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Figure 1: Watertight geometry from points (left) and surfaces (right)

Abstract
The demand for large geometric models is increasing, especially of urban environments. This has resulted in pro-
duction of massive point cloud data from images or LiDAR. Visualization and further processing generally require
a detailed, yet concise representation of the scene’s surfaces. Related work generally either approximates the data
with the risk of over-smoothing, or interpolates the data with excessive detail. Many surfaces in urban scenes can
be modeled more concisely by planar approximations. We present a method that combines these polygons into a
watertight model. The polygon-based shape is closed with free-form meshes based on visibility information. To
achieve this, we divide 3-space into inside and outside volumes by combining a constrained Delaunay tetrahe-
dralization with a graph-cut. We compare our method with related work on several large urban LiDAR data sets.
We construct similar shapes with a third fewer triangles to model the scenes. Additionally, our results are more
visually pleasing and closer to a human modeler’s description of urban scenes using simple boxes.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geome-
try and Object Modeling—Geometric algorithms; Surface and solid representations; Computer Graphics [I.3.7]:
Three-dimensional Graphics and Realism—Visible line/surface algorithms

1. Introduction

Public interest in virtual cityscapes has been increasing for
some years. Groups like municipal government, architecture
firms, and emergency response units can use these models
for urban planning, visualization, and training. As a result,
image-based point reconstruction and LiDAR sensing have
received a wide backing, yielding massive data sets of high
detail point clouds. However, these point data are not suf-
ficient for most applications. Consequently, reconstructing
surfaces from point data is an active field of research.

Many applications prefer the geometry to be non-self-

intersecting, while applications like disaster management
simulations may require the surfaces to be enclosing a vol-
ume as well, i.e. watertight. Watertight geometry divides
3-space into two distinct volumes, inside and outside the
model. The surfaces of the model are exactly where these
two volumes meet.

Reconstructing watertight geometry has received consid-
erable attention, as shown in Section 2. However, most re-
lated methods do not incorporate the fact that most surfaces
in urban scenes are planar. This generally results in round-
ing of sharp corners or adding unnecessary complexity to
the model. In Section 3, we present a novel method that con-
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structs a concise watertight model using planar polygons ap-
proximating the local point cloud. We have evaluated our
method on a number of urban LiDAR data sets and we de-
scribe these experiments in Sections 4 and 5. Finally, Sec-
tion 6 presents a discussion of the broader implications of
our method. Our key contributions are:

• A novel method that constructs watertight geometry from
points and a soup of polygons. This geometry follows the
polygons where possible and closes the object based on a
line-of-sight based space carving.
• A novel method for constructing the constrained Delau-

nay tetrahedralization that avoids costly line-sphere inter-
section computations.
• A comparison of our method to the related method by La-

batut et al. [LPK09]. Our method produces concise and
visually pleasing results using a third fewer triangles.

2. Related Work

For the purpose of constructing watertight geometry, im-
plicit surface methods, e.g. [CBC∗01], may be the most
straightforward, because the implicit function already rep-
resents some notion of an inner and outer volume. Mullen
et al. [MDGD∗10] describe a method that improves the cor-
rectness of the local surface orientation in order to fill gaps
in regions of missing data. Schnabel et al. [SDK09] use im-
plicit surfaces and combine this with graph-cuts to get a wa-
tertight model. They use an optimization scheme that iterates
over multiple graph-cuts. Shalom et al. [SSZCO10] explic-
itly indicate exterior regions in the implicit surface by con-
structing generalized cones with a data point at their apex.
Shen et al. [SOS04] present a method for constructing im-
plicit surfaces from a polygon soup. Alliez et al. [ACSTD07]
create an implicit surface using the anisotropy in Voronoi
cells to estimate the normals of the surface.

Implicit surface methods have two inherent weaknesses:
a) they approximate, rather than interpolate the point set and
because of this b) they have problems reconstructing sharp
features. Many implicit surface methods are also ill equipped
to handle massive data sets.

There is also a wide range of methods that construct wa-
tertight geometry using the facets of the Delaunay tetrahe-
dralization (DT). A survey of these Delaunay-based methods
is given by Cazals and Giessen [CG06]. The basis for these
methods is an observation by Boissonnat [Boi84], which
showed that a shape can be captured in the DT of the sample
points. Dey and Goswami [DG03] provide a recent example
by adjusting the Cocone method [ACDL00] to produce wa-
tertight models. Many of these Delaunay-based methods as-
sume the object is r-sampled, e.g. [AAK∗09], which requires
the sampling to be sufficiently dense near important features.
The assumption of r-sampling is too strong for urban recon-
struction from LiDAR, because a data set may combine thin
features and unpredictable sampling densities.

CCDT GC
spatial

partitioning
watertight
surface

planar
polygons

Figure 2: An overview of our method.

A recent approach by Labatut et al. [LPK09] combines
the DT, the minimal-weight graph-cut, and lines-of-sight in
order to determine the regions inside and outside the objects.
While this method produces nice results, it does not exploit
the planarity in the scene. Chauve et al. [CLP10] combine a
partitioning of space into regions using planar primitives and
a graph-cut to select interior and exterior regions. Although
they achieve nice results, their method cannot reconstruct
non-planar parts of a scene and lacks a theoretical basis.

Similar to [CLP10, LPK09], our method partitions space
and constructs watertight geometry by applying a graph-cut
to this partitioning. We partition 3-space using an extension
of the DT that can handle polygons, called the conforming
constrained Delaunay tetrahedralization (CCDT) [She98,
She02, SG05]. The CCDT is constructed from a collection
of points and planar polygons: each point is contained as a
vertex and each polygon is contained as a collection of tri-
angular facets. This structure is described in Subsection 3.1.

