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Abstract

In urban scenes, many of the surfaces are planar and bounded by simple shapes. In a laser
scan of such a scene, these simple shapes can still be identified. We present a one-parameter
algorithm that can identify point sets on a plane for which a rectangle is a fitting boundary.
These rectangles have a guaranteed density: no large part of the rectangle is empty of points.
We prove that our algorithm identifies all angles for which a rectangle fits the point set of size
n in O(n logn) time. We experimentally evaluate our method on thirteen urban data sets.
We also compare the rectangles found by our algorithm to the α-shape as a surface boundary.

Figure 1: One of the regions used in the experiments. Each cluster has its own color and remaining
unclustered points are black. A detail of this scene is shown in Figure 6.

1 Introduction

Automatic reconstruction of 3D geometric models of the world is currently seeing an increase in
demand. Applications like navigation, serious games for training, and urban planning require very
large data sets to be processed into a detailed and accurate model. Because of the number and
size of the data sets and the constant changes to the scenes, the reconstruction process should be
automated as much as possible.

Some data sources are directly useful for reconstruction of urban scenes. Ground-based pho-
tographs are easily obtained and together with aerial photographs, a large region can quickly be
covered. However, while photographs are very suitable for finding the edges of structures, they are
less suitable for accurate positioning of the surfaces in the scene. By contrast, laser range scans
enable accurate positioning, but do not have high quality color information. In recent years, the
resolution of laser range scanners has improved drastically and currently a single aerial scanning
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pass can produce a dataset with a typical density of 50-100 data points per square meter [10].
Figure 1 shows the data in one of the regions used in the experiments with the data points colored
by surface. Some methods have successfully combined images and laser range scans [23], but to
allow applications where no images are available we use only laser range scans.

Because of the large number of planar surfaces in urban scenes and limited number of major
directions, many of the surface boundaries have sharp, straight edges and right angles. In the
urban data sets we use, rectangles are the most prevalent shapes, bounding about 35% of the
surfaces on average. Efficiently identifying these rectangles will solve a significant part of the
geometry reconstruction problem.

We present an efficient algorithm that can identify the point sets in a plane for which a
rectangular boundary fits well. We define “well fitting” in a one-parameter coverage criterion
that ensures a minimum local density across the whole rectangle. For each identified point set
in a plane the algorithm produces the range of rotation angles for which the rectangle fits the
point set. If some of the points are known to be outliers, the algorithm can also be used to
separate the remaining point set from these outliers. Experimental results show the quality of
the algorithm in identifying ‘rectangular’ point sets and when used as an intermediate step in the
overall reconstruction process. We leave identifying other shapes for future research.

1.1 Problem

We aim to find the clusters of points in a plane for which a rectangle is an appropriate boundary.
Intuitively, a rectangle would fit as a boundary if no large parts are empty, i.e. have a low local
density. We base a measure for this local density on the radius of an empty disk.

Definition 1. The δ-coverage region of a point set S in a plane is the union of disks in the plane
with radius δ and center c ∈ S. A polygon P is δ-covered by point set S if and only if it is inside
the δ-coverage region of S.

We choose the δ-coverage region to determine the correctness of a boundary, because it has a
clear geometric meaning. Apart from indicating the location of the point set, this structure can
also be seen as a way to handle any noise model under the assumption that the resulting error
is smaller than δ. The value of δ also has an intuitive geometric meaning, and the choice of δ is
tied to the resolution of the measurement device, as each disk inside the boundary should ideally
contain multiple data points.

It is straightforward to see that any rectangle bounding a point set must contain the convex
hull CH of the set. Therefore if the δ-coverage region does not contain CH, no rectangle bounding
the set can be δ-covered. If the δ-coverage region does contain CH, there is a buffer in which a
δ-covered rectangle may be placed. In the overall reconstruction process the different rectangles
should be connected along an edge. For this reason, we are not looking for an optimal rectangle,
but for the class of all δ-covered rectangles from which an appropriate rectangle can be selected.

Problem. Given a point set in the plane and a parameter δ indicating how well the rectangular
boundary should fit, identify the δ-covered rectangles that contain the point set.

1.2 Overview

After examining related work in Section 2, we present our algorithm in Section 3. The primary
application of our algorithm is identifying rectangles that fit the data, and the way this is achieved
is explained in Subsection 3.1. The algorithm scales well with the data size, which is proven in
Subsection 3.2. An extension of the algorithm to more general convex polygons is straightforward,
as shown in Subsection 3.3. In many reconstruction methods from laser range scans, vegetation
poses a significant problem. Our algorithm can easily be adapted to also separate the point set
from points scanned in vegetation once these have been classified as outliers, as presented in
Subsection 3.4. We present the setup and results of the experiments on the algorithm in Section 4.
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We evaluate these results in Section 5 and discuss the broader implications of the results in
Section 6.

Our key contributions are:

• A novel approach for automatic urban reconstruction as the creation of a geometric model
consisting of simple surfaces that fit the data. Compared to smooth surfaces our models are
simpler and handle inconsistency between data and model as noise. Compared to complete
building-model fitting, our paradigm is more general by allowing more building types.

• A new one-parameter algorithm that identifies clusters for which a rectangular boundary is
appropriate and all angles for which a rectangle fits well. The algorithm has a time efficiency
of O(n log n), where n is the size of the point set. Extensions of the algorithm that can handle
outliers and other shapes are given.

• An analysis of the parameter settings for which the algorithm works best on the urban data
sets provided. These same settings can be used in the α-shape [8], to which we compare our
results.

2 Related work

Geometry reconstruction from laser range scans can broadly be divided into interactive and auto-
matic methods. While interactive methods like SmartBoxes [14] greatly speed up manual recon-
struction, their reliance on a human operator makes them less appropriate for handling massive
datasets of cities within limited time.

Recent research into automatic geometry reconstruction from laser range scans has focused on
smooth surfaces [2, 11, 20]. A likely reason for using smooth surfaces is that traditionally most
high-density laser range scans were made using close range measurements of natural objects in a
controlled environment. The Stanford Bunny, Dragon, and Happy Buddha [18] are well known
examples of this type of objects.

