
Identifying Well-Covered Minimal Bounding Rectangles in 2D Point Data

Marc van Kreveld∗ Thijs van Lankveld∗ Remco Veltkamp∗

Abstract

Laser range imaging is an upcoming data source for
many fields of research. Although many methods are
proposed for finding surfaces and classifying points,
finding the bounds of these surfaces is still a difficult
problem. We propose a method for finding, in a point
set of size n, a rectangle that contains a predefined
subset of the points and none of the other points in
O(n log n) time. Further, there may not be places in
the rectangle that are too far from all points in the
predefined subset.

1 Introduction

A type of data that has lately seen an increase in use is
the laser range scan, also known as light detection and
ranging (LiDAR) data. This data consists of three-
dimensional points that are scanned from surfaces.
The accuracy and resolution of the measurements is
high. Currently, many scanners also include a pho-
tosensitive sensor that assigns a color value to each
point. A more complete description of the properties
of LiDAR data is given in [9, 10].

When this data is studied interactively it is easy to
form a mental image of the geometry of the scene. The
collection of 3D points gives insight into the surfaces
that were sampled, and many methods have been pro-
posed to automatically detect these surfaces [12, 14].
One influential group of methods is the methods based
on RANSAC [3], which uses a minimal random sam-
ple to define a surface and iterates to find the surface
containing most points. Another group of methods
is based on region growing [14], which initializes a
bounded surface at a certain point and tries to expand
this while maintaining some constraint like maximal
deviation from the surface in location or normal. Fi-
nally, Funke, Malamatos, and Ray [4] give an approx-
imation algorithm for finding a connected component
with comparable normals in a triangulation. In the
last two methods, constraints on local planarity might
not hold globally.

Though surfaces can be found in the data, these are
usually either unbounded or of an arbitrary and overly
complex shape. Computing the correct bounded
shapes from these surfaces is far from trivial. Prob-

∗Department of Information and Computing Sciences,
Utrecht University, marc@cs.uu.nl, thijsvl@cs.uu.nl,

Remco.Veltkamp@cs.uu.nl

lems arise because the measurements are not regu-
larly distributed over the surfaces or not well suited
for detecting edges. In many cases it is possible to
determine which points are on a surface, but it is still
difficult to find the original boundary of this surface.
A similar problem arises when we are not interested in
the whole surface, but in smaller sections that should
be separated from the surface. An example of this is
a known surface of a facade in which we want to find
the regions that make up windows or shutters based
on their color. Comparable work has been done using
LiDAR data when the topology of the original object
is known [11].

Within the remainder of this paper, we assume the
surface has already been extracted using the method
of Schnabel, Wahl, and Klein [12]. This shifts the
problem from 3D to 2D. Schnabel’s method also filters
out the points that are not on the surface. An exam-
ple of LiDAR data after surface detection is shown in
Figure 1. We will assume it is known which points are

Figure 1: The LiDAR data, in which points close to
the same plane have been given the same color. In
the rest of the paper, we will call these points blue.

inside the shape we want to find, for example a win-
dow or shutter, and we will call these the blue points.
All others will be called red points. This distinction
may be made by a so-called superpixel method [2].

Many objects have rectangular shapes and our
method is constrained to finding these. Usually, if
there is one rectangle that is valid because it con-
tains all blue points and no red points, then there are
many of these rectangles with different orientations

1



and sizes. We constrain the problem to finding the
angles θ ∈ [0, π2 ) for which there is some blue rectan-
gleRθ whose edges are rotated by θ from axis-aligned.

Definition 1 A rectangle R is blue with respect to
point sets B and R if and only if it contains all points
in B and no points in R.

For our method we use the minimal oriented bounding
box at angle θ to check if there is a blue Rθ. This is
valid because to decide if a blue Rθ exists, we can test
the smallest one.

Generally, we are mostly interested in rectangles
that give a good indication of the distribution of a
point set. To incorporate this, the problem is ex-
tended to finding rectangles that are well covered by
the blue points. For a rectangle R to be well covered,
we require that any point inside R has a blue point
within a pre-specified distance δ.

Definition 2 A rectangle R is δ-covered by point set
B if and only if the union of all disks with radius δ
and center c ∈ B covers R.

