
Identifying rectangles in laser range data for urban scene reconstruction

Thijs van Lankvelda,∗, Marc van Krevelda, Remco Veltkampa

aUtrecht University, Department of Information and Computing Sciences, Princetonplein 5, 3584CC, Utrecht, The Netherlands

Abstract

In urban scenes, many of the surfaces are planar and bounded by simple shapes. In a laser scan of such a scene, these
simple shapes can still be identified. We present a one-parameter algorithm that can identify point sets on a plane for
which a rectangle is a fitting boundary. These rectangles have a guaranteed density: no large part of the rectangle is
empty of points. We prove that our algorithm identifies all angles for which a rectangle fits the point set of size n in
O(n log n) time. We evaluate our method experimentally on thirteen urban data sets and we compare the rectangles
found by our algorithm to the α-shape as a surface boundary.

1. Introduction

Automatic reconstruction of 3D geometric models is
currently seeing an increase in demand. Applications
like navigation, serious games for training, and urban
planning require detailed and accurate models of very
large data sets. Because of the size of the data sets and
the constant changes to the scenes, the reconstruction
process should be automated as much as possible.

Some data sources are directly useful for reconstruc-
tion of urban scenes. Photographs are easily obtained
and ground-based and aerial views can quickly cover a
large region. However, while photographs are very suit-
able for finding the edges of structures, they are less
suitable for accurate positioning of the surfaces in the
scene. By contrast, laser range scans enable accurate
positioning, but do not have high quality color data.

In recent years, the resolution of laser range scanners
has improved drastically and currently a single aerial
scanning pass can produce a dataset with a typical den-
sity of 50-100 data points per square meter [10]. Fig-
ure 1 shows the data in one of the regions used in our ex-
periments with the data points colored by surface. Some
methods have successfully combined images and laser
range scans [23], but to allow applications where no im-
ages are available we use only laser range scans.

Because there are many planar surfaces in urban
scenes and few major directions, many of the surface

∗Corresponding author
Email addresses: thijsvl@cs.uu.nl (Thijs van Lankveld),

marc@cs.uu.nl (Marc van Kreveld), Remco.Veltkamp@cs.uu.nl
(Remco Veltkamp)

Figure 1: One of the regions used in the experiments. Each cluster has
its own color and remaining unclustered points are black. A detail of
this scene is shown in Figure 4.

boundaries have sharp, straight edges and right angles.
In many urban data sets, rectangles are the most preva-
lent shapes, bounding 35% of the surfaces on average.
Efficiently identifying these rectangles will solve a sig-
nificant part of the geometry reconstruction problem.

We present an efficient algorithm that identifies the
planes for which a rectangular boundary fits the data.
We define “fitting” in a one-parameter coverage crite-
rion that ensures a minimum local density across the
whole rectangle. For each rectangular surface the al-
gorithm produces the range of rotation angles for which
a rectangle fits the point set. Experimental results show
the quality of the algorithm in identifying ‘rectangular’
point sets.

Preprint submitted to Elsevier March 25, 2011

1.1. Problem
We aim to find the clusters of points in a plane for

which a rectangle is the correct boundary. Intuitively, a
rectangle fits as a boundary if no large parts are empty,
i.e. have a low local density. We base a measure for this
local density on the radius of an empty disk.

Definition 1. The δ-coverage region of a point set S in
a plane is the union of disks in the plane with radius δ
and center c ∈ S . A polygon P is δ-covered by point set
S if and only if it is inside the δ-coverage region of S .

We use the δ-coverage region to determine the cor-
rectness of a boundary, because it has a clear geometric
meaning. Besides indicating the location of the point
set, this structure also is a way to handle any noise
model if we can expect an error less than δ. The value
of δ has another intuitive geometric meaning: the choice
of δ is tied to the resolution of the laser scanner, as each
disk inside the boundary should ideally contain multiple
data points.