Unlike these methods, we process urban scenes that mainly consist of surfaces that are part of
simple primitives like planes, spheres, and cylinders. The transitions between these surfaces are
not expected to be smooth and the points are not expected to be exactly on the surface due to
noise. Representing the surfaces as primitives has the additional advantage of greatly reducing
the disk space of the model. Another important consideration is that urban scenes can contain
a large number of outliers, generated by vegetation and a generally less controlled environment.
Usually, smooth surface reconstruction methods have difficulty identifying these artifacts and use
heuristics to solve this problem.

Related research in geosciences has focused on fitting models of complete buildings to laser
range data [4, 17] or extruding roof planes vertically up from the ground [24]. This has the
advantage that the methods are still able to reconstruct the scene from very sparse data if the
possible shapes of the buildings are modeled a priori. However, this approach is limited by the
number and complexity of the different building models and is greatly influenced by vegetation.
Unlike these methods, we use dense data sets and reconstruct each individual surface. Combining
the surfaces will produce a geometric model equivalent to the predefined building models when
such a model fits the data. Additionally, our building shapes are not limited to a priori determined
models.

Some earlier methods for urban reconstruction classify data points into vegetation and build-
ings, and cluster the data set into a point set per surface [16, 20]. However, limited effort has been
invested in using these clusters to create an explicit geometric boundary for each surface. Schn-
abel et al. used the primitives to create an implicit model of the scene and made it explicit using
marching cubes [15]. However, the output of marching cubes lacks the simplicity and elegance of
the primitive shape geometry.

Various methods have been proposed for creating the boundary of a set of unordered points
in the plane. These methods can broadly be divided into two groups. The first group, including
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methods like the crust [3] and γ-neighborhood graph [21], assumes all points lie on the boundary.
The second group, including the α-shape [8] and A-shape [13], assumes the boundary contains all
points within its interior.

Our problem is most related to the second group, because we want to identify a boundary
containing all points in its interior. The main difference between the α-shape and A-shape is that
the α-shape determines the interior region based on a local density criterion, while the A-shape
determines the interior region based on a second point set that is completely exterior. Because
we also bound the interior based on a local density criterion, the boundary constructed by our
algorithm is compared to the α-shape in Section 4.2.

3 Rectangular boundaries

Our algorithm determines whether a cluster of points in a plane can be bounded by a rectangle
in such a way that the rectangle does not have a large region void of the points. The problem
of identifying all δ-covered rectangles can be reduced to identifying the angles of rotation for
which there is a δ-covered rectangle. All other δ-covered rectangles will have edges parallel to an
identified rectangle.

Because a δ-covered rectangle must lie within a buffer around the convex hull, at any given
angle we choose the minimal area bounding rectangle. Our algorithm can easily be adapted to find
other predefined convex shapes such as triangles, as shown in Subsection 3.3. We chose rectangles
because these occur most often in urban scenes. The algorithm may be adapted to identify non-
convex shapes with predefined angles, like L-shapes, but at the cost of a decreased efficiency and
simplicity.

The algorithm is presented in Subsection 3.1. Although roughly a third of the surfaces in our
urban scenes can be correctly bounded by a rectangle, confining the algorithm to rectangles is
somewhat restrictive. An extension to general convex shapes is given in Subsection 3.3.

Vegetation or scanning artifacts may cause points that are incorrectly included in a cluster,
called outliers. Handling outliers is an important part of processing real data. While most of
these points are removed by RANSAC during preprocessing, the remaining outliers may disrupt
our algorithm. With minor adjustments, our algorithm can force the rectangle to exclude outliers,
as described in Subsection 3.4.

For completeness we first explain the preprocessing step used to cluster the data. We also give
a short description of the α-shape, which is related to our δ-coverage region.

The input of our algorithm is a point set in a plane. As the laser range data sets consist
of unordered points in 3-space measured from multiple surfaces, some clustering has to be done
before passing the data to our algorithm. For this clustering, we use Efficient RANSAC proposed
by Schnabel et al. [16]. This algorithm can identify surfaces on different types of primitives, like
spheres and cones, but we restrict the search to planar surfaces.

Efficient RANSAC iteratively identifies the surface containing the largest connected component
of points. In each iteration, a random sample of three points defines a plane, and the support set
of this plane contains all points near the surface. This support set is divided into disconnected
components if the inter-component distance is too large. This process is re-iterated until the
probability of finding a larger connected component is very small. This component is identified
as a cluster, its points are removed from the unclustered point set, and the process continues
until no cluster of sufficient size is found. The algorithm results in a collection of primitives with
supporting point clusters. Different clusters either support a different primitive, or are far apart.

While filling the support set of a cluster, the process also identifies points measured from
vegetation. This is done by fitting a plane to each point’s nearest neighbors and comparing this
plane to the cluster’s local surface. This algorithm can efficiently cluster the data into sets likely
to originate from the same surface, while at the same time identifying and removing points that
are probably measured from vegetation. This means the effects of both noise and outliers are
mitigated. More details on Efficient RANSAC are provided in [16], including its usage to identify
and remove points in vegetation. Note that identifying a surface for each cluster and projecting
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Figure 2: The different structures used during our algorithm and the extrema of the range of
allowed rectangles. The blue points were sampled uniformly in a unit square. The δ-coverage
region, with δ = 0.1, is bounded by the red arcs, the trajectory region is bounded by the blue arcs.
The grey regions show where the rectangle is outside the δ-coverage region. The blue rectangles
show the rotations for which the rectangle starts and stops being δ-covered and the two events
that caused this are emphasized by a black circle.

the noisy points onto this surface reduces the problem of determining a rectangular boundary to
2D.

The structure used by our method to determine if a rectangle is δ-covered is related to the
2-dimensional α-shape [8]. The α-shape of a point set is the collection of edges between two points
that share the boundary of an empty disk with radius α. This collection of edges is a subset of the
edges in the Delaunay triangulation of the point set, and the collection bounds an interior region
that equals the union of Delaunay triangles with a circumcircle of radius at most α. Note that any
triangle in the Delaunay triangulation is δ-covered if it has a circumcircle with radius at most δ.
This is exactly the interior region of the α-shape if α = δ. The difference between the δ-coverage
region and the α-shape, with α = δ, is covered by the union of disks with radius δ centered on
the vertices of the α-shape. Two of these disks share a vertex in this union if their centers share
an edge in the α-shape.