Once the angles θ are identified for which there is a
blue rectangle Rθ that is δ-covered by B, these rect-
angles can be searched for the smallest area or diam-
eter rectangle, or for rectangles with a parallel edge
within (other) surfaces. However, these applications
fall outside the scope of this paper.

Problem The problem solved algorithmically in this
paper is as follows. Let R and B be point sets of
combined size n, and let δ be a scalar. Determine all
angles θ ∈ [0, π2 ) for which there is a blue rectangle
Rθ that is δ-covered by B.

To solve this problem, we assume the data has two
properties. Firstly, we assume the data does not con-
tain noise, unlike the original sensor data. Secondly,
as stated earlier, we assume it is known which points
fall inside and outside the rectangle, that is, which
points are blue and which are red. This distinction
may be determined beforehand based on the color of
each point, or some other property.

Our problem is a red-blue separability problem;
see [1, 5, 7, 8] for other papers. Our problem’s most
distinguishing feature is the extra requirement that
the rectangle that is the separator must be δ-covered
by the points that lie inside.

The algorithm we present for solving the problem
uses ideas of sweep and scan algorithms. The method
most closely related is rotating calipers [13], most no-
tably when rotating calipers is used to find the mini-
mal bounding box.

In the next section an algorithm for solving the
problem without coverage requirements is given. Sec-
tion 3 extends this algorithm to solve the complete

problem. Finally, we discuss the results and future
research.

2 A simple separation algorithm

This section introduces the basic framework for solv-
ing the problem of finding a blue rectangle. The ap-
proach is to rotate a rectangle R around point set B
and handle important events as they occur. There are
two causes for events.

Firstly, because R is minimal, all of its edges con-
tain at least one point of B, and an event occurs when
these points change. These points and the order in
which they change can be determined from the bound-
ary of the convex hull CHB of B. The events are the
same as those used for determining the oriented min-
imal bounding box with rotating calipers.

Secondly, an event occurs when a red point r enters
or exits R. The angle of these events can be deter-
mined from the two lines through r, tangent to CHB .
Note that a red point r will never be inside R if it is
too far from CHB . Let v1, v2 be vertices of CHB on
the tangents through r. Then r can only enter R if
∠v1rv2 ≥ π

2 .
The events are inserted into a queue sorted on an-

gle of rotation at which they occur. After determin-
ing which red points are inside R before rotation, the
events are handled in order. The algorithm keeps
track of the number of red points inside R and when-
ever R becomes or stops being blue, this information
is stored, together with the current angle. When all
events have been handled, all angles θ for which Rθ
is blue are known.

Theorem 1 For point sets B and R with total size n,
all oriented bounding boxes of B that do not contain
any point in R can computed in O(n log n) time.

Proof. Constructing CHB takes O(n log n) time.
This also gives the angles when the points on the edges
of R change. Using a binary search on the vertices of
CHB , all lines through a red point and tangent to
CHB can be computed in O(n log n). Each edge of R
will start containing a vertex of CHB once and there
are two lines tangent to CHB through each red point.
This means that there are O(n) events. Sorting the
events by angle takes O(n log n) time. During rota-
tion, after each event it is checked if the rectangle has
become empty or non-empty. This takes O(1) time
per event. �

3 Requiring δ-coverage

The algorithm of the previous section provides an ef-
fective way to determine the angles for which a rect-
angle is blue. We would also like the rectangles not
to contain large regions void of blue points. In other

2



g(t)

T

∂Uδ

δ

f(t)

C(t)

Figure 2: The stuctures used to find the rectangles
that contain all blue points B (circles) and no red
points R (crosses) when δ-coverage is required. The
boundary ∂Uδ of the permissible region is shown solid,
while the trajectory of the corners T is shown dashed.
The rounded convex hull C and the functions f(t) and
g(t) are also shown.

words, R must be δ-covered by B for some δ, which
we assume is given.

To solve this problem, two additional structures are
used: for the permissible region, and for the trajectory
of the corners of R. These structures are shown in
Figure 2.

The permissible region Uδ is the maximal region
that is δ-covered by B. It is the union of all δ-disks
centered on a point in B. To satisfy the δ-coverage
criterion, R must be completely inside Uδ. It is well-
known that Uδ is bounded by O(n) arcs and can be
computed in O(n log n) time. If part of CHB is not
in Uδ, then no rectangular separator exists that is
δ-covered. In the rest of this paper we will assume
CHB ⊆ Uδ and in this case Uδ will have only one con-
nected component whose boundary we denote by ∂Uδ,
see Figure 2.