There are few methods that compute planar polygons ap-
proximating a point cloud. While various methods exist to
estimate planar or near-planar approximations of a subset of
a point cloud [TkG07, SWK07, TTC07], they generally do
not bound these approximations based on the point cloud.
Recent work by Van Kreveld et al. [vKvLV11] uses Efficient
RANSAC [SWK07] to estimate planar approximations and
an adaptation of the α-shape [EKS83] to bound the shape
such that sharp features are preserved. We use these poly-
gons as input to our method.

3. Method

The goal of our method is to construct a watertight geomet-
ric model from a collection of planar polygons. This model
should contain parts of these polygons where this is useful
for separating the inner and outer volumes. In regions with-
out polygons, an appropriate boundary is estimated from the
point set. Our method achieves this in two steps, as shown
in Figure 2, similar to Labatut et al. [LPK09]. First we par-
tition the complete space into many small regions and then
we determine for each region whether it is inside or outside
the model. Unlike [LPK09], both of these steps are guided
by the polygons.

We use an extension of the DT, called the conforming
constrained Delaunay tetrahedralization (CCDT) to partition
3-dimensional space into tetrahedral cells. We describe the
CCDT and how we construct it in Subsection 3.1. If all the
cells are assigned to either the inner or outer volume, the
facets separating inner and outer cells comprise a watertight
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model. The CCDT embeds input polygons in its facets, en-
abling partitioning along these surfaces.

We classify the cells of the CCDT into inner and outer
cells using a minimum-weight graph-cut. This method takes
a weighted graph that contains a source and a sink node and
collects a number of edges to remove, the cut, such that the
source and sink are no longer connected by a path on edges
of the graph. The cut is chosen such that the sum of the
weights of its edges is minimized. Subsection 3.2 describes
the graph-cut method in more detail.

We construct the graph to cut from the dual of the CCDT,
which is similar to a Voronoi diagram. The graph-cut will
correspond exactly to the facets of the CCDT separating
outer and inner cells. This collection of facets constitutes a
watertight model. It may be obvious that the shape of the
model reconstructed by this method depends on the shape
and location of the surfaces embedded in the CCDT. If a
surface is not present in the CCDT, it cannot be selected by
the graph-cut. Therefore, the geometry of the CCDT has a
major influence on the geometry of the reconstruction.

However, there are two other considerations important to
the cut. Firstly, graph-cuts only make sense if a source and
sink node exist. The connectivity between source and sink
node is very important, because only edges on a path be-
tween source and sink are cut. We add two new, abstract,
nodes to the dual of the CCDT to act as source and sink.
These two nodes are connected automatically to the other
nodes in a careful fashion as described in Subsection 3.2.1.

Secondly, the weights of the edges in the graph determine
the optimal positions to cut. We compute the weight of each
edge based on several properties of its corresponding facet
in the CCDT. The first two factors are described in Subsec-
tion 3.2.1 and the last two in Subsection 3.2.2.

3.1. Conforming Constrained Delaunay
Tetrahedralization

We subdivide 3-space into regions that can be inside or out-
side the model using the CCDT. This structure is closely re-
lated to the well-known DT. In order to properly describe the
CCDT, we must first describe the piecewise linear complex
(PLC) [MTT∗96]. A PLC is a collection of points, straight
line-segments, and planar straight-line polygons in 3-space.
The polygons can be non-convex with any number of bound-
ary segments and they may contain holes, interior segments,
and isolated points. However, their boundary cannot be self-
intersecting and all their vertices must be coplanar.

As its name implies, a PLC is a complex: the collection
is both closed and non-intersecting. By closed we mean that
the collection contains all faces of each of its elements. In
other words, if a PLC contains a polygon, then it must also
contain all the edges and vertices of the polygon. By non-
intersecting we mean that the collection does not contain two

a
b
a

b
a

b

Figure 3: A configuration of points and two different con-
figurations of Steiner points that force ab to appear in the
Delaunay triangulation.

elements that pairwise intersect in their interiors. That is, no
two elements, whether polygon, segment, or point, may in-
tersect except in the union of their shared vertices and edges.

The CCDT is based on the constrained Delaunay tetra-
hedralization (CDT). Some of the facets of this tetrahedral-
ization are marked as constrained and the tetrahedrons are
Delaunay with the exception that their circumscribing ball
may contain points on the other side of a constrained facet.
A CDT embeds a PLC if it contains all the points and seg-
ments of the PLC and each polygon of the PLC is exactly
covered by a collection of constrained facets.

Shewchuk [She98] showed that there are PLCs that do not
admit an embedding CDT. He goes on to prove that for any
PLC X we can construct another PLC X̄ that can be embed-
ded in a CDT. This PLC X̄ exactly covers X , but it contains
additional points, called Steiner points, on the segments of
X . These points are placed such that the DT of X̄ contains
edges that cover the segments of X . We call these edges con-
forming to the segments of X . Unlike Shewchuk, we prefer
to call the CDT of X̄ the conforming constrained Delaunay
tetrahedralization of X , to indicate the similarity to the 2-
dimensional conforming Delaunay triangulation.

3.1.1. Embedding Segments

There are many different methods for determining the posi-
tions of the Steiner points that ensure that the segments of X̄
are present in the DT. Figure 3 gives an example PLC and
two different configurations of Steiner points that ensure the
embedding of the segment ab.

