IJCNN 2006

Modeling Cortical Maps With Feed-Backs

Thierry Viéville and Pierre Kornprobst

école NORMALE SUPÉRIEURE Département d'Informatique

Projet Odyssée

RINRIA

Centre d'Enseignement et de Recherche en Technologies de l'Information et Systèmes

 Implement a general variational formulation as a neural network

 Relate an optimization problem to a cortical map estimation

 Consider the coupling between several cortical maps

 Minimization of an energy written in a continuous setting

$$\bar{v} = \underset{v \in H(\Omega)/c(v)=0}{\operatorname{Argmin}} \mathcal{L}(v)$$

General Variational Formulation

We propose

$$\bar{v} = \underset{v \in H/c(v)=0}{\operatorname{Argmin}} \mathcal{L}(v),$$

General Variational Formulation • Λ and L are constants (now...) $\bar{v} = \operatorname{Argmin} \mathcal{L}(v),$ $v \in H/c(v) = 0$ with $\mathcal{L}(v) = \int_{\Omega} |\hat{w} - w|_{\mathbf{\Lambda}}^2 + \int_{\Omega} \phi(|\nabla v|_L) + \int_{\Omega} \psi(v),$ and $\hat{w} = P v$ Measurement information metric Regularization Metric INRIA

Covers Several Applications

• For example, image smoothing $\bar{v} = \operatorname{Argmin}_{v \in H/\sum_i v_i = \operatorname{cte}} \mathcal{L}(v),$ with

$$\mathcal{L}(v) = \int_{\Omega} |\hat{w} - w|_{\Lambda}^2 + \int_{\Omega} \phi(|\omega|)$$
 and

 $\hat{w} = v$

 $abla v|_{\mathbf{L}}),$

Covers Several Applications

How to Go to Discrete Domain?

$$\frac{\inf_{v \in H(\Omega)/c(v)=0} \mathcal{L}(v)}{\int_{\partial t}^{\partial v} = F(v, v_x, v_{xx}, \dots)}$$

$$\frac{\int_{\partial v_i}}{\frac{dv_i}{dt} = G(v_i, v_j)}$$

Goal: Establish the Correspondence... $\inf_{v \in H(\Omega)/c(v)=0} \mathcal{L}(v)$ $\mathcal{L}(v) = \int_{\Omega} |\hat{w} - w|^2 + \int_{\Omega} \phi(|\nabla v|_L^2) + \int_{\Omega} \psi(v)$ Weighted Particular Methods $\frac{dv_i}{dt} =$ $= +\kappa_i \mathbf{w}_i + \sum_j \sigma_{ij}(v_i) v_j - \epsilon_i(v_i)$

Weighted Particular Methods

- Litterature: Degond and Mas-Gallic (89), Cottet and Ayyadi (98), Edwards (96)
- General Idea

L	$\int_{\Omega} \phi(abla v _{\mathbf{L}})$	$\operatorname{div}(L\nabla v)$
σ_{ij}	$\sum_j \sigma_{ij} v_j$	$\int_{\Omega} \sigma(x, y) v(y) dy$

Weighted Particular Methods

- Litterature: Degond and Mas-Gallic (89), Cottet and Ayyadi (98), Edwards (96)
- General Idea

Our Contribution

- Extend result for vectorial case
- Works with nonlinear terms
 - We linearize

$\bar{\mathbf{L}} = \phi'(|\nabla \mathbf{v}|_{\mathbf{L}}) \, \mathbf{L},$

 Linearizing, iterating and updating the smoothing term leads to the solution

Our Contribution

 We recover some compatibility conditions

$$egin{aligned} ar{\mathbf{L}}^{kl}(\mathbf{x}) &= rac{1}{2}\sum_{j}\sigma_{j}\,ar{\mu}_{j}^{\mathbf{e}_{k}+\mathbf{e}_{l}}(\mathbf{x}), \ \mathbf{div}^{k}(ar{\mathbf{L}}(\mathbf{x})) &