The trajectory T is the cycle of circular arcs, shown
in Figure 2, that a corner of R follows as R is rotated
over a full 2π turn. This concept has been previously
used by Hoffmann et al. [6].

Lemma 2 T can be constructed from CHB in O(n)
time and contains O(n) vertices and circular arcs.

Proof. Let c be a corner of R and let b1, b2 ∈ B
be the contact points on the two edges of R inci-
dent to c. It follows from Thales’ theorem that, while
the contact points are unchanged, c follows a circular
arc on the circle whose diameter is b1b2. A new arc
starts only when a contact point changes, and this
happens O(n) times. The sequence of the O(n) arcs
forms T . �

Because the center of each arc in ∂Uδ and T is on
CHB and no arc intersects this cycle, the following
observation can be made.

Observation 1 Any outward ray emanating perpen-
dicular to an edge of CHB intersects ∂Uδ and T ex-
actly once.

The algorithm that solves the problem is based on
the algorithm given in Section 2. The only difference
is the addition of events whenR starts and stops being
δ-covered by B. There are two ways in which this can
happen. Either during rotation an edge of R passes
over a vertex of ∂Uδ, or a corner of R passes over an
arc of ∂Uδ.

The vertices of ∂Uδ are handled exactly like extra
red points. This will add O(n) events.

The events caused by a corner of R passing over
∂Uδ happen exactly at the intersections of ∂Uδ and
T , shown as square markers in Figure 2.

Lemma 3 If Uδ covers CHB , there are O(n) inter-
sections between ∂Uδ and T .

Proof. The proof builds on the property that two
piecewise simple functions with n sections have O(n)
intersections that can be computed in O(n) time. By
simple we mean that two such curves can intersect
each other only a constant number of times.

To use this property, we must define two functions
that have the same value at some argument if and
only if ∂Uδ and T intersect. To create these functions,
an extra structure is introduced to parameterize ∂Uδ
and T , and thereby give the argument to define the
functions. We will show that the functions created
using this structure “detect” all intersections of ∂Uδ
and T , which completes the proof.

Let C, shown in Figure 2, be the boundary of the
morphological opening, the dilation of the erosion, of
the region inside CHB using an ε-disk. The radius
ε > 0 is chosen such that for all vertices of ∂Uδ and
T that are not on a vertex of CHB , the closest point
on CHB is also on C.

Let C(t) be the point reached by following C from
its topmost point for the fraction t of its length, and
let r(C(t)) be the outward ray emanating perpen-
dicularly from C(t). Now ∂Uδ and T define func-
tions by taking f(t) = dist(C(t), r(C(t)) ∩ ∂Uδ) and
g(t) = dist(C(t), r(C(t)) ∩ T ). These functions f(t)
and g(t), shown in Figure 2, are well-defined: for each
t, r(C(t)) intersects ∂Uδ and T exactly once. This is
true for each straight part of C because of Observa-
tion 1. Furthermore, for every circular arc of C, all
rays starting in the center of the corresponding ε-disk
and intersecting the arc, intersect the same arcs of
∂Uδ and T ; the only exception to this is when a ver-
tex of T is on a vertex of CHB . But in this case, such
a ray will intersect T once as well.

3



The properties of f(t) and g(t) ensure that each
point on ∂Uδ and T occurs for some t as the inter-
section of r(C(t)) and ∂Uδ, respectively T , and this is
the only intersection point for that ray. Hence, f(t)
and g(t) have the property that a value of t for which
f(t) = g(t) corresponds one-to-one to an intersection
point of ∂Uδ and T . Since f(t) and g(t) are also piece-
wise simple, the result follows. �

Lemma 3 implies that there are a linear number
of events of the type where a corner of R is at dis-
tance exactly δ from the nearest blue point. These
are additional to the ones of the algorithm presented
in Section 2 and the vertices of ∂Uδ. Handling these
events is trivial. This leads to the following result.

Theorem 4 For point sets R and B with total size
n, and scalar δ, all angles θ ∈ [0, π2 ) for which there
is a blue rectangle Rθ that is δ-covered by B can be
computed in O(n log n) time.