There are also various ways of comparing the qual-
ity of configurations, e.g. by counting the number of
Steiner points [SG05] or by bounding the minimal edge
length [She02]. Related work generally constructs Steiner
points at the intersections of a sphere and a line, which is
in practice either dangerous because of round-off errors or
expensive to compute exactly. For this reason, we present a
novel Steiner point insertion method, similar to [SG05], that
does not require computing sphere-line intersections.

A recurring concept in methods for constructing conform-
ing edges is the protecting ball of a point. The purpose of a
protecting ball is to indicate a region around an input point
where no Steiner point may be placed. Let us consider the
balls Bq

p centered on p and touching a vertex or edge q of X
in their boundary. The ball Bp is the smallest of these balls
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Figure 4: A protecting ball. The black disks are points of
the PLC, the dashed black line is a segment of the PLC. The
dashed red arc shows Br

v , the solid red circle is the largest
empty ball with its diameter vd on vw.

Bq
p. The protecting ball Pp of a point p is an open ball cen-

tered at p no larger than Bp. The radius of each Pp is gen-
erally chosen based on the local distribution of points and
conforming edges. Let us assume for now that Pp = Bp.

These protecting balls are specifically important for acute
points: points where at least two conforming edges meet at
an acute angle. The insertion of a Steiner point on one edge
may cause another conforming edge e to disappear from the
DT, forcing the insertion of another Steiner point to restore
e. When Steiner points can be inserted arbitrarily close to an
acute point, this process may cascade into an infinite loop.

In order to embed a conforming segment vw not present
in the DT, we need to insert Steiner points. Let us consider
the Steiner point s whose insertion results in the appearance
of vs in the DT. This Steiner point may not be placed inside
Pv. However, in order for vs to appear in the DT, there must
be a sphere through v and s with interior void of points. Most
related methods will place s on the boundary of Pv. Because
Pv cannot contain any point, the open ball Dvs with diame-
ter vs must be empty. Therefore s meets both criteria: it is
outside Pv and shares the boundary of an empty ball with v.

Instead of computing the intersection of the boundary of
Pv and vw, we will work directly with the empty open balls
incident to v that have their diameter on vw, as shown in
Figure 4. Specifically, we choose the largest empty open ball
Dvd . This ball must have a point r on its boundary and it is
easy to see that ‖vr‖ < ‖vd‖. Note that r may be a point of
X or a Steiner point inserted earlier.

Because d is not inside Br
v and because all Steiner points

are constructed on the segments of X , d must be outside Pv.
Because Dvd is empty, inserting d as Steiner point would re-
sult in the vd appearing in the DT. Additionally, v and r must
be adjacent in the DT as witnessed by Dvd . Finally, accord-
ing to Thales’ Theorem we can compute d as the intersection
of vw and the plane through r orthogonal to vr, removing the
need for a line-sphere intersection.

Unfortunately, inserting a Steiner point at d has two disad-
vantages. Firstly, if we want to be able to insert conforming
edges incrementally, this method may result in an extreme
number of Steiner points, as shown in Figure 5 (left). Sec-

Figure 5: A pathological case when embedding conforming
segments top to bottom between points (black disks). Left:
inserting Steiner points (circles) at d; each Steiner point
insertion invalidates all earlier conforming edges, leading
to repeated Steiner point insertions. Right: inserting Steiner
points at m, as shown in Figure 6.

Algorithm 1 Compute the position of a new Steiner point
Input: two vertices v,w.
Output: the Steiner point inserted on vw to protect v

1: procedure PROTECT(v,w)
2: x← w
3: y← w
4: E← edges incident to v
5: for all vvi ∈ E do
6: if 6 wvvi <

π

2 then
7: P← plane through vi orthogonal to vvi
8: d← vw∩P
9: if ‖vd‖< ‖vy‖ then

10: x← projection of vi on vw
11: y← d
12: end if
13: end if
14: end for
15: return MIDPOINT(x,y)
16: end procedure

ondly, if there are two points x,y cospherical with v,r,d, vd
may not appear in the DT because the tetrahedra on v,r,x,y
and d,r,x,y have an empty circumsphere. The free choice of
which tetrahedra to use may not result in vd appearing.

In order to overcome these disadvantages, we want to in-
sert the Steiner point at another location s on vw such that
‖vr‖ ≤ ‖vs‖ < ‖vd‖. We choose as s the midpoint m of d
and the projection p of r onto vw, as shown in Figure 6 and
Algorithm 1. We refer to this procedure as the protection
method.

It is straightforward to see that ‖vp‖< ‖vm‖< ‖vd‖ and
‖vp‖ < ‖vr‖. However, the difference between ‖rv‖ and
‖mv‖ depends on the angle θ = 6 rvw. The following lemma
shows that for any θ, ‖vr‖ < ‖vm‖ and therefore m must
lie strictly outside the protecting ball and strictly inside Dvd .
This means that vm must appear in the DT.

c© 2013 The Author(s)
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Figure 6: Two protecting balls. The black disks are vertices
of the PLC, the dashed black line is a segment of the PLC,
and the black circles indicate other significant locations. The
dashed red arc shows Br

v , the solid red circle is the largest
empty ball with its diameter vd on vw, p is the projection of
r onto vw, and m is the mid-point of p and d.

Lemma 1 Given the triangle vrd where r lies on a corner
with right angle, let p be the orthogonal projection of r onto
vd, let m be the midpoint between p and d, and let θ = 6 rvd,
as shown in Figure 6. If θ 6= 0 then ‖vr‖< ‖vm‖.