Obviously, any rectangle bounding a point set must
contain the convex hull CH of the set. Therefore, if
the δ-coverage region does not contain CH , no rectan-
gle bounding the set can be δ-covered. If the δ-coverage
region does contain CH , there is a buffer in which a δ-
covered rectangle may be placed. When reconstructing
a complete scene the different rectangles should be con-
nected along an edge. Therefore, we don’t seek one op-
timal rectangle, but the class of all δ-covered rectangles
from which an appropriate rectangle can be selected.

1.2. Overview
After examining related work in Section 2, we present

our algorithm in Section 3. Our algorithm identifies
rectangles that fit the data, and the way this is achieved
is explained in Subsection 3.1. The algorithm scales
well with the data size, which is proven in Subsec-
tion 3.2. We present the setup and results of our exper-
iments in Section 4. We evaluate these results in Sec-
tion 5 and discuss the broader implications in Section 6.

Our key contributions are:

• A novel approach for automatic urban reconstruc-
tion as the creation of a geometric model consist-
ing of simple surfaces that fit the data. Our result-
ing geometry is simpler than smooth surfaces, and
our paradigm is more general than building-model
fitting, by allowing more building types.

• A new one-parameter algorithm that identifies
clusters for which a rectangular boundary is appro-
priate and all angles for which a rectangle fits well.

The algorithm has a time efficiency of O(n log n),
where n is the size of the point set.

• An analysis of the parameter settings for which the
algorithm works best. The same settings can be
used in the α-shape [8], to which we compare our
results.

2. Related work

Geometry reconstruction from laser range scans can
be divided into interactive and automatic methods.
While interactive methods like SmartBoxes [14] signif-
icantly speed up manual reconstruction, their reliance
on a human operator makes them less appropriate for
handling massive datasets within limited time.

Recent research into automatic geometry reconstruc-
tion from laser range scans has focused on smooth sur-
faces [2, 11, 20]. A likely reason for using smooth sur-
faces is that traditionally most high-density laser range
scans were made using close range measurements of
natural objects in a controlled environment. The Stan-
ford Bunny, Dragon, and Happy Buddha [18] are well
known examples of this type of objects.

Unlike these methods, we process urban scenes,
which mainly consist of surfaces that are part of sim-
ple primitives like planes, spheres, and cylinders. The
transitions between these surfaces are not expected to
be smooth and the points are not expected to be exactly
on the surface due to noise. Another important consid-
eration is that urban scenes can contain a large number
of outliers, generated by vegetation and a generally less
controlled environment. Usually, smooth surface recon-
struction methods have difficulty identifying these arti-
facts and use heuristics to solve this problem.

Related research in geosciences has focused on fitting
models of complete buildings to laser range data [4, 17]
or modeling only roof planes and vertical walls [24].
This way the scene can still be reconstructed from very
sparse data if the possible shapes of the buildings are
modeled a priori. However, this approach is limited by
the number and complexity of the building models and
is greatly influenced by vegetation. Unlike these meth-
ods, we use dense data sets and reconstruct each indi-
vidual surface. Combining the surfaces will produce a
geometric model equivalent to the predefined building
models when this fits the data. In other cases, our build-
ing shapes are not limited to models determined a priori.

Some earlier methods for urban reconstruction clas-
sify data points into vegetation and buildings, and clus-
ter the data set into a point set per surface [16, 20]. How-
ever, limited effort has been invested in creating an ex-

2

plicit geometric boundary for these clusters. Schnabel et
al. used the primitives to create an implicit model of the
scene and made it explicit using marching cubes [15].
However, marching cubes output lacks the simplicity
and elegance of the primitive shape geometry.

Various methods have been developed for computing
the boundary of a set of unordered points in the plane.
These methods can broadly be divided into two groups.
The first group, including methods like the crust [3] and
γ-neighborhood graph [22], assumes all points lie on the
boundary. The second group, including the α-shape [8]
and A-shape [13], assumes the boundary contains all
points within its interior. Our problem is most related
to the second group, and our results are compared to the
α-shape in Section 4.1.

3. Rectangular boundaries

Our algorithm determines whether a cluster of points
in a plane can be bounded by a rectangle that does not
have a large region void of the points. The problem of
identifying all δ-covered rectangles can be reduced to
identifying the angles of rotation for which there is a δ-
covered rectangle. All other δ-covered rectangles will
have edges parallel to an identified rectangle.