3.1 Algorithm

Our rectangular boundary algorithm borrows ideas from the rotating calipers algorithm [19].
However, we use a rectangle R instead of the traditional parallel lines. We rotate R around
point set S as tightly as possible and handle important events when they occur, like in sweep-line
algorithms [7].

A rectangle is only allowed if it is δ-covered. An event occurs at a rotation where the coverage
of the rectangle changes structurally. To determine at which angle this happens two structures are
introduced: the δ-coverage region, and the trajectory of the corners of R, as shown in Figure 2.
The events can be determined from the combination of these structures.

The δ-coverage region Uδ is the maximal region that is δ-covered by S. It is the union of all
δ-disks centered on a point in S, as shown by the red arcs in Figure 2. To satisfy the δ-coverage
criterion, R must be completely inside Uδ. If part of CH is not in Uδ, then no bounding rectangle
exists that is δ-covered. Conversely, if CH ⊆ Uδ, then Uδ has only one connected component.

The trajectory region T is the union of minimal bounding rectangles over all rotation angles, as
shown by the blue arcs in Figure 2. During rotation all corners of the minimal bounding rectangle
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remain on the boundary of this region. This concept has previously been used by Hoffmann et
al. [9]. The algorithm can be adjusted to find convex shapes other than rectangles, as shown in
Subsection 3.3. This only requires changing T : the new structure can be found by rotating each
corner around the point set and applying Thales’ theorem.

There are two ways in which R can start and stop being inside the δ-coverage region. Either
during rotation an edge of R passes over a vertex of Uδ: the upper event in Figure 2, or a corner
of R crosses the boundary of Uδ: the lower event in Figure 2. For a vertex of Uδ to be inside
the rectangle at some rotation angle, it is necessary and sufficient to be inside T . Each of these
vertices produces two events: when it enters and when it leaves R. Because the corners of the
rectangle follow the boundary of T , a corner enters or leaves Uδ exactly at an intersection of the
boundaries of Uδ and T . Most of these intersections produce one event: the corner either enters or
leaves Uδ. However, some intersections produce two events if the boundaries of Uδ and T touch,
but do not intersect.

Both types of events are inserted into a queue sorted on the angle of rotation at which they
occur. After determining which vertices of Uδ are inside R and which corners of R are outside
Uδ before rotation, the events are handled sequentially. The algorithm keeps track of the number
of vertices of Uδ inside R and the number of corners of R outside Uδ. The angles at which R
becomes or stops being δ-covered are collected. In Figure 2, the points that caused these events
are emphasized by a black circle. When all events have been handled, all rotation angles for which
R is δ-covered are known. In Figure 2, the extrema of these ranges of angles are shown by blue
rectangles. The overall structure of our method is summarized in Algorithm 1.

Algorithm 1 Identifying δ-covered rectangles

Identify the range of angles of rotation for which the minimal bounding rectangle is δ-covered.

in P : the set of points in the plane that should be bounded.

out A: the set of angles for which the minimal bounding rectangle is δ-covered, or ∅ if there is
no such rectangle.

Construct CH
Construct Uδ
Construct CH \ Uδ
if CH \ Uδ 6= ∅ then

return ∅
end if
Construct T
Construct T \ Uδ
Identify events E from T \ Uδ
Sort events E
Handle events E in order to fill allowed angles A
return A

3.2 Efficiency

Our algorithm is based on the rotating calipers algorithm [19] and also has an asymptotic running
time of O(n log n), where n is the size of the point set. To prove this we will prove four parts:
constructing all necessary structures takes O(n log n) time, these structures generate O(n) events,
the angles at which the events occur can be computed in O(n log n) time, and each event can be
handled in O(1) time.

The structures used by the algorithm are the convex hull CH, the δ-coverage region Uδ, and
the trajectory region T . It is well known that CH can be constructed in O(n log n) time [7].
Uδ can be constructed directly from the α-shape, which can also be constructed in O(n log n)
time citeedelsbrunner1983. Both structures have O(n) vertices.
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c

w(c, θ)r

w(c, θ)l
r(c, θ)

Figure 3: Corner c during rotation, together with the wedge it defines, the two points w(c, θ)l and
w(c, θ)r on the corner’s edges, and the grey region r(c, θ) visible to c.

The terms used in the following lemmas and observations are shown in Figure 3. We will use
∂X to refer to the boundary of X. If CH \ Uδ 6= ∅ Observation 2 and Lemma 3 are incorrect,
but in this case the algorithm is terminated before computing T . Therefore, for these lemmas we
assume CH \ Uδ = ∅.

Lemma 1. At any rotation angle θ, the corner c of R defines a wedge w(c, θ) with c on its apex
and bounded by rays following edges of R; these rays touch CH at two points w(c, θ)l,w(c, θ)r.

Proof. This follows directly from the fact that we choose R as the bounding rectangle at each
rotation angle.

Lemma 2. T can be constructed from CH in O(n) time and contains O(n) vertices and circular
arcs.

Proof. Let c be a corner of R. It follows from Thales’ theorem that during rotation c follows the
smallest circumcircle of w(c, θ)l and w(c, θ)r, while w(c, θ)l and w(c, θ)r remain unchanged. A
new circular arc starts only when w(c, θ)l or w(c, θ)r changes, and this happens O(n) times. The
sequence of the O(n) arcs forms T .

Observation 1. Any wedge w(c, θ) contains a closed region r(c, θ) between c and CH, i.e. if CH
obstructs visibility, r(c, θ) is the part of w(c, θ) visible to c. Because the angle of c is fixed, there
is no rotation other than θ for which r(c, θ) contains c; otherwise the tangents of c with CH would
have an incorrect angle. Therefore, the open line segment between any point on ∂T and its closest
point on CH cannot intersect ∂T .