Proof For readability’s sake, let us rename the distance in-
volved as follows: R= ‖vr‖, A= ‖rd‖, B= ‖vp‖, C = ‖pd‖,
D = ‖rp‖, as shown in Figure 7. Observe that 6 prd = θ, be-
cause of triangle similarity. This proof builds on the follow-
ing trigonometric functions:

B = Rcosθ (1)

D = Rsinθ (2)

D = Acosθ (3)

C = Asinθ (4)

We will show that the following relation between the dis-
tances R−B

C < 1
2 holds for any θ 6= 0. In order to achieve this

result, we will apply the above equalities in order.

R−B
C

=
R−Rcosθ

C
=

R(1− cosθ)

C

=
D(1− cosθ)

C sinθ

=
Acosθ(1− cosθ)

C sinθ

=
Acosθ(1− cosθ)

Asin2
θ

=
cosθ− cos2

θ

sin2
θ

<
1
2

The final inequality follows from evaluating this function at
lim
θ→0, where it reaches its maximum because of the similarity
to tan(θ)−2. The function cannot be evaluated at θ = 0, but
in this case r = d and vr already exists in the DT.

The protection method automatically constructs a protect-
ing region around the input vertices based on the local point
distribution. This region is roughly ball-shaped with dents at
nearby vertices of X . There are two remaining issues when
conforming a DT to a PLC X . Firstly, the parts of the seg-
ments of X between these protecting regions also need to be

R

C

A

θ
B

θ

Figure 7: The setup for the proof of Lemma 1.

embedded in the DT. Secondly, it may occur that a segment
vw of X is not embedded in the DT if the balls Bv and Bw
intersect. In order to conform the DT to vw, a Steiner point
must be constructed inside either Bv or Bw.

The parts of the segments of X between protecting regions
are easily embedded by recursively applying the protection
method for the newly inserted Steiner points. Starting from
a segment vw, Steiner points sv,sw are constructed such that
the edges vsv,wsw appear in the DT. Then, the segment svsw
is embedded similarly.

When two points v,w lie sufficiently close together and
vw is not present in the DT, it may be necessary to insert a
Steiner point inside Bv or Bw. Related methods achieve this
by choosing the protecting balls Pv and Pw smaller than Bv
and Bw [She02,SG05]. Similarly, we will construct a Steiner
point s such that vs and sw appear in the DT, while at the
same time forcing Bv or Bw to shrink. We must choose s with
caution in order to make sure no Bv can shrink too much.

We will distinguish three different cases based on the ver-
tices v,w and the Steiner points sv,sw that would be con-
structed to protect them. Case i) occurs when the segments
vsv and wsw do not overlap. In this case we compute the
Steiner points for both ends using our protection method.
Note that if Bv and Bw overlap, then vsv and wsw must over-
lap.

Case ii) occurs when vsv and wsw overlap and one of the
points v,w is acute and the other is not. Note that Steiner
points are never acute. Let us assume without loss of gener-
ality that the acute point is v. We insert only the Steiner point
sv into the PLC. This does not reduce the size of Bv, and be-
cause w is not acute, none of the conforming edges incident
to w can be removed by this insertion.

Case iii) covers all remaining configurations of v and w
where vsv and wsw overlap. Again, we will insert one Steiner
point s inside Bv or Bw. We base s on sv,sw, and the mid-
point m of v,w. Let us assume without loss of generality
that ‖vsv‖ ≤ ‖wsw‖. If ‖vsv‖< ‖vm‖ then s = sv; otherwise
s = m. After the insertion of s, the radius of both Bv and Bw

either remains the same or is at least ‖vw‖
2 . The pseudo-code

of the complete method is shown in Algorithm 2.

So far we have mainly considered inserting a single con-
forming segment. Figure 6 (right) shows the Steiner points
constructed on multiple segments.

It remains to show that our method always terminates.

c© 2013 The Author(s)
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Algorithm 2 Embed a conforming edge
Input: two vertices v,w.

1: procedure CONFORM(v,w)
2: if exists(vw) then
3: return
4: end if
5: sv←PROTECT(v,w)
6: sw←PROTECT(w,v)
7: if ‖vsv‖+‖wsw‖> ‖vw‖ then . Case i)
8: insert sv
9: insert sw

10: CONFORM(sv,sw)
11: else if acute(v) and ¬acute(w) then . Case ii)
12: insert sv
13: CONFORM(sv,w)
14: else if acute(w) and ¬acute(v) then . Case ii)
15: insert sw
16: CONFORM(v,sw)
17: else . Case iii)
18: m←MIDPOINT(v,w)
19: if ‖vsv‖< ‖wsw‖ and ‖vsv‖< ‖vm‖ then
20: insert sv
21: CONFORM(sv,w)
22: else if ‖wsw‖< ‖vsv‖ and ‖wsw‖< ‖wm‖ then
23: insert sw
24: CONFORM(v,sw)
25: else
26: insert m
27: end if
28: end if
29: re-embed all conforming edges removed by this call
30: end procedure

Related methods generally prove this using the local fea-
ture size (lfs) [Rup95]. Given a PLC X , lfs(p) of any point
p in space is the radius of the smallest ball centered on p
that intersects two non-intersecting vertices or segments of
X . Note that this measure is independent of Steiner points.
Termination can then be proven by showing that there is
some constant c such that after any Steiner point insertion
c‖e‖ ≥ lfs(p) holds for any edge e and any point p on e.

However, many of these proofs incorrectly discount the
influence of Steiner points. Consider the example of apply-
ing Shewchuk [She02] to a problematic case shown in Fig-
ure 8. The gray disks show the shortest edge lengths and
four times that distance. Recall that for lfs(p) both Steiner
points and intersecting segments of the PLC are ignored.
This means that for most points x inside the wedge of con-
forming segments, lfs(x) is the distance to p. For this reason,
we define the star local feature size (lfs?) for subspaces.