Because a δ-covered rectangle must lie within a buffer
around the convex hull, at any given angle we choose
the minimal area bounding rectangle. Our algorithm can
easily be adapted to find other predefined convex shapes
such as triangles, as shown in [21]. We chose rectangles
because these occur most often in urban scenes. The al-
gorithm may be adapted to identify non-convex shapes
with predefined angles, like L-shapes, but at the cost of
a decreased efficiency and simplicity.

The algorithm is presented in Subsection 3.1, but for
completeness we first explain the preprocessing step
used to cluster the data as well as the α-shape.

The input of our algorithm is a point set in a plane. As
the laser range data sets consist of unordered points in 3-
space measured from multiple surfaces, some clustering
has to be done before passing the data to our algorithm.
For this clustering, we use Efficient RANSAC proposed
by Schnabel et al. [16]. This algorithm can identify sur-
faces on different types of primitives, like spheres and
cones, but we restrict the search to planar surfaces.

Efficient RANSAC iteratively identifies the surface
containing the largest connected component of points.
In each iteration, a random sample of three points de-
fines a plane, and the support set of this plane contains
all points near the surface. This support set is divided
into disconnected components if the inter-component

distance is too large. This process is re-iterated until
the probability of finding a larger connected component
is very small. This component is identified as a cluster,
its points are removed from the unclustered point set,
and the process continues until no cluster of sufficient
size is found. The algorithm results in a collection of
primitives with supporting point clusters.

More details on Efficient RANSAC are provided
in [16], including its usage to identify and remove points
in vegetation. Note that identifying planar clusters and
projecting the noisy points onto these planes reduces the
problem of determining a rectangular boundary to 2D.

The structure used by our method to determine if a
rectangle is δ-covered is related to the 2-dimensional α-
shape [8]. The α-shape of a point set is the collection
of edges between two points that share the boundary of
an empty disk with radius α. This collection of edges
is a subset of the edges in the Delaunay triangulation of
the point set, and the collection bounds an interior re-
gion that equals the union of Delaunay triangles with a
circumcircle of radius at most α. Note that any trian-
gle in the Delaunay triangulation is δ-covered if it has a
circumcircle with radius at most δ. This is exactly the
interior region of the α-shape if α = δ. Additionally,
the δ-coverage region has a buffer around the α-shape,
which may contain a rectangular boundary.

3.1. Algorithm
Our rectangular boundary algorithm borrows ideas

from the rotating calipers algorithm [19]. However, we
use a rectangle R instead of the traditional parallel lines.
We rotate R around point set S as tightly as possible
and handle important events when they occur, like in
sweep-line algorithms [7]. These events can be deter-
mined from the combination of two structures: the δ-
coverage region, and the trajectory of the corners of R,
as shown in Figure 2.

The δ-coverage regionUδ is the maximal region that
is δ-covered by S . It is the union of all δ-disks centered
on a point in S , as shown by the red arcs in Figure 2. To
satisfy the δ-coverage criterion, R must be completely
insideUδ. If part of CH is not inUδ, then no bounding
rectangle exists that is δ-covered. Conversely, if CH ⊆
Uδ, thenUδ has only one connected component.

The trajectory region T is the union of minimal
bounding rectangles over all rotation angles, as shown
by the blue arcs in Figure 2. During rotation all cor-
ners of the minimal bounding rectangle remain on the
boundary of this region. This concept has previously
been used by Hoffmann et al. [9].

