Lecture 2-bis.

Internet Transport Protocols

As seen by the application developer point of view

The primary (in principle unique) role of Internet transport protocols

- → Extend IP's delivery service (between two end systems) to a deliver service between two APPLICATION PROCESSES running on the end systems
- → MAPPING to OSI language:
 - ⇒ Port number = TSAP (Transport Service Access Point)
 - ⇒ IP address = NSAP (Network Service Access Point)

Transport Layer Protocols

Entire network seen as a pipe

The Internet level view

Information units travelling in the network: IP packets

Where are port numbers?

Transport Control Protocol (TCP)Connection oriented

⇒TCP connections

→ reliable transfer service.

\rightarrow TCP functions

 \rightarrow application addressing (ports)

 \rightarrow error recovery (acks and retransmission)

 \rightarrow reordering (sequence numbers)

 \rightarrow flow control

Services Provided by TCP

⇒Connection-oriented service: preliminary handshaking procedure creates a full duplex TCP connection

⇒Reliable transport service: communicating processes can rely on TCP to deliver all the messages sent *without error and in the proper order*.

→TCP does not provide:

 ⇒ a minimum transmission rate guaranteed (sending rate is regulated by TCP congestion control)
 ⇒ any sort of delay guarantees (the World Wide Wait ...)

User Datagram Protocol (UDP) →Connectionless

⇒UDP packets

→offers unreliable transfer service (send and pray).

→UDP functions

 \rightarrow application addressing (ports)

 \rightarrow error checking

Services Provided by UDP

⇒connectionless (no handshaking)
 ⇒arbitrary sending rate service
 » no congestion control mechanism present

→UDP minimalist lightweight service model does not provide:

⇒any guarantee of reception, any guarantee of order
⇒any guarantee on delay

UDP

\rightarrow Connectionless

⇒UDP packets

→ unreliable transfer service

 \Rightarrow send and pray

→ UDP functions

 ⇒ application addressing (ports)
 ⇒ error checking

ТСР

→ connection oriented

 \Rightarrow TCP connections

→ reliable transfer service

⇒all bytes sent are recv

→TCP functions

- ⇒ application addressing (ports)
- ⇒error recovery (acks and retransmission)
- ⇒reordering (sequence numbers)
- ⇒flow control
- ⇒congestion control

Service Requirements

Application	Data Loss	Bandwidth	Time sensitive?
file transfer	no loss	elastic	no
electronic mail	no loss	elastic	no
Web documents	no loss	elastic	no
real-time audio/video		audio: few Kbps to 1Mbps video: 10's Kbps to 5 Mbps	yes: 100's of msec
stored audio/video		same as interactive audio/video	yes: few seconds
interactive games	loss- tolerant	few Kbps to 10's Kbps	yes: 100's msecs
financial applications	no loss	elastic	yes and no

Common Applications and related transport

Application	Application-layer protocol	Underlying Transport Protocol	
electronic mail	SMTP (RFC 821)	ТСР	
remote terminal access	Telnet (RTC 854)	ТСР	
Web	HTTP (RFC 2068)	ТСР	
file transfer	FTP (RFC 959)	ТСР	
remote file server	NFS	UDP or TCP	
streaming multimedia	Proprietary (e.g., Real Networks)	UDP or TCP	
Internet telephony	proprietary (e.g. Vocaltec)	typically UDP	

Sockets in Unix OSs

- →Just file descriptors (everything is a file in Unix!)
- → "stream sockets" using TCP
- → "datagram sockets" using UDP
- →Common I/O file functions: read(),
 write()
- >More powerful I/O functions: send(), receive()
- →Other specific function: socket(), bind(),
 connect(), listen(), accept()

The application developer view

- → the only mean for apps to send/receive messages is through sockets
- → "doors" that hide transportation infrastructure to processes
- → Very limited control on transport protocol (buffer sizing, variables)

Why it is trivial (!) to write networking apps?