Definition 1 Given a fixed PLC X and a subspace S, the star
local feature size lfs?X (S), or simply lfs?(S), of S is the radius

p

Figure 8: Shewchuk’s edge protection applied to a prob-
lem case. The PLC contains the black disks and dashed seg-
ments, the small circles show the Steiner points constructed
to embed the segments. The red Steiner points are incident
to two edges that are too short, the gray disks show the edge
length and four times this distance disproving his Theorem 2.

of the smallest ball centered within S that contains two points
or segments of X that do not intersect in S.

We are mainly interested in the cases where the subspace
is an edge on a segment of X . Note that for edges incident
to an acute vertex, lfs? is the minimum lfs over the points on
the edge. For other edges, all segments except its supporting
segment influence lfs?.

Even with this definition, we cannot bound the minimum
edge length for our method: case i) can produce arbitrarily
short edges when sv and sw lie very close to the boundary of
the ball. Similarly, in case ii) sv can lie arbitrarily close to w.
Nonetheless, the following three lemmas prove our method
always terminates. Their proofs are given in the appendix.

Lemma 2 Given a PLC X and a segment vw of X not em-
bedded in the DT, let us apply the protection method to con-
form vw without re-embedding edges on other segments that
were destroyed. This operation can add only a number of
Steiner points linear in the number of vertices of the DT.

Proof Any time a Steiner point is placed on any segment vw
by the protection method, this creates a segment vs based on
another point r. As witnessed by the emptiness of the diame-
tral ball touching r, vs cannot be destroyed while conforming
sw. It is also straightforward to see that r cannot be touched
by any ball with part of sw as diameter.
This means that in case i) two points can no longer be inside
Dsvsw . In case ii) there is one point that can no longer be in
Dsvw. In case iii) there are two options: either we insert sv
and one point can no longer be in Dsvw, or we insert m. We
only insert m if it lies on both vsv and wsw, meaning that both
Dvm and Dmw. must be empty.
Each operation must either terminate the algorithm, or both
construct a segment that will not be destroyed and remove
a least one point from the collection of points encroaching
upon the remaining part of the segment. This collection starts
with a linear number of points and once it is empty the seg-
ment must exist in the DT.

c© 2013 The Author(s)
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Lemma 3 Given a PLC X and a collection of Steiner points
S constructed using the protection method, there cannot be a
point s ∈ S and an acute vertex v such that ‖sv‖< 1

2 lfs(v).

Proof We will prove this by contradiction. Let us assume
there is a Steiner point s and an acute vertex v such that
‖sv‖ < 1

2 lfs(v) and let us consider the different cases in
which s could have been constructed.
First let us consider the case where s does not lie on a seg-
ment incident to v. By the definition of the local feature size,
‖sv‖ ≥ 1

2 lfs(v).
If s lies on a segment vw incident to v, it could only have
been constructed when conforming this segment. It could
have been constructed to protect either v, w, or any Steiner
point on vw in any of the three cases. If there is a Steiner
point s′ between v and s, let us consider this point instead,
because ‖vs′‖< ‖vs‖.
Recall that according to Lemma 1, from any Steiner point
s constructed by our protection method on any segment vw
from point w and r, ‖vs‖> ‖vr‖. This means that s must lie
outside Br

v . Either r is a Steiner point, or r is a point of X
and it is straightforward that ‖vs‖ > ‖vr‖ ≥ lfs(v). If r is a
Steiner point, the same reasoning can be applied to find the
point r′ used to construct r. Because each next point must be
closer to v, at some point we will find a non-Steiner point r′i
such that ‖vs‖> ‖vr′i‖ ≥ lfs(v).
This means that in case i) and ii), no Steiner point can be
constructed closer to v than lfs(v). In case iii), either v is not
acute, or w is also acute. By our assumption, w must be acute
and therefore cannot be a Steiner point. in this case, s must
have been constructed such that ‖vs‖≥ Bv and ‖vs‖≥ ‖vw‖

2 .
In either case, ‖vs‖ ≥ 1

2 lfs(v).
All possible cases result in a distance ‖vs‖≥ 1

2 lfs(v). As this
contradiction holds for any combination of v and s, our proof
is complete.

Lemma 4 Given a PLC X and a collection of Steiner points
S constructed using the protection method, any edge e em-
bedding a segment of X and not incident to an acute point
can only be removed from the DT if lfs?(e)< ‖e‖.

Proof This proof follows directly from three facts: 1) e can
only be removed if there is a Steiner point s constructed in-
side the ball with e as diameter, 2) by its construction s must
lie on a segment t of X , and 3) t cannot intersect e, because
e is not incident to an acute point.

Theorem 5 Out protection method always terminates.

Proof By Lemma 3, edges incident to an acute point have
a minimum edge length. By Lemmas 2 and 4 each time an
edge is embedded, this adds a finite number of edges and
only destroys conforming edges longer than their lfs?.

If we know all segments of the PLC X in advance, we
can choose the embedding order such that the occurrence of
these short edges is minimized. To achieve this, the Steiner

points should be inserted in a strict order. When inserting
the next Steiner point s, the segment vw and its endpoint v
should be chosen such that the length of the conforming edge
vs resulting from the protection method to v is minimized
over all segments and endpoints. In practice, this minimizes
the number of changes in Bv for all point v of X .

3.1.2. Embedding Polygons

After conforming the DT to the segments of the PLC, the
interiors of the polygons can be inserted incrementally.
Shewchuk [She03] describes a method for recovering the
polygons using an ordered sequence of bistellar flips. Unfor-
tunately, this method seems numerically unstable when flips
occur almost simultaneously. We incrementally embed the
interiors of the polygons using a method that changes larger
collections of cells simultaneously very similar to [SG05].