There are two ways for R to enter or exit the δ-
coverage region. Either during rotation an edge of R

3

Figure 2: The different structures used during our algorithm and the
extrema of the range of allowed rectangles. The blue points were
sampled uniformly in a unit square. The δ-coverage region, with δ =

0.1, is bounded by the red arcs, the trajectory region is bounded by the
blue arcs. The grey regions show where the rectangle is outside the
δ-coverage region. The blue rectangles show the rotations for which
the rectangle starts and stops being δ-covered and the two events that
caused this are emphasized by a black circle.

passes over a vertex ofUδ, or a corner of R crosses the
boundary of Uδ, shown by the upper and lower event
in Figure 2 respectively. Each vertex of Uδ will be in-
side the rectangle at some rotation angle, if and only if
it is inside T . Each vertex produces at most two events:
when it enters and when it leaves R. Because the cor-
ners of the rectangle follow the boundary of T , a corner
enters or leaves Uδ at an intersection of the boundaries
of Uδ and T . Most of these intersections produce one
event: the corner either enters or leavesUδ, but some in-
tersections produce two events if the boundaries of Uδ

and T touch, but do not intersect.
All events are inserted into a queue sorted on the an-

gle of rotation at which they occur. After determining
the situation before rotation, the events are handled se-
quentially. The algorithm keeps track of the number
of vertices of Uδ inside R and the number of corners
of R outside Uδ. The angles at which R becomes or
stops being δ-covered are collected. In Figure 2, these
points are emphasized by a black circle. When all events
have been handled, all rotation angles for which R is δ-
covered are known. In Figure 2, the extrema of these
angles are shown by blue rectangles.

Vegetation or scanning artifacts may cause points
that are incorrectly included in a cluster, called out-
liers. Handling outliers is an important part of process-

c

w(c, θ)r

w(c, θ)l
r(c, θ)

Figure 3: Corner c during rotation, together with the wedge it defines,
the two points w(c, θ)l and w(c, θ)r on the corner’s edges, and the grey
region r(c, θ) visible to c.

ing real data. While most of these points are removed by
RANSAC during preprocessing, the remaining outliers
may disrupt our algorithm. With minor adjustments, our
algorithm can force the rectangle to exclude outliers, as
described in our technical report [21].

3.2. Efficiency
Our algorithm is based on the rotating calipers al-

gorithm [19] and processes a point set of size n in
O(n log n) time. Proving this time bound requires four
parts: constructing the used structures takes O(n log n)
time, these structures generate O(n) events, the angles
at which the events occur can be computed in O(n log n)
time, and handling the events takes O(n) time.

The structures we use are the convex hull CH , the δ-
coverage region Uδ, and the trajectory region T . CH
can be constructed in O(n log n) time [7]. Uδ can
be directly constructed from the α-shape, which takes
O(n log n) time to construct [8]. Both structures have
O(n) vertices. The terms used in the following lemmas
and observations are shown in Figure 3. We use ∂X to
refer to the boundary of X. Omitted proofs can be found
in our technical report [21]

Lemma 1. At any rotation angle θ, the corner c of R
defines a wedge w(c, θ) with c on its apex and bounded
by rays following edges of R; these rays touch CH at
two points w(c, θ)l,w(c, θ)r.

Lemma 2. T can be constructed from CH in O(n) time
and contains O(n) vertices and circular arcs.

Proof sketch. Constructing T uses a variation of rotat-
ing calipers [19] with two orthogonal lines.

Observation 1. Any wedge w(c, θ) contains a closed re-
gion r(c, θ) between c and CH , i.e. if CH obstructs vis-
ibility, r(c, θ) is the part of w(c, θ) visible to c. Because
the angle of c is fixed, there is no rotation other than θ
for which r(c, θ) contains c; otherwise the tangents of
c with CH would have an incorrect angle. Therefore,
the open line segment between any point on ∂T and its
closest point on CH cannot intersect ∂T .

4

Observation 2. The circumcenter of each arc in ∂Uδ is
on CH and no arc intersects CH . Therefore, the open
line segment between any point on ∂Uδ and its closest
point on CH cannot intersect ∂Uδ.

There are two causes for events: a vertex ofUδ enters
or leaves R, or a corner of R enters or leaves Uδ. As
stated earlier,Uδ has O(n) vertices.

Lemma 3. The corners of R enter and leave Uδ O(n)
times.