Observation 2. The circumcenter of each arc in ∂Uδ is on CH and no arc intersects CH. Therefore,
the open line segment between any point on ∂Uδ and its closest point on CH cannot intersect ∂Uδ.

There are two causes for events: a vertex of Uδ enters or leaves R, or a corner of R enters or
leaves Uδ. As stated earlier, Uδ has O(n) vertices.

Lemma 3. The corners of R enter and leave Uδ O(n) times.

Proof. This proof builds on the property that two piecewise simple functions with n curves have
O(n) intersections, which can be computed in O(n) time. By simple we mean that two such curves
can intersect each other only a constant number of times. We denote the boundary of X by ∂X.

To use this property, we must define two functions that have the same value at some argument
if and only if ∂Uδ and ∂T intersect. To create these functions, an extra structure is introduced
to parameterize these boundaries, and thereby give the argument to define the functions. We
will show that the functions created using this structure “detect” all intersections of ∂Uδ and ∂T ,
which completes the proof. The structures used for this proof are shown in Figure 4.

Let C be the boundary of the morphological opening, the dilation of the erosion, of the region
inside CH using an ε-disk. The radius ε > 0 is chosen such that for all vertices of Uδ and T that
are not on a vertex of CH, the closest point on CH is also on C. Note that C is only needed to
have a smooth boundary and thus a coherent definition of the normal direction.

Let C(t) be the point reached by following C from its topmost point for the fraction t of its
length, and let r(C(t)) be the outward ray emanating perpendicularly from C(t). Now ∂Uδ and
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g(t)

f(t)
C(t)

ε

r(t)

Figure 4: The structures used in Lemma 3 to prove ∂Uδ and ∂T intersect O(n) times. The radius
ε of the disk used to create C will in practice be much smaller than shown.

∂T define functions by taking f(t) = dist(C(t), r(C(t)) ∩ ∂Uδ) and g(t) = dist(C(t), r(C(t)) ∩ ∂T ).
These functions f(t) and g(t), are well-defined: for each t, r(C(t)) intersects ∂Uδ and ∂T exactly
once. This is true, because Observations 1 and 2 can be extended to C to give a one-to-one
relation between C and either one of ∂Uδ and ∂T , additionally this relation always connects points
on r(C(t)).

The properties of f(t) and g(t) ensure that each point on ∂Uδ and ∂T occurs for some t as the
intersection of r(C(t)) and ∂Uδ, respectively ∂T , and this is the only intersection point for that
ray. Hence, f(t) and g(t) have the property that a value of t for which f(t) = g(t) corresponds
one-to-one to an intersection point of ∂Uδ and ∂T . Since f(t) and g(t) are also piecewise simple,
∂Uδ and ∂T intersect O(n) times. As each corner of R is always on ∂T it enters or leaves Uδ at
these O(n) intersection points.

Lemma 4. Each vertex of Uδ and intersection of ∂Uδ and ∂T generates at most two events and
these can be computed in O(n log n) time.

Proof. The events either signify a vertex of Uδ entering of leaving R, called a vertex event, or a
corner of R entering or leaving Uδ, called a corner event. After rotating π

2 radians R coincides
with its initial position and further rotations need not be checked.

Each vertex of Uδ has two lines tangent to CH and the angles of these tangent lines modulo
π
2 are the angles of rotation at which the vertex could enter or leave R. This means each vertex
generates at most two vertex events.

Each point p where a corner passes over Uδ, also has two lines tangent to CH, but because p is
on the corner of a minimal bounding rectangle, the tangent lines make a right angle. However, a
corner may leave and re-enter Uδ at the same location. Therefore, any such point p generates at
most two events.

A tangent line and its angle can be computed from CH in O(log n) time by performing a binary
search on the vertices of CH. Because both Uδ and T \ Uδ have O(n) vertices, all tangent lines
can be computed in O(n log n) time.

Theorem 1. For a point set S of size n, and scalar δ, all angles θ ∈ [0, π2 ) for which there is a
δ-covered rectangle R at rotation angle θ can be computed in O(n log n) time.

Proof. Lemma 2, 3, and 4 prove that the rotation of a tight rectangle around S causes O(n)
events that can be generated in O(n log n) time. Sorting these events by angle takes O(n log n)
time. During rotation, after each event it is checked if the rectangle has become empty or non-
empty because of the vertex or corner that caused the event. This takes O(1) time per event.

3.3 Convex polygons

Our method can be adapted with minimal changes to a general convex k-gon with fixed angles
and stretchable edges, which we will refer to simply as a convex k-shape. We say two k-shapes
are equivalent if and only if each pair of edges with the same index in the clockwise sequence of
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edges starting at their top vertices have the same direction. Similar to the rectangle case, we only
compute the rotation angles for which the minimal area k-shape containing all points is δ-covered.

The δ-coverage region depends on the point distribution and so is the same for different shapes.
However, T depends on the angle of the corners of the k-shape. This can be handled by construct-
ing a separate trajectory region for each corner. Each corner specifies the angle of a wedge. This
wedge is rotated 2π radians independently to give the ranges of rotation angles for which that
corner is allowed. Finally, these ranges can be combined by correcting for the relative rotations of
the wedges in the k-shape. This produces the ranges for which all corners are allowed. We prove
that the allowed rotation angles of a convex k-shape can be computed in O(kn log(kn)) time in
Theorem 2.

Before proceeding to this proof, there is a degeneracy to consider: an edge of a k-shape can
shrink to length 0, causing corners to overlap and the angles to be taken together. We will prove
our algorithm can handle this degeneracy, because an edge will only ever have length 0 if it contains
a vertex of CH. Note that this implies Observation 1 holds for all convex corners.

Lemma 5. For any minimal area convex k-shape P and any rotation angle of P, each edge
contains a vertex of CH.

Proof. By contradiction, assume there is an edge e of P that does not contain a vertex of CH.
Without loss of generality, we assume this edge is above CH. We can move e down by shortening
other edges, while keeping CH inside the k-shape, until e contains a vertex of CH. Because we
only shorten edges, the new k-shape is a subset of P, while having the same angles. This means
P is not the smallest area k-shape.