Like Si and Gärtner, we insert each polygon P per cav-
ity. A cavity is a maximal facet-connected collection of cells
intersected by P . For each cavity C , we construct two new
tetrahedralizations Ta,Tb: one using the vertices of C on or
above P and the other using the vertices on or below P .
When we replace the cells of C by the overlapping cells of
Ta,Tb, the part of P inside C appears, because this part can
be built from facets on the convex hull of both Ta and Tb.

We must take special caution when embedding polygons
near facets constrained earlier. There are simple configura-
tions of points and constraints such that some facets on the
boundary of C are not contained in T = Ta ∪Tb. For a rela-
tively simple example of this problem on fifteen points, we
refer to [vKvLV13]. When boundary facets are missing from
T , the cavity cannot be neatly filled with cells of T .

We overcome this problem similar to Si and Gärt-
ner [SG05]. Before computing Ta,Tb, we grow the cavity
until all its boundary facets must be contained in T . We do
this by checking for each facet on the boundary of C whether
it has a circumscribing ball that does not contain any point
of C . Note that this is a weak Delaunay criterion and un-
like [SG05] it is restricted to C . For each facet f not meeting
this criterion, we grow C by adding the cell on the other side
of f . We repeat this procedure until all boundary facets meet
the criterion. In extreme cases this may force the cavity to
grow to the complete CCDT, but in practice most cavities
will not grow significantly.

If a cavity C of a polygon P to be embedded contains part
Q̂ of a polygon embedded earlier, Q̂ should still be embed-
ded after embedding P . In order to retain the embedding of
earlier polygons, we embed Q̂ into Ta or Tb, depending on
the location of Q̂ . The following lemma shows that embed-
ding Q̂ is a strictly smaller problem than embedding P and
so this recursion is finite. The proof is given in the appendix.

Lemma 6 Given a cavity C in CCDT T formed while em-
bedding polygon P and a polygon Q intersecting C in Qc, let

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.



Marc van Kreveld & Thijs van Lankveld & Remco C. Veltkamp / Watertight Scenes from Urban LiDAR and Planar Surfaces

Tp be the new CCDT formed by embedding P without en-
forcing Qc to be embedded. The cavity of Qc in Tc is a strict
subspace of C .

Proof We will build this proof in three steps. First, we will
show that Qc is bounded by a loop of coplanar edges of Tc.
Then, we will show that the initial cavity of Qc, before grow-
ing it, is a strict subspace of C . Finally, we will show that this
cavity can neither grow outside C nor to the other side of P .
In order to show that Qc is bounded by a loop of coplanar
edges of Tc, we will look at the different ways in which Qc
can be bounded. Let us denote the boundary of X by ∂X and
recall that Qc is Q ∩Tc. We may divide ∂Qc into the part ∂q of
∂Q inside Tc and the part ∂t of ∂Tc intersection Q . Because Q
is embedded in T , ∂q must be covered by conforming edges
and these must also exist in Tc. We may further divide ∂t into
the part ∂p on P and the part ∂c on ∂C . By the PLC criteria,
∂p must also be covered by conforming edges.
Finally, we show that ∂c must also be covered by edges in Tc.
Let us assume by contradiction that there is a part of ∂c that is
not covered by edges of Tc. This part must then pass through
the interior of facets of C . Let us look at an arbitrary facet f
of this collection. Note that f intersects Q and f is a facet
on the boundary of C . However, recall that ∂C was grown in
the cells of T and can only contain facets of T . Because Q is
embedded in T , the facets of T cannot transversely intersect
Q , a contradiction. Because we took an arbitrary facet f , this
contradiction holds for all facets intersected in their interior
by ∂c.
Next, we will show that the initial cavity of Qc is a strict sub-
space of C . Recall that the initial cavity is the collection of
cells I of Tc intersected by Qc. As shown above, this intersec-
tion is bounded by edges of Tc. In fact, all these edges must
also be edges of C . Because Qc is strictly inside C , I must be
a subspace of C . Because Qc must lie inside Tc and Tc lies on
one size of P , I must be a strict subspace of C .
Finally, we will show that the cavity of Qc can neither grow
outside C nor to the other side of P . Recall that we grow
the cavity within Tc one cell at a time at facets that are not
weakly Delaunay. In order for the cavity to grow outside C ,
it must at some point have grown through a boundary facet
of C , since Tc contains all these boundary facets. However,
since all these facets are weakly Delaunay, the cavity cannot
grow outside of C . Since we grow the cavity in the cells of
Tc and Tc does not contain a point on the other side of P , the
cavity cannot grow to the other size of P .

3.2. Minimum-Weight Graph-Cut

We use a minimum-weight graph-cut algorithm to determine
which regions are inside or outside of the objects. Given
a graph G〈N,E〉 with a set of nodes N containing special
source and sink nodes s,s′ and a set of directed edges E
with weights w(e) 7→ R+, let p(v,〈X〉) 7→ N give the node
reached by traversing the directed path of edges 〈X〉 starting
from v. A graph-cut, or simply cut, is a set C ⊆ E such that

s v p
w

ωvis

Figure 9: The influence of visibility on the weights.

no p(s,〈X〉) = s′ exists in G〈N,E \C〉. A minimum-weight
graph-cut C− minimizes

∑
e∈C−

w(e) (5)

We use the method developed by Boykov and Kol-
mogorov [BK04] to compute the minimum-weight graph-
cut, which consistently outperforms the other state-of-the-art
methods [Din70, GT88] in practice.