Proof sketch. The proof uses the fact that two piecewise
simple functions with n curves have O(n) intersections.
By simple we mean that two such curves can intersect
each other only a constant number of times. We obtain
these functions by rotation around CH and recording
the distance toUδ and T . The complete proof is in our
technical report [21].

Lemma 4. Each vertex of Uδ and intersection of ∂Uδ

and ∂T generates at most two events and these can be
computed in O(n log n) time.

Proof sketch. Each vertex of Uδ and ∂Uδ ∩ ∂T can
cause events. Events occur when a line tangent to such a
vertex and CH contains an edge of the rectangle. Com-
puting these tangents takes O(n log n) time.

From the lemmas given above, we conclude:

Theorem 1. For a point set S of size n, and scalar δ,
all angles θ for which there is a δ-covered rectangle R
at rotated angle θ can be computed in O(n log n) time.

3.3. Implementation

We implemented the algorithm in C++ using the
CGAL library [6] for most of the computations. For
most structures we used CGAL’s utility of lazy exact
rational coordinates to speed up the calculations.

To greatly reduce the size of the involved point set,
we first calculate the α-shape, using the same value for
α as set for δ. This produces the same results, because
all structures can be computed using a subset of the ver-
tices of the α-shape. More details on the implementa-
tion can be found in our technical report [21].

4. Experiments

We evaluated our algorithm using thirteen dense ur-
ban laser range data sets. The first six sets were scanned
using an aerial laser scanner that complies with the
specifications given in [10]. This data is the combina-
tion of ten flights over one district and each data set

Figure 4: Vertical surfaces have a lower density than the other sur-
faces. This is a detail of Figure 1.

NN ∆d ∆n Cb |S| P (miss)
Aerial 12 6.5 cm 20◦ 25 cm 250 0.001
Ground 12 3.5 cm 20◦ 15 cm 250 0.001

Table 1: The settings for Efficient RANSAC: the number of near-
est neighbors for normal estimation (NN), the maximal deviation be-
tween plane and support in distance (∆d) and normal (∆n), the con-
nected component bitmap size (Cb), the minimal support set size (|S |),
and the probability of missing a better cluster (P(miss)).

is restricted to a range of x- and y-coordinates. The
other seven sets were scanned using a ground-based
laser scanner. Note that no benchmark data sets of urban
scenes are available to compare our algorithm on.

The data sets do not have a globally consistent den-
sity, as shown in Figure 4. This inconsistency has var-
ious causes, including occlusion, scanning angle, and
aggregating multiple scans. In aerial data, vertical sur-
faces have a significantly lower density than horizontal
and diagonal surfaces. In ground-based data, the den-
sity is very high near the scanner. We present separate
results for the aerial vertical (sparse) and non-vertical
(dense) data. We have subsampled the ground-based
data by overlaying a 3D grid with 5 cm edge lengths
and keeping one random point per grid cell.

As a pre-processing step, we applied the Efficient
RANSAC algorithm [16] to cluster the point data into
planes. The settings for aerial and ground based data
are shown in Table 1. These parameters showed good
clustering performance on the data set when compared
to other values. One data set is shown in Figure 1 with
its points colored by cluster.

4.1. Results

We test our algorithm on three criteria: correctness of
identification, correctness of the boundary, and correct-

5

Figure 5: Identified rectangles, for δ = 60 cm for dense and 125 cm for
sparse surfaces. Top: the α-shape of each surface (grey outlines) and
the extrema of the ranges of rectangles for surfaces on which they are
identified (blue outlines). Bottom: appropriate δ-covered rectangles:
these rectangles have an edge parallel to a neighboring surface.

ness within the scene. We also compare our results to
the α-shape. However, there is no clear metric for this
comparison, so they are compared visually. Figure 5
shows the data of Figure 1 with identified rectangles.

For the correctness of identification, we compare our
results to another classification. Because there is no
ground truth, we have manually determined classifica-
tion CM of which clusters are rectangular or not. Rect-
angles are the most prevalent shapes at 35% of the
planes; the remainder has various other shapes, like
trapezia, L-shapes, etc. We cannot guarantee the cor-
rectness of CM , but it is interesting to analyze the differ-
ences in the results of the approaches. For convenience,
we assume CM is fully correct. Therefore our algorithm
can err by producing falsely identified (I f) and falsely
rejected (R f) rectangles, as shown in Figure 7.