Theorem 2. Given a point set S of size n, scalar δ, and convex k-shape P, all angles θ ∈ [0, 2π)
for which there is a δ-covered k-shape equivalent to P rotated by θ radians can be computed in
O(kn log(kn)) time.

Proof. For each corner c of P, we rotate w(c, θ) around S independently and we identify the
rotations for which all r(c, θ) are δ-covered. Most of this proof is the same as the proof of Theorem 1
and we do not repeat this here. However, we do need to prove that for any convex corner c, Tc can
be computed in O(n log n) time, and Tc intersects Uδ O(n) times, thereby producing O(n) events.
To show this, we will prove Lemma 2 and 3 hold for convex k-shapes.

The proof of Lemma 2 is based on Thales’ theorem, which describes the trajectory of a corner
irrespective of angle. However, unlike the proof of Lemma 2, a convex corner follows a circumcircle
of w(c, θ)l and w(c, θ)r that is not necessarily the smallest. However, because Observation 1 holds
for any convex corner with fixed angle, no r(c, θ) can contain c, except at rotation θ. Therefore
Lemma 2 still holds.

Observation 1 shows the one-to-one relation between T and C used in the proof of Lemma 3
holds for corners with other angles. The remainder of the proof of Lemma 3 remains the same.

3.4 Outliers

The preprocessing done on the data set will correctly classify most points scanned in vegetation as
outliers and ignore them. However, some outliers may remain in the clusters. Common examples
are points from nearby surfaces that were misclustered, points measured through windows, and
solitary points with all their nearest neighbors in the cluster. These outliers can adversely affect
our algorithm by significantly changing the convex hull.

There are different methods for classifying outliers. Some methods for semi-automatic outlier
classification and removal in point data are given by Weyrich et al. [22]. They also explain
that these different methods are appropriate for different types of outliers. For this reason, they
leave the choice in method to be determined interactively. Because we are interested in automatic
reconstruction and because our method starts from pre-clustered data, we assume outlier detection
is done during pre-processing. We leave the choice of outlier detector to the user.

The algorithm presented in Subsection 3.1 provides an effective way to determine the angles for
which a rectangle fits a complete cluster. The algorithm can also be extended to handle outliers.
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Figure 5: The different structures used during our algorithm and the range of allowed angles.
The blue points were sampled uniformly in a unit square and the orange points are outliers. The
δ-coverage region, with δ = 0.2, is bounded by the red arcs, the trajectory region is bounded by
the blue arcs. The grey regions show where the rectangle is outside the δ-coverage region. The
blue rectangles show the rotations for which the rectangle starts and stops being δ-covered and
the events that caused this are emphasized by a black circle.

The way outliers are handled, depends on the definition of outlier and two different definitions
may be appropriate. Either (1) outliers are points that should not influence the reconstruction,
or (2) outliers are points that should be outside the boundary of a surface. Our algorithm can
handle outliers under definition 1 without needing an extension: removing these outliers from the
point set is sufficient to ignore them.

If outliers are points in the cluster that must be outside the rectangle, our algorithm can be
adapted to find the range of outlier-free, allowed angles. For these angles there is a rectangle
containing all inliers and no outliers that is also δ-covered by the inliers. Only one change needs
to be made to the algorithm to implement this extension, assuming the input points S are divided
into inliers SI and outliers SO. The algorithm is run normally, with SI taking the place of S and
with the points in SO treated as if they were vertices of Uδ. Figure 5 shows the structures and
range of rotation angles in the presence of outliers.

3.5 Implementation

We implemented the algorithm in C++ using the CGAL library [6] for most of the computations.
For most structures we used CGAL’s utility of lazy exact rational coordinates to speed up the
calculations. However, the intersection of two circular arcs cannot be expressed by rational coor-
dinates, while the coordinates need to be exact to correctly check if a vertex of Uδ is inside T . The
coordinates can be expressed exactly by using numbers with one root factor, e.g. x = a + b

√
c.

However, vectors and line segments, which play a crucial role in our algorithm, cannot use one-
root coordinates, because the plus and minus operations are not defined on one-root numbers, i.e.
(a + b

√
c) − (d + e

√
f) can only be expressed using one root if c = f . This problem is solved by

approximating the points by rational coordinates after constructing the structures. If the rectan-
gles must be computed exactly, it is also possible to use algebraic numbers, but this significantly
slows down computations.

To greatly reduce the number of points that have to be considered, we first use CGAL to
calculate the α-shape of the point set, using the same value for α as is set for δ. This may be
done, because all other structures need only a subset of the vertices in the α-shape to be computed.
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Figure 6: The surfaces do not have a globally consistent density. Specifically, vertical surfaces
have a lower density than the other surfaces. This is a detail of Figure 1.

The convex hull of the point set uses a subset of the α-shape irrespective of the value of α. The
trajectory region can be created from the convex hull using an adaptation of the rotating calipers
algorithm. The algorithm is modified to compute which pairs of points have tangent lines with
a right angle and where the corners of the rectangle are when the points on their incident edges
change.

The vertices and circular arcs of the δ-coverage region can be computed using boolean set-
operations. Experiments showed computing Uδ this way cost about 24 minutes, as compared to 2
minutes when constructing Uδ from the α-shape. The region has a circular arc around each vertex
v of the α-shape, with α = δ. The arc’s source and target are at distance δ from both v and its
adjacent vertices in the α-shape. We use CGAL’s boolean set-operations to check if the convex
hull is δ-covered and to compute the part of the trajectory region that is not δ-covered.

The events are sorted by angle to the positive x-axis. For two events with the same angle, an
event that makes the rectangle more δ-covered has precedence. This is because we define rectangles
for which the strict interior is inside the δ-coverage region as δ-covered. If the rectangle becomes
δ-covered at a certain angle and stops being δ-covered at the same angle, at this rotation angle
the rectangle is δ-covered.