The result of a minimum-weight graph-cut depends on the
connectivity of the graph, and its weights. The dual of the
CCDT defines the connectivity between all nodes other than
the source and sink nodes. The connectivity with the source
and sink nodes and the weights of all edges is determined by
the geometry of the scene and the measurement process, as
described in the next two subsections.

3.2.1. Visibility

From the features of the sensor, we can infer that the line seg-
ment connecting data point and sensor can only pass through
(semi-)transparent space. We use this information to adjust
the weights of the graph the same as Labatut et al. [LPK09].

For each data point v and its sensor location s, we estimate
a point p inside the object. We place p on the ray −→sv at a
distance 3σ beyond v, where σ is a parameter based upon the
measurement precision and the expected minimum thickness
of the object. We connect n(s) to the source node and n(p)
to the sink node, both with a weight of ωvis, where n(x) is
the node in the graph of the CCDT cell containing x.

We know from the scanning procedure that a laser travel-
ing along−→sp hit a solid surface close to v. We express the ex-
terior space traversed by increasing the weights of the graph.
Each edge corresponding to a facet f of the CCDT inter-
sected by ps gains a weight wvis( f ) = ωvis(1− e−d2/2σ

2
),

where d = ‖vq‖ and q is the intersection of f and ps. Note
that this weight approaches 0 near v, and ωvis at d > 3σ,
as shown in Figure 9. These weights drive the graph-cut to
include a facet near v.

This procedure is repeated for each data point, not only
the CCDT vertices, and in all cases the assigned weights
are aggregated. This resembles a voting procedure using ev-
idence for the surface location and interior/exterior regions.

3.2.2. Facet Quality

The visibility-based weights are not very robust to degen-
erate CCDT geometry. For example, long and thin cells are
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θ ψ

ψθ

P

Figure 10: The angles that determine the facet quality.

easily missed by all lines-of-sight, meaning they have a large
chance of being mislabeled.

We use some inherent quality of each CCDT facet f
and its local geometry to adjust its weight. Like Labatut et
al. [LPK09], we add wqual( f ) = 1−min(cos(θ),cos(ψ)) to
the weight of each facet, where θ and ψ are the angles be-
tween the plane P supporting f and the circumspheres of
the two incident cells at the circle where they intersect P , as
shown in Figure 10.

Constrained facets are generally better qualified to be part
of the surface. Irrespective of the visibility and facet quality
terms, constrained facets are assigned a weight 0. Otherwise
we use the aggregated weight w( f ) = wqual +∑wvis.

3.3. Implementation

We have implemented our method in C++ using
CGAL 4.0.2 [Com13] and an implementation of Boykov
and Kolmogorov’s graph-cut method [Gra12]. In order to
construct a CCDT of a collection of points and polygons,
we have built two classes on top of CGAL’s Delaunay tetra-
hedralization: the conforming and the constrained Delaunay
tetrahedralization. Both of these classes are straightforward
to program based on Section 3.1, although careful program-
ming is required to correctly handle degeneracies, similar to
the DT.

4. Experimental Setup

Unfortunately, there are no benchmark data sets available of
urban point data, let alone benchmark data with known lines
of sight. We use a data set provided by Fugro [Fug12]. This
data set contains aerial LiDAR data points that were mea-
sured during several flights. Each data point has a registered
3D coordinate and a time stamp that can be matched with
the flight path to estimate sensor positions. The massive data
sets are separated into smaller chunks based on a regular hor-
izontal grid, with all points collected in one region combined
into one chunk. We perform our experiments on seven dif-
ferent chunks, three of which are shown in Figure 11.

Our 32-bit implementation experienced memory prob-
lems with excessive data sizes. Therefore, we subsample the
data by superimposing a 3D grid with fixed cell dimensions.
We sample one random data point per grid cell [ASS13].

Figure 11: The points of chunks 1, 3, and 6.

|Pd| |Ps| |S| |Pd| |Ps| |S|
1 471,203 17,194 42 5 866,767 32,549 51
2 2,199,122 145,201 106 6 6,493,599 28,759 184
3 436,297 42,067 69 7 204,160 20,648 30
4 1,094,277 27,165 25

Table 1: The sizes of the chunks: the number of points (|Pd |),
the number of points after subsampling (|Ps|), and the num-
ber of shapes (|S|) identified by Efficient RANSAC.

Most chunks use a grid edge length of 1 m, but chunk 6 uses
3 m.

From this subsample, we estimate the local surface nor-
mal at each point using PCA on its 12 nearest neighbors.
Subsequently, we apply Efficient RANSAC to the chunk
to identify planar clusters and the remaining points. Si-
multaneously, the least-squares optimal approximating plane
is computed. We have determined the parameter settings
of Efficient RANSAC empirically based on clustering per-
formance. We settled on support threshold 6.5 cm, normal
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Figure 12: The guided α-shapes of chunks 1, 3, and 6.

threshold 20◦, bitmap size 1.5 m (2 m on chunk 1 and 4 m
on chunk 6), minimal support 25 (10 on chunk 6), and prob-
ability 0.0001 of missing a better cluster. Table 1 shows the
number of points and shapes per chunks.

For each pair of surfaces with data points within 1 m of
each other, the intersection line is computed. We compute
the guided α-shape [vKvLV11] of each cluster using the in-
tersection lines of that cluster as guides with the α-value
equal to the RANSAC bitmap size. The resulting polygons
and the remaining unclustered points are shown in Figure 12.