We determine the correctness of the boundary from
the freedom we have in choosing its size and rotation. A

Dense Sparse Ground
Correct identifications 89.167% 92.105% 72.464%

Incorrect identifications 68.421% 46.154% 41.667%

Table 2: The percentage of rectangular planes with a nearby neighbor
that have a boundary edge parallel to one of these neighbors; δ = 60
cm (dense), 125 cm (sparse), and 40 cm (ground-based).

Figure 6: Some clusters of about 2200 points each, with their α-shape
(grey outlines) and the extrema of the δ-covered rectangles (blue out-
lines). The black dashed outline in the bottom cluster shows another
allowed rectangle that nicely bounds the data.

large freedom may indicate the value of δ is chosen too
large for the data set. We measure this freedom by the
size of the angle ranges for which a rectangular bound-
ary is allowed. The means of these sizes are shown in
Figure 8.

The correctness within the scene expresses whether
boundary fits in the scene. Any boundary fits within
the scene, if it can be connected to its neighbors along
its edges. In our case, there should be a rectangle with
an edge parallel to a neighbor. All sparse and 67% of
the dense and ground-based rectangles have a neighbor;
roughly 80% of these has an edge parallel to at least one
of these neighbors, as shown in Table 2.

Most related methods in 2D shape reconstruction re-
quire different input and output, as described in Sec-
tion 2; they usually produce one shape with all edges
between data points. In contrast, we produce all fitting
rectangles. Figure 6 shows both the α-shape and the
range of δ-covered rectangles for some clusters.

4.2. Speed

The algorithm has been timed using thirteen real-
world data sets of different regions. These sets have an
average of 147 planes, containing an average of 7432
points per surface. The average running time using one
processor of a 64bit Core 2 Duo 3.0 GHz with 2GB
of RAM memory was 5.6 minutes per data set. The
largest time investment was computing the α-shape at
38% of the total time cost, followed by constructing
the δ-coverage region at 21% of the time cost. On the
same computer, preprocessing the data using Efficient
RANSAC took roughly 15 minutes per data set.

6

0.5 0.75 1 1.25 1.5 1.75 2
0

20

40

60

80

100

δ

P
er

ce
nt

ag
e

Incorrect rejections
Incorrect identifications

0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

δ

P
er

ce
nt

ag
e

Incorrect rejections
Incorrect identifications

0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

δ

P
er

ce
nt

ag
e

Incorrect rejections
Incorrect identifications

Figure 7: The percentage of aerial sparse (left), aerial dense (center), and ground-based (right) clusters for which a rectangle was falsely identified
or rejected at different δ values. The percentages of correctly identified or rejected boundaries are not shown.

0.5 0.75 1 1.25 1.5 1.75 2
0

5

10

15

20

25

δ

D
eg

re
es

All
Correct identifications
Incorrect identifications

0.5 0.6 0.7 0.8 0.9 1
4

6

8

10

12

14

16

18

δ

D
eg

re
es

All
Correct identifications
Incorrect identifications

0.2 0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

δ

D
eg

re
es

All
Correct identifications
Incorrect identifications

Figure 8: The mean range of allowed rotation angles for aerial sparse (left), aerial dense (center), and ground-based (right) clusters for which a
rectangle was identified correctly or incorrectly at different δ values. Although not shown, the ranges vary widely at one δ.

5. Evaluation of results

Figure 7 shows that the value of δ has a large influ-
ence on the number of planes for which a rectangular
boundary is appropriate. Many of the incorrect identifi-
cations are relatively small planes with a high density;
many incorrect rejections are clusters that contain a few
points that should have been in another cluster. Classi-
fying these points as outliers during preprocessing may
remove many of these incorrect rejections.

