Biologically Plausible Trajectory Generator

Thierry Viéville

(Presentation thanks to Pierre Kornprobst)

Département d'Informatique

Projet Odyssée

Centre d'Enseignement et de Recherche en Technologies de l'Information et Systèmes

Trajectory Generation Problem

A Very General Problem
 Finding your ``way´´ in geographic map
 Making a gesture in a complex environment
 Driving without skid or with a power bound

Trajectory Generation Problem

 But also a High-dimensional abstract problem...

State of the Art

In robotics (two keys)

Latombe (1991) : still a hard problem ! Connolly-Grupen (199*) : harmonic potential. Elegant solution of the problem but subject to the curse of dimensionality

In biology (see e.g. Poucet et al. 2004)
 Seems easy !

Four Key Aspects

The problem is to be solved:

Action: Exploration decouvre obstacle + generation trajectoire pour aller but Global level: e.g. labyrinth Dynamics: Look and move paradigm (here) Degrees of freedom: A lance number of

Very difficult as a Mathematical problem ! Very easily solved by a mice brain !

About Biological Trajectory Generator • Hyppocampal and related structures are involved in trajectory generation

About Biological Trajectory Generator • Hyppocampal and related structures are involved in trajectory generation

About Biological Trajectory Generator

- Internal representation: place fields (PF) within locus maps (LM)
- No topography but recruitment on request
- Reactivation of LM when spatial-area changes
- Obstacles PF -> elongated shapes
 Intermediate goals -> isotropic shapes
- Used for [goal oriented + wandering] behavior
- How is this use in/as a sensori-motor loop?

- Obstacles to avoid are the potential max
- The goal(s) corresponds to its min
- Let's throw a regular sheet on this space
- And let it ``roll-down´´ along this relief

- Two caveats with potentials
 - Local minima!

Solutions: Convex profiles, VonBaumgarten curve, .. Here we use harmonic potential minimize collision probability

very general (e.g. non holonomic constraints) Connolly-Grupen (1994)

Curse of dimensionality ! (exponential complexity with dimension) Solution: Parametric potential

Let us consider (here functions are at least twice differentiable) : (a) a system, defined by a state vector $\mathbf{x} \in \mathcal{R}^n$, $n \ge 2$ (b) an *initial state*, written $\mathbf{x}_0 \in \mathcal{R}^n$,

(c) r constraints defined by scalar inequalities $c_i(\mathbf{x}) > 0, i \in \{1..r\},$ (d) a goal defined by an constraint of the form $c_0(\mathbf{x}) \leq 0$, We consider a connected domain:

 $\mathcal{U} = \bigcup_{i \in \{0..r\}} \mathcal{U}_i \text{ with } \mathcal{U}_i = \{\mathbf{x}, c_i(\mathbf{x}) > 0\} \text{ with } \mathbf{x}_0 \in \mathcal{U}$

Here we define harmonic potentials $V : \mathcal{U} \to \mathcal{R}$ thus

$$\forall \mathbf{x} \in \mathcal{U}, \Delta V(\mathbf{x}) = 0 \Rightarrow ||\nabla V(\mathbf{x})|| > 0$$

with

 $\lim_{\mathbf{x}\to\partial\mathcal{U}_0} V(\mathbf{x}) = -\infty \text{ and } \forall i > 0, \lim_{\mathbf{x}\to\partial\mathcal{U}_i} V(\mathbf{x}) = +\infty$

and consider trajectory $\gamma : \mathcal{R}^+ \to \mathcal{R}^n$ such that:

- starting at the initial point $\gamma(0) = \mathbf{x}_0$, with $\gamma'(t) = -\nabla V(\gamma(t))$
- verifying the problem constraints $\forall t \in \mathcal{R}^+, \gamma(t) \in \mathcal{U}$,
- and reaching the goal $\lim_{t\to\infty} c_0(\gamma(t)) = 0$ (asymptotically)

- Global goal influence (adaptive gain)
- Obstacle local influence

with

Suitable harmonic potential are adelicians

$$V(\mathbf{x}) = \sum_{i=1}^{r} \mathcal{A}_i(\mathbf{x}) - \mathcal{A}_0(\mathbf{x})$$

 $\left|\frac{\lambda}{||\mathbf{x}||^{n-2}}\right)$

 $\sum_{\partial \mathcal{U}_i} \mu_{\mathcal{O}} = \frac{1}{2} \frac{1}{2} \frac{\partial \Phi}{\partial \mathbf{v}} = \frac{1}{2} \frac{\partial$

al radial symmetric harmonic

- Global goal influence (adaptive gain)
- Obstacle local influence

Suitable harmonic potential are *adelicians*: $V(\mathbf{x}) = \sum_{i=1}^{r} \mathcal{A}_i(\mathbf{x}) - \mathcal{A}_0(\mathbf{x}) \text{ with } \mathcal{A}_i(\mathbf{x}) = \sum_{\mathbf{y}_{ij} \in \partial \mathcal{U}_i} \mu_{\mathbf{y}_{ij}} \Phi(\mathbf{x} - \mathbf{y}_{ij})$ where $\Phi()$ is the fundamental radial symmetric harmonic function (for n > 2, $\Phi(\mathbf{x}) = \frac{\lambda}{||\mathbf{x}||^{n-2}}$)

Only closest points

- Yields a sparse map representation O(trajectory-length) ! no direct dim. curse
- Adaptive representation exploration within navigation sensori-motor loop embending (including gain control)
- Biological plausibility is well-founded

Labyrinth Experiment

Start End Map's loci Potential field Trajectory

Various Behaviors

Exploration . . versus . . navigation (simple gain adjustment)

Learning When Re-run Improved trajectory ...and ... further exploration

Using Various Data Input

When the map is known

With only the line of sight as input

Wandering Behavior (no goal)

With Intermediate goals

Extension to a 10 d.of. arm

Considering a high dimensional problem

IA

from a trap, begins . . and escape :

Conclusion

- Biological sparse locus maps have inspired a solution against the harmonic potential curse of dim.
- Improved harmonic potential methods show that biological locus maps are sufficient mechanisms to explain exploration / navigation in partially known environments.

Perspectives

Better link with biological models

 More general behavior generation (gestures, manoeuvres, plans, ..)

Questions?

mailto:Thierry.Vieville@sophia.inria.fr

Software avalaible + on-line demos http://www-sop.inria.fr/odyssee/imp/trajectory

Detailled report

http://www-sop.inria.fr/rapports/sophia/RR-4539.html

Large-public presentation http://interstices.info/display.jsp?id=c_14155