4 Experiments

As can be seen in Figure 6, the aerial data sets do not have a globally consistent density. There are
many reasons for this difference in density, including occlusion, surface reflectiveness, measurement
angle, and the combination of different flight paths into one data set. In general, vertical surfaces
have a significantly lower density than horizontal and diagonal surfaces. For this reason separate
results are presented for vertical (sparse) and non-vertical (dense) surfaces. In the ground-based
data sets, the surface density fluctuates less, but because of the differences in the scanning device
the results from the ground-based data sets are also presented separately.

The experiments performed using the algorithm have two main goals. Firstly, we aim to find a
value of δ for which the algorithm can correctly identify which planes are rectangular. To quantify
this, we have manually classified thirteen data sets of different regions into rectangular and non-
rectangular surfaces and we compare the identification done by our algorithm to this manual
classification. Another way of determining the quality of the algorithm is from the produced
ranges of rotation angles. If many of the ranges are large, δ may very well have been chosen too
large for the data set.

Secondly, we aim to inspect whether the rectangles produced by our algorithm are useful
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for creating a closed geometric model of the world. This can be determined if the plane has
neighboring surfaces nearby. To create a closed geometric model incorporating both surfaces,
they should be connected along an edge of both boundaries. Therefore, a rectangle is probably a
correct boundary if the range of allowed angles includes the angle of the intersection lines with its
neighboring surfaces.

4.1 Data sets

We evaluated our algorithm using thirteen large laser range data sets of Rotterdam, Vlaardingen,
and Enschede in The Netherlands. The first six regions were scanned in Rotterdam using an aerial
laser scanner that complies with the specifications given in [10]. This data is the combination of
ten flights over one district and each data set is restricted to a range of x- and y-coordinates.
The other seven regions were scanned in Vlaardingen and Enschede using a ground-based laser
scanner. Because of the uneven density of these ground-based data sets, they were subsampled
using a 3D grid with 5 cm edge lengths. One random point per grid cell was kept. Note that no
benchmark data sets of urban scenes were available to compare our algorithm on.

As a pre-processing step, we applied the Efficient RANSAC algorithm [16] to cluster the point
data into planes. Because of the differences in the scanners, we used slightly different settings
for the aerial and ground-based data. In the aerial sets, we estimated the normal of a point
based on its 12 nearest neighbors; points within 6.5 cm of a plane are counted as support; the
point normals could deviate from the local surface normal by 20 degrees; the connected component
bitmap size was 25 cm; the minimal support set size was 250 points; and the maximum probability
of overlooking a better cluster was 0.001. In the ground based sets, points within 3.5 cm of a plane
are counted as support; the connected component bitmap size was 15 cm; all other settings were
the same. These parameters showed good clustering performance on the data set when compared
to other values.

4.2 Results

One of the regions of Rotterdam is shown in Figure 1 with its points colored by cluster. Figure 7
shows the rectangles that were identified in the same data set with δ set to 60 cm for the dense
surfaces and 125 cm for sparse surfaces. For each of the “rectangular” clusters, a range of bounding
rectangles is δ-covered and Figure 7 shows the extrema of these ranges and a rectangle that fits
well with the neighboring surfaces.

Figures 11 and 12 show the results in some more of our data sets. In these figures, the displayed
rectangles are chosen from the ranges of allowed rectangles. This choice is based mainly on the
neighboring surfaces. Note that in Figure 11 (center row, right image) the blue and turquoise
balconies are correctly estimated, even though their neighboring surface does not have any points
near the connecting edge.

Because a ground truth for our laser scans is absent, we have manually classified our data
sets into rectangular and non-rectangular planes. About 35% of the planes were classified as
rectangular. The remaining planes had various other shapes, like trapezia, L-shapes, etc. However,
no other shape was as prevalent as the rectangle. This percentage of rectangular planes is for our
data sets of European cities. We expect that the prevalence of rectangles in American cities is
even higher.

We test our algorithm on three criteria: correctness of identification, correctness of the bound-
ary, and correctness within the scene. We also compare our results to the α-shape. However, there
is no clear metric for this comparison, so they are compared visually. Figure 7 shows the data of
Figure 1 with identified rectangles.

For the correctness of identification, we compare our results to another classification. Because
there is no ground truth, we have manually classified which clusters are rectangular or not. Rect-
angles are the most prevalent shapes at 35% of the planes; the remainder has various other shapes,
like trapezia, L-shapes, etc. We cannot guarantee the correctness of the manual classification, but
it is interesting to analyze the differences in the results of the approaches. For convenience, we
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Figure 7: Identified rectangles, for δ = 60 cm for dense and 125 cm for sparse surfaces. Top: the
α-shape of each surface (grey outlines) and the extrema of the ranges of rectangles for surfaces
on which they are identified (blue outlines). Bottom: appropriate δ-covered rectangles: these
rectangles have an edge parallel to a neighboring surface.
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Figure 8: The percentage of aerial sparse (left), aerial dense (center), and ground-based (right)
clusters for which a rectangle was falsely identified or rejected at different δ values. The percentages
of correctly identified or rejected boundaries are not shown.

assume our manual classification is fully correct. Therefore our algorithm can err by producing
falsely identified (If ) and falsely rejected (Rf ) rectangles, as shown in Figure 8.

We determine the correctness of the boundary from the freedom we have in choosing its size
and rotation. A large freedom may indicate the value of δ is chosen too large for the data set.
We measure this freedom by the size of the angle ranges for which a rectangular boundary is
allowed. Smaller ranges indicate there is less leeway in choosing a rectangle for the point set and
for some small δ the point set can no longer correctly be bounded by a rectangle. On the other
hand, larger ranges indicate there is more freedom in choosing a rectangle and for some large δ all
minimum bounding rectangles are δ-covered by the point set. The means of these sizes are shown
in Figure 9. Although not shown, the standard deviations of these ranges have about the same
value as their mean. This large variation may be caused by the large difference in density and size
of the rectangles.

The correctness within the scene expresses whether boundary fits in the scene. Any boundary
fits within the scene, if it can be connected to its neighbors along its edges. In our case, there
should be a rectangle with an edge parallel to a neighbor. All sparse and 67% of the dense and
ground-based rectangles have a neighbor; roughly 80% of these has an edge parallel to at least
one of these neighbors, as shown in Table 1. These results were obtained at δ = 60 cm for dense
surfaces, 125 cm for sparse surfaces, and 40 cm for the ground-based data. Once the correctness
of an intersection line is determined, it is straightforward to align the rectangle to its neighboring
surface.