The ranges for which the rectangles are δ-covered
grow as δ increases, as shown in Figure 8. The main
usage of our algorithm is as a first step in the boundary
reconstruction process, before handling more complex
shapes. Therefore, our algorithm should give few in-
correct rectangles while still bounding as many of the
planes as possible. Furthermore, the algorithm should
produce a good indication for the orientation of the rect-
angles. Therefore, minimizing the range of rotation an-
gles for the correctly bounded planes is an important
factor. Taking these criteria together, we selected δ at
60 cm, 125 cm, and 40 cm for respectively the aerial
dense, aerial sparse, and ground-based surfaces. Using
this parameter setting, the average angle range of the
correct rectangles is about 10 degrees, while identify-
ing about 84% of the rectangular surfaces and produc-
ing about 15% incorrect identifications.

Visual comparison with α-shapes leads to the follow-

ing observations, shown in Figure 6. It is clear from the
figure that these clusters should be bounded by a rect-
angular shape. Rectangles are a much simpler bound-
ary shape: they have four edges compared to the hun-
dreds of edges of the α-shapes. When these boundaries
are used to reconstruct the scene, they should connect
to neighboring planes along straight edges. Connecting
two boundaries with long straight edges is easier than
two α-shapes, because laser scan points are rarely lo-
cated exactly on the intersection line.

6. Concluding remarks

We presented a one-parameter algorithm that com-
putes all rectangles that tightly cover a point set in the
plane while not containing a part that is too far away
from any point. The algorithm is efficient and relatively
simple to implement.

We performed a number of experiments with the al-
gorithm on a number of urban data sets. These ex-
periments show there are parameter settings for which
sparse and dense planes can be handled properly. When
using this parameter setting, there is usually an angle
of rotation within the range of δ-covered rectangles for
which the rectangle can be connected with the neigh-
boring surfaces along an edge.

Even though there are parameter settings that either
minimize incorrectly identified or rejected rectangles,

7

no setting can minimize both, as shown in Figure 7.
This is most likely caused by the differences in sampling
density of the different surfaces and remaining outliers
near the clusters.

A number of extensions may be considered that will
make the algorithm more robust. We may use a den-
sity measure to automatically compute the appropriate
δ value for each surface or surface region, similar to the
weighted α-shape [1, 5, 12]. This should remove the
need to tweak the parameters for a specific data set.

We may allow a small part of the rectangle to be non
δ-covered. Due to minor occlusion, it may be that some
points are missing in a region. While ignoring holes in
the δ-coverage region is a straightforward solution, this
does not solve the problems with sparse regions near the
border of the cluster. Similarly, we may allow a small
number of the points to be outside the rectangle.

It would be useful to extend the algorithm to finding
different shapes than rectangles, like L-shapes, without
complicating the algorithm too much. An extension to
convex polygons with fixed corner angles is achieved by
changing the trajectory region and handling the events
for each corner separately, as shown in [21]. Non-
convex polygons pose more difficult problems.

While we have visually compared our results to the α-
shape, it may be interesting to develop a metric that ex-
presses how well a boundary fits a cluster for 3D geom-
etry reconstruction. This quality of fit measure should
award boundaries that fit with the available neighboring
surfaces, and punish boundaries that are more jagged
than necessary. Using this metric, we can quantify com-
parisons between our results and the α-shape or other
shapes.

Acknowledgements

This research has been supported by the GATE
project, funded by the Netherlands Organization for Sci-
entific Research (NWO) and the Netherlands ICT Re-
search and Innovation Authority (ICT Regie). We thank
Ron Wein and Efi Fogel for their help concerning the
CGAL boolean set-operations library.

[1] Akkiraju, N., Edelsbrunner, H., Facello, M., Fu, P., Mücke,
E. P., Varela, C., 1995. Alpha shapes: definition and software.
In: Proc. 1st Int. Comp. Geom. Software Workshop. pp. 63–66.

[2] Alliez, P., Cohen-Steiner, D., Tong, Y., Desbrun, M., 2007.
Voronoi-based variational reconstruction of unoriented point
sets. In: Proc. SGP ’07. pp. 39–48.