4 Discussion

We presented an algorithm that computes all rect-
angles that tightly cover the ‘blue’ points in one set
but not the ‘red’ points in another set. An exten-
sion of this algorithm also guarantees that no part of
the rectangle does not have a blue point nearby. The
algorithm is efficient and relatively simple to imple-
ment. To make it more useful for the application of
geometric model reconstruction from LiDAR data, a
number of extensions may be considered.

Firstly, we may need to allow a small number of
red points inside the rectangle, because errors may
have been made in the classification into red and blue
points. It is easy to extend our algorithm to allow up
to some pre-specified number of red points inside.

Secondly, we may want to allow a small number of
blue points to be outside the rectangle. This extension
appears considerably harder, and we do not expect to
achieve the same running time in this case.

Thirdly, we may want to allow a small part of the
area inside the rectangle to be not δ-covered by the
blue points. Due to minor occlusion, it may be that
some blue points are missing in a region. This ex-
tension is also difficult to incorporate, although an
approximation version seems possible.

Fourthly, it would be useful to extend the algorithm
to finding different shapes than rectangles, like L-
shapes, without complicating the algorithm too much.

A final question is whether our algorithm or some
adaptation of it will perform well on data that it
would be given in real applications. Only by experi-
mentation can we discover whether the quality of the
data (density of sampling, limited presence of noise,
proper classification of inliers and outliers) is sufficient
to make our approach work well.

Acknowledgments This research has been supported

by the GATE project, funded by the Netherlands Organi-

zation for Scientific Research (NWO) and the Netherlands

ICT Research and Innovation Authority (ICT Regie).

References

[1] P. K. Agarwal, B. Aronov, and V. Koltun. Efficient
algorithms for bichromatic separability. ACM Trans.
on Alg., 2(2):209–227, 2006.

[2] P. Felzenszwalb and D. P. Huttenlocher. Efficient
graph-based image segmentation. Int. J. of Comp.
Vis., 59(2), 2004.

[3] M. A. Fischler and R. C. Bolles. RANdom SAmple
Consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Graphics and Image Processing, 24(6):381–395, 1981.

[4] S. Funke, T. Malamatos, and R. Ray. Finding pla-
nar regions in a terrain: in practice and with a
guarantree. In SCG ’04: Proc. of the 20th Annual
Symp. on Comp. Geom., pages 96–105, New York,
NY, USA, 2004. ACM.

[5] S. Har-Peled and V. Koltun. Separability with out-
liers. In ISAAC, pages 28–39, 2005.

[6] F. Hoffmann, C. Icking, R. Klein, and K. Klaus. The
polygon exploration problem II: The angle hull. Tech-
nical Report 245, Fernuniversität Hagen, Praktische
Informatik VI,, 1998.

[7] F. Hurtado, M. Mora, P. A. Ramos, and C. Seara.
Separability by two lines and by nearly straight
polygonal chains. Discrete Applied Mathematics,
144(1–2):110–122, 2004.

[8] F. Hurtado, C. Seara, and S. Sethia. Red-blue sepa-
rability problems in 3d. Int. J. Comp. Geom. Appl.,
15(2):167–192, 2005.

[9] John Chance Land Surveys and Fugro. Fli-map spec-
ifications. http://www.flimap.com/site47.php.

[10] H.-G. Maas. Fast determination of parametric house
models from dense airborne laserscanner data. In
ISPRS Workshop on Mobile Technology, Bangkok,
Thailand, April 1999.

[11] S. Pu and G. Vosselman. Automatic extraction of
building features from terrestrial laser scanning. Int.
Arch. of Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, 36(5), September 2006.

[12] R. Schnabel, R. Wahl, and R. Klein. Efficient
RANSAC for point-cloud shape detection. Computer
Graphics Forum, 26(2):214–226, June 2007.

[13] G. Toussaint. Solving geometric problems with the
rotating calipers. In Proc. of the IEEE MELECON
’83, pages A10.02/1–4, 1983.

[14] Y.-H. Tseng, K.-P. Tang, and F.-C. Chou. Surface
reconstruction from LiDAR data with extended snake
theory, volume 4679 of Lecture Notes in Computer
Science, pages 479–492. Springer Berlin / Heidelberg,
August 2007.

4