→ Application software duties:

- ⇒ open socket (e.g. C, C++, JAVA function call, OS call, external library primitive)
- ⇒ Injects message in its own socket
- \Rightarrow being confident message is received on the other side

→ TCP software: in charge of managing segments!

- \Rightarrow reliable message transport when TCP used
- ⇒ Segmentation performed by TCP transmitter
- ⇒ Receive buffer necessary to ensure proper packet's order & reassembly

An open question

- Socket: OS interface between the application and the transport level
- →Ports: numbers in the transport header to identify the specific application
- \rightarrow Which is the relation?
- \rightarrow We focus on the server

A first hypothesis

→one-to-one mapping

socket port

Trivial refinement

→The socket is on a specific host, →i.e. port# has a local meaning

socket _____ (IP address,port #)

How to reach server socket: pair of IP Address and Port Number

→ (IP,port): a unique identification of an application layer service to which requests need to be sent
 → The first contact needs well known port #

Demultiplexing at receiver (1)

degli Studi di Palermo

Demultiplexing at receiver (2)

IP SW: checks IP packet; Sends to transport sw selects whether UDP or TCP Transport demux

legli Studi di Palermo

Does IP software know about transport protocol?

Remarks

→When opening socket, needs to specify which transport to use!

→ UDP port numbers are independent from TCP ones!

⇒ This means that TCP looks at TCP ports, while UDP looks at UDP ones

Normally (for pure convenience) port number = same meaning for TCP and UDP

⇒ if a well known service is offered by both TCP and UDP, the port number is the same

⇒ if a well known (low port number) service is offered for one protocol only, the corresponding port for the other protocol is generally unused

→ BUT possibly the same port number has different meaning for TCP and UDP....

⇒ Details in RFC1700 or http://www.iana.org/assignments/port-numbers

Consequence

- ➔ If two applications employ different protocols, they can employ the same port #
- → Mapping refinement
- socket _____ (protocol,IP addr., port #)

→ Is it enough? Not always

(TCP) Connections

identified by sockets at its ends

CLIENT

WEB SERVER

Studi _{di} Paler

Demultiplexing at receiver (3)

Information entering app Software (managed by app Developer)

Transport SW: checks segment; Sends to application sw based on IP addresses and Port numbers Application demux

IP SW: checks IP packet; Sends to transport sw selects whether UDP or TCP *Transport demux* wersitä degli Studi diPalermo

Conclusions

→A socket always identifies unique protocol and port Socket → (protocol,IP addr, port #) →It can identify also address and port of the remote application

socket (prot, src IP addr, src port, dest IP addr, dest port)

Conclusions

Protocol and port <u>can</u> identify a unique socket

socket (protocol,IP addr, port #)

Dut in general more information is required

socket ← (prot., src IP addr, src port, dest IP addr, dest port) <u>connection ports/sockets</u>

How to reach client socket another pair of IP Address and Port Number

\rightarrow The server needs to know:

⇒The host to which send a response

 \rightarrow src IP address

⇒The application software process at client side capable of correctly interpret the response

 \rightarrow src port #

→Generally client DOES NOT use a well known port

⇒It is not needed (the client starts talking)

⇒OS just assigns one available (Ephemeral ports)

Typical question: WHY every PC needs an IP address? More complex issue: HOW your home PC gets an IP address?

Port numbers

→ 16 bit address (0-65535)

→well known port numbers for common servers

⇒ FTP 20, TELNET 23, SMTP 25, HTTP 80, POP3 110, ... (full list: http://www.iana.org/assignments/port-numbers)

→number assignment

- ⇒0-1023 (system) well known ports: service contact ports assigned by IANA, on most systems they can only be used by system (or root) processes or by programs executed by privileged users.
- ⇒ 1024-49151 (user) registered ports: service contact ports listed by IANA, on most systems they can be used by ordinary user processes or programs executed by ordinary users.
- \Rightarrow 49152-65535 dynamic/private ports.

Last remark about terminology

Sometimes socket is considered synonym of the quintet: (prot., src IP addr, src port, dest IP addr, dest port)