[3] Amenta, N., Choi, S., Dey, T. K., Leekha, N., 2000. A simple
algorithm for homeomorphic surface reconstruction. In: Proc.
SoCG ’00. pp. 213–222.

[4] Brenner, C., 2005. Building reconstruction from images and
laser scanning. Int. J. App. Earth Obs. Geoinf. 6 (3–4), 187–198.

[5] Cazals, F., Giesen, J., Pauly, M., Zomorodian, A., 2005. Con-
formal alpha shapes. In: Proc. VGTC Symp. on Point-Based
Graph. pp. 55– 61.

[6] Computational Geometry Algorithms Library, 2010.
URL http://www.cgal.org/

[7] de Berg, M., Cheong, O., van Kreveld, M., Overmars, M., 2008.
Computational Geometry: Algorithms and Applications, 3rd
Edition. Springer-Verlag.

[8] Edelsbrunner, H., Kirkpatrick, D. G., Seidel, R., 1983. On the
shape of a set of points in the plane. In: IEEE Trans. Inf. Th.
Vol. 29. pp. 551–559.

[9] Hoffmann, F., Icking, C., Klein, R., Kriegel, K., 2001. The poly-
gon exploration problem. SIAM J. Comp. 31 (2), 577–600.

[10] John Chance Land Surveys, Fugro, 2009. Fli-map specifica-
tions. http://www.flimap.com/site47.php.

[11] Lipman, Y., Cohen-Or, D., Levin, D., 2007. Data-dependent
MLS for faithful surface approximation. In: Proc. SGP ’07. pp.
59–67.

[12] Mandal, D. P., Murthy, C. A., 1997. Selection of alpha for alpha-
hull in R2. Pat. Rec. 30 (10), 1759–1767.

[13] Melkemi, M., Djebali, M., 2000. Computing the shape of a pla-
nar points set. Pat. Rec. 33 (9), 1423–1436.

[14] Nan, L., Sharf, A., Zhang, H., Cohen-Or, D., Chen, B., 2010.
Smartboxes for interactive urban reconstruction. ACM Trans.
Graph. 29, 1–10.

[15] Schnabel, R., Degener, P., Klein, R., 2009. Completion and re-
construction with primitive shapes. Comp. Graph. Forum 28,
503–512.

[16] Schnabel, R., Wahl, R., Klein, R., 2007. Efficient RANSAC for
point-cloud shape detection. Comp. Graph. Forum 26 (2), 214–
226.

[17] Schwalbe, E., Maas, H.-G., Seidel, F., 2005. 3D building model
generation from airborne laser scanner data using 2D GIS data
and orthogonal point cloud projections. In: Proceedings of IS-
PRS WG III/3, III/4, V/3 Worksh. Laser Scanning. pp. 12–14.

[18] The Stanford 3D Scanning Repository, 2010.
URL http://graphics.stanford.edu/data/3Dscanrep/

[19] Toussaint, G., 1983. Solving geometric problems with the rotat-
ing calipers. In: Proc. IEEE MELECON ’83. pp. A10.02/1–4.

[20] Tseng, Y.-H., Tang, K.-P., Chou, F.-C., 2007. Surface recon-
struction from LiDAR data with extended snake theory. Vol.
4679 of Lecture Notes in Computer Science. pp. 479–492.

[21] van Lankveld, T., van Kreveld, M., Veltkamp, R., 2011. Identi-
fying rectangles in laser range data for urban scene reconstruc-
tion. Tech. Rep. UU-CS-2011-004, Utrecht University, Depart-
ment of Information and Computing Sciences.

[22] Veltkamp, R. C., 1992. The γ-neighborhood graph. Comp.
Geom. Th. App. 1 (4), 227–246.

[23] Zebedin, L., Bauer, J., Karner, K., Bischof, H., 2008. Fusion of
feature- and area based information for urban buildings model-
ing from aerial imagery. In: Proc. ECCV ’08. pp. 873–886.

[24] Zhou, Q.-Y., Neumann, U., 2008. Fast and extensible building
modeling from airborne LiDAR data. In: Proc. ACM GIS ’08.
pp. 1–8.

8