To compare our method to Labatut et al. [LPK09], we
construct both the DT and CCDT of the chunk. We insert
all the data points into the DT. We insert the collection of
guided α-shapes and the unclustered points into the CCDT.
Note that for the planar clusters, the CCDT will only con-
tain the points on the boundary. The CCDT also contains a
number of Steiner points.

We construct a graph of these arrangements and we deter-
mine a graph-cut as explained in Section 3.2. This cut deter-
mines the facets that comprise the surfaces of the scene.

DT CCDT
|V | |F | |C| |T | |V | |S| |F | |C| |T | |T |r

1 17k 220k 110k 29k 12k 4k 158k 79k 16k 0.55
2 145k 1874k 937k 197k 109k 26k 1398k 699k 119k 0.61
3 42k 534k 267k 69k 36k 7k 463k 232k 52k 0.75
4 27k 343k 172k 42k 14k 1k 188k 94k 20k 0.46
5 33k 416k 208k 50k 23k 6k 295k 148k 29k 0.59
6 29k 371k 185k 52k 46k 29k 552k 276k 59k 1.12
7 21k 268k 134k 33k 16k 1k 208k 104k 23k 0.70

Table 2: The number of vertices (|V |), of which Steiner (|S|),
facets (|F|), and cells (|C|) in the DT and CCDT for the var-
ious chunks, and the number of triangles of the watertight
surface (|T |). Each of these values is given in thousands. Fi-
nally, the ratio of triangles between CCDT and DT (|T |r).

5. Results

Figure 11 shows some of the chunks of urban LiDAR we
have performed our experiments on. Figure 13 shows the
watertight geometry constructed using [LPK09] and our
method. It is clear that our method constructs geometry that
is simpler and that conforms more to our idea what an urban
scene should look like. The small details are represented by
free-form meshes, while the large roofs and facades are rep-
resented by flat surfaces. An unfortunate side-effect to the
concise description of the planar surfaces is that it makes the
other, noisy regions stand out more.

Note that vegetation is also reconstructed in various
places. The quality of the reconstruction of vegetation is
based both on the number of points in the trees and bushes
and on the value of σ. Larger values of σ increase the chance
that cells outside the object are connected to the sink. This
results in this connection being cut, instead of an edge be-
tween Delaunay cells.

Apart from producing a geometric model that better cap-
tures the planar nature of an urban scene, this geometry is
also generally more concise, as Table 2 shows. In most cases,
the CCDT has roughly a sixth fewer elements and the water-
tight surface generated from it uses roughly a third fewer
triangles than when using the DT.

Chunk 6 is an exception in this regard: in this case the
CCDT-based surface uses more triangles. We expect this is
caused by the much higher than average shape to point ratio,
as shown in Table 1. This chunk has roughly three times as
many shapes as chunks of similar size. It is not surprising
that the reconstruction would require more triangles to cover
these shapes.

The disadvantage of our method is that it takes signifi-
cantly more time to compute the geometry, as shown in Ta-
ble 3. Once the CCDT is computed, traversing the lines of
sight to set the weights of the graph and performing the
graph-cut takes roughly the same amount of time for the
CCDT as for the DT. We are currently working on improving
the efficiency of constructing the CCDT.
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Figure 13: Details of the watertight geometry produced using [LPK09] (left), and our method (right) of chunks 3 (top) and 6
(bottom); the results on chunk 1 are shown in Figure 1. The colors are based on vertex height and triangle normal.

DT CCDT
T tP tL tG T tP tl tb tp tL tG

1 5.11 12% 64% 25% 37.68 24% 13% 21% 34% 7% 2%
2 48.20 10% 64% 26% 442.56 30% 36% 11% 15% 6% 2%
3 12.16 10% 64% 25% 87.78 45% 12% 12% 20% 8% 3%
4 7.92 11% 64% 25% 20.84 30% 5% 16% 28% 16% 5%
5 9.27 11% 64% 26% 54.27 25% 25% 19% 19% 8% 3%
6 8.13 13% 61% 27% 361.86 34% 29% 21% 14% 1% 1%
7 5.63 12% 62% 27% 17.48 45% 10% 10% 13% 16% 6%

Table 3: The total time (T ) in seconds to compute the water-
tight geometry using the DT and CCDT and the percentage
of time taken by the steps in the process: inserting the points
(tP), inserting the intersection lines between shapes (tl), in-
serting the boundaries of the shapes (tb), inserting the inte-
riors of the shapes (tp), traversing the lines of sight to adjust
the weights (tL), and performing the graph-cut (tG).

6. Conclusions

We have presented a method to construct watertight geome-
try for urban scenes. Our method extends an earlier method
by incorporating the assumption that many of the surfaces in
urban scenes are piecewise planar. The method achieves this
by performing a minimum-weight graph-cut on a conform-
ing constrained Delaunay tetrahedralization. Although our
method is slower than the earlier method that uses the De-
launay tetrahedralization, the results are more concise and
they are more visually pleasing.

One of the most interesting directions to improve on this
method is to reduce the time needed to compute the CCDT,
as this is an order of magnitude worse than computing the
DT. Some clever usage of multi-core processing may greatly
speed up the process.

Our method reconstructs the scene as a whole, ignoring
the properties of different objects in the scene. Tuning the
parameters to the different objects may produce better re-
sults. For example, we may wish to reduce σ for points on
vegetation to indicate the smaller expected object width.

Finally, a major issue in urban reconstruction is the gen-
eral lack of ground truths and benchmark data sets. This
makes it difficult to quantify results. We have expressed the
quality of our method in the number of triangles. However,
establishing benchmarks and comparing various methods on
these will increase insight into their respective strengths.
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