175.21.1

If the server accepts, it creates a new
connection socket, dedicated to this
connection and identified by the quintefe,

Unna«%_

Step 1 - opening transport
session: server side, step b

Web
server

local 131.175.21.1:80
remote 151.100.37.9:62356

TCP software
8l 5 2 o

local 131.175.21.1: 80

All the packets to the web server are addressed to 131.175.21.1:80
The transport payload is delivered to a specific connection socket, if
any (e.g. when they come from 151.100.37.9:62356),

otherwise they are delivered to the listen port (but they have to be
connection requests)

Univer
deg

t\- AR
G.Bianchi, G.Neglia, V.Mancuso ! mg‘ gPalermo

Remark

=>1In all this described operation,
clients NEED to have an IP
address....

=>Although obvious, this is not
“automatic”
—>does your home PC have an IP address?
->And your laptop??
->And your WAP GSM??7?

G.Bianchi, G.Neglia, V.Mancuso

Step 2: talking HTTP

http://cerbero.elet.polimi.i1t/people/bianchi/research.html

=>Simplest http command: GET

=client request:
GET /people/bianchi/research.ntml HTTP/1.0

= Server response
—>status line (basic information)
—>headers (additional information);
—>blank line (nothing before CRLF)
—>requested page

more complex commands available

Univer
deg

t\- S
G.Bianchi, G.Neglia, V.Mancuso ! mg‘ gPalermo

App. message deliver over TCP

(after TCP connection has been opened)

browser

Socket mylocalsocket =
new Socket(“cerbero.elet.polimi.it”, 80)

Operating system

Network interface

G.Bianchi, G.Neglia, V.Mancuso

Prepares ASCII request message
GET /people/bianchi/research.ntml HTTP/1.0

- A ==
Sends into output stream of opened socket

—1 L

TCP breaks message into TCP segments, each with
destination port, sequence number, and checksum

TCP hands segment to IP with dst address (not port)
*|IP adds dst address to segment, to form IP datagram

*[P hands datagram to network access protocol, with
address of intermediate router on the same network

*Network access protocol adds information for
transportation over subnetwork & sends packet to
intermediate router or host

(B ‘ i
LN

Universita 2
deghi Smgi aPalerm

Step 3: closing TCP conn

=>Server controls delivery of full
page
=>and closes TCP connection when

it is sure all the page has been
received by client

G.Bianchi, G.Neglia, V.Mancuso

Step 4: further objects

=> Client parses page

=>if additional objects

required (pages, images, on
the same server or on different
servers):

= for each, open new TCP
connection

= and repeat described operation

This operation creates significant
performance drawbacks!

Is typical of HTTP/1.0 without
Keep Alive

pipelining considered in HTTP/1.1

G.Bianchi, G.Neglia, V.Mancuso

TCP level analysis

User Server

TCF zyn

TCP syn+ack .ﬁ

TCF ack 7
HTTF get file

file rec™d

TCF DATA