Most related methods in 2D shape reconstruction require different input and output, as de-
scribed in Section 2. They usually produce one shape with all edges between data points. In
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Figure 9: The mean range of allowed rotation angles for aerial sparse (left), aerial dense (center),
and ground-based (right) clusters for which a rectangle was correctly or incorrectly identified at
different δ values.

Dense Sparse Ground
Correct identifications 89.167% 92.105% 72.464%

Incorrect identifications 68.421% 46.154% 41.667%

Table 1: The percentage of rectangular surfaces with a nearby neighbor that contain the angle of
the intersection line with one of these neighbors in the range of angles.

contrast, we produce all fitting rectangles. The efficiency of our algorithm given in Subsection 3.2
is at least as good as that of the methods presented in Section 2, and one could argue that the
related methods are more robust to outliers. Besides efficiency and robustness, our algorithm may
be compared to these other methods on their results. Because there is no metric that expresses
how well a boundary fits a cluster for 3D geometry reconstruction, we compare our results to the
2-dimensional α-shape by visual inspection. Figure 10 shows both the α-shape and the range of
δ-covered rectangles for some clusters.

4.3 Speed

The algorithm has been timed using thirteen real-world data sets of different regions. These sets
have an average of 147 planes, containing an average of 7432 points per surface, as shown in
Table 2. The average running time using one processor of a 64bit Core 2 Duo 3.0 GHz with 2GB
of RAM memory was 5.6 minutes per data set. The largest time investment was computing the
α-shape at 38% of the total time cost, followed by constructing the δ-coverage region at 21% of the
time cost. The relative times for some of the computations are shown in Table 3. The time cost
could be halved by making the algorithm multi-threaded. On the same computer, preprocessing

Figure 10: A few surfaces in the data set with an average of 2163 points per surface. The grey
outlines show the 2-dimensional α-shape of each cluster. The blue outlines show the extrema in
the range of δ-covered rectangles. The black dashed outline around the bottom cluster shows
another rectangle within the allowed range that nicely bounds the data. The lower edge of the
black rectangle is parallel to the cluster’s neighboring surface (not shown here).
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Aerial set |P | |S| S : µ|P | |Sd| Sd : µ|P | |Ss| Ss : µ|P |
1 1087158 137 5099.41 119 5568.79 18 1877.44
2 1327707 170 5343.84 148 5790.25 22 2340.68
3 1752129 150 9250.53 109 12001.45 41 1937.10
4 985160 73 10804.97 68 11494.54 5 1426.80
5 1776077 147 8916.46 118 10321.73 29 3198.48
6 1912999 241 6507.19 159 8946.23 82 1771.83

Total 8841230 918 7257.48 721 8671.27 197 2083.16

Ground set |P | |S| S : µ|P |
1 470771 86 3385.01
2 971637 167 3569.02
3 1166711 196 3615.04
4 1072442 190 3473.08
5 439726 105 2221.17
6 723115 178 2029.77
7 502920 69 5242.36

Total 5347322 991 3240.98

Table 2: The point distribution per region. |P | denotes the number of points per set. |S|, |Sd|,
and |Ss| denote the number of surfaces, dense surfaces, and sparse surfaces respectively. S : µ|P |
denotes the mean number of points per surface.

Aerial set 1 2 3 4 5 6 Total
α-shape 44.35% 41.60% 54.74% 53.32% 47.48% 42.70% 46.96%
CH 4.76% 4.69% 4.31% 4.83% 5.44% 4.80% 4.81%
Uδ 20.03% 18.83% 14.01% 14.04% 13.72% 17.18% 16.17%
T 3.58% 3.89% 2.08% 1.69% 2.36% 3.64% 2.94%
CH \ Uδ 7.95% 7.37% 6.12% 6.67% 7.37% 7.02% 7.03%
T \ Uδ 2.93% 3.07% 1.99% 1.72% 2.83% 3.69% 2.82%
Sort E 0.46% 0.47% 0.27% 0.25% 0.40% 0.59% 0.42%
Handle E 0.00% 0.00% 0.00% 0.01% 0.00% 0.00% 0.00%

Ground set 1 2 3 4 5 6 7 Total
α-shape 24.97% 29.42% 30.34% 28.48% 22.71% 21.41% 38.83% 28.08%
CH 5.68% 5.00% 4.01% 5.32% 4.91% 4.41% 4.77% 4.82%
Uδ 26.16% 25.75% 28.38% 24.42% 29.40% 30.29% 21.09% 26.58%
T 3.41% 4.22% 4.10% 4.06% 4.87% 5.42% 3.30% 4.21%
CH \ Uδ 9.09% 8.31% 7.71% 8.29% 8.90% 8.69% 7.38% 8.30%
T \ Uδ 3.98% 3.89% 3.71% 4.16% 3.87% 4.72% 3.23% 3.99%
Sort E 0.64% 0.65% 0.68% 0.67% 0.63% 0.81% 0.52% 0.67%
Handle E 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Table 3: Time investment for some subroutines. The first six rows show the time investment for
constructing the structures; the last two rows show time investment for sorting and handling the
events. The columns contain the data sets.

the data using RANSAC took roughly 15 minutes per data set.

5 Evaluation of results

The main application of our algorithm is to identify the clusters that should be bounded by a
rectangle, given a point set clustered per plane. Figure 8 shows that the value of δ has a large
influence on the number of planes for which a rectangular boundary is appropriate. Many of the
incorrect identifications are relatively small planes with a high density; many incorrect rejections
are clusters that contain a few points that should have been in another cluster.

At larger values of δ the algorithm produces rectangles that are δ-covered over larger ranges as
shown in Figure 9. The main usage of our algorithm is as a first step in the boundary reconstruction
process, before handling more complex shapes. Therefore, our algorithm should give few incorrect
rectangles while still bounding as many of the planes as possible. Furthermore, the algorithm
should produce a good indication for the orientation of the rectangles. Therefore, minimizing the
range of rotation angles for the correctly bounded planes is also an important factor. Taking these
criteria together, we selected δ at 125 cm, 60 cm, and 40 cm for the aerial sparse, aerial dense,
and ground-based surfaces respectively. Using this parameter setting, the average angle range of
the correct rectangles is about 10 degrees, while identifying 84% of the rectangular surfaces and
producing 15% incorrect identifications.

In the complete reconstruction process, the boundaries should be connected to neighboring
surfaces along their edges. Our algorithm produces a range of allowed angles, possibly including
the angle of intersection with a neighboring surface. In our data sets almost all sparse and about
two thirds of the dense surfaces have a nearby neighbor. Table 1 shows that roughly 80% of
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the correctly identified angle ranges contain the intersection with at least one neighbor. Visual
inspection shows that planes with multiple neighbors can usually be connected to all of these
neighbors.

Visual comparison with α-shapes leads to the following observations, shown in Figure 10. It
is clear from the figure that the clusters should be bounded by a rectangular shape. Unlike the
α-shape, the corners of the rectangles need not lie on a point in the cluster. Furthermore, a
rectangle is a much simpler boundary shape: it has four edges compared to the hundreds of edges
the α-shapes have. When these surface boundaries are used to reconstruct the scene, they should
connect to neighboring planes along straight edges. Connecting two boundaries with long straight
edges is easier than connecting two α-shapes, because laser scan points are rarely located exactly
on the intersection line. Finally, many of the applications that use geometric reconstruction
are web-based. Because sending large data sets through the internet can be slow, more concise
representations such as rectangles are preferred.

6 Concluding remarks

We presented a one-parameter algorithm that computes all rectangles that tightly cover a point
set in the plane while not containing a part that is too far away from any point. An extension
of this algorithm can also handle outliers, points that must remain outside the rectangle. The
algorithm is efficient and relatively simple to implement.

We performed a number of experiments with the algorithm on a number of urban data sets.
These experiments show there are parameter settings for which sparse and dense planes can be
handled properly. When using this parameter setting, there is usually an angle of rotation within
the range of δ-covered rectangles for which the rectangle can be connected with the neighboring
surfaces along an edge.

Even though there are parameter settings that either minimize incorrectly identified or rejected
rectangles, no setting can minimize both, as shown in Figure 8. This is most likely caused by the
differences in sampling density of the different surfaces and remaining outliers near the clusters.

A number of extensions may be considered that will make the algorithm more robust to in-
correctly clustered point sets. We may automatically compute the appropriate δ value for each
surface, possibly based on some density measure. This should greatly reduce the number of errors
in the results (both incorrect identifications and rejections), while at the same time removing the
need to tweak the parameters for a specific data set. We could even allow different values of δ
within the same cluster and change the coverage region accordingly, comparable to a weighted
α-shape [1]. However, computing the appropriate value for δ without greatly increasing the com-
putation time is a difficult problem that has been previously studied for the α-shape [5, 12]. A
method of automatically computing α for the α-shape will probably work for our algorithm with-
out change, because we only use δ for computing the δ-coverage region; the remainder of the
algorithm is independent of δ and instead uses the geometry of the δ-coverage region.

We may include a classifier in the preprocessing that identifies remaining outliers in the clus-
ter. We expect this will greatly reduce the amount of incorrect rejections for smaller values of
δ. However, different classifiers produce different results and an extensive analysis should iden-
tify the classifier most suited to our method and data. Weyrich et al. [22] present three outlier
removal methods for interactive point set processing and these methods may also be incorporated
in automatic reconstruction.

We may allow a small part of the rectangle to be non δ-covered. Due to minor occlusion, it
may be that some points are missing in a region. While ignoring holes in the δ-coverage region is
a straightforward solution, this does not solve the problem for sparse regions near the border of
the cluster. It seems possible to incorporate this extension using an approximation version.

We may allow a small number of the points to be outside the rectangle. This extension appears
considerably harder, and we do not expect to achieve the same running time in this case. Splitting a
point set into multiple rectangular clusters may seem like a viable way to handle various rectilinear
shapes. However, this procedure suffers from the same problems as allowing some points outside:
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determining which points should be selected as inliers for a rectangle is a difficult problem.
It would be useful to extend the algorithm to finding different shapes than rectangles, like

L-shapes, without complicating the algorithm too much. An extension to convex polygons with
fixed corner angles is achieved by changing the trajectory region and handling the events for each
corner separately, as shown in Subsection 3.3. Non-convex polygons pose more difficult problems.

While we have visually compared our results to the α-shape, it may be interesting to develop
a metric that expresses how well a boundary fits a cluster for 3D geometry reconstruction. This
quality of fit measure should award boundaries that fit with the available neighboring surfaces,
and punish boundaries that are more jagged than necessary. Using this metric, we can quantify
comparisons between our results and the α-shape or other shapes.
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Figure 11: Some examples of our aerial data sets. The left figures show the point data colored
by cluster; Points that could not be assigned to a cluster are shown transparent black. The right
figures emphasize the rectangular surfaces. All rectangles shown are δ-covered. If there is a δ-
covered rectangle that fits the intersection with a neighboring surface, this rectangle is shown.
Otherwise, rectangles with a horizontal edge are preferred; if there is no δ-covered rectangle with
a horizontal edge, an arbitrary δ-covered rectangle is shown. For these examples, δ is set to 60 cm
for dense surfaces and 125 cm for sparse surfaces.
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Figure 12: Some examples of our ground-based data sets. The left figures show the point data
colored by cluster; Points that could not be assigned to a cluster are shown transparent black. The
right figures emphasize the rectangular surfaces. All rectangles shown are δ-covered. If there is a
δ-covered rectangle that fits the intersection with a neighboring surface, this rectangle is shown.
Otherwise, rectangles with a horizontal edge are preferred; if there is no δ-covered rectangle with
a horizontal edge, an arbitrary δ-covered rectangle is shown. For these examples, δ is set to 40
cm.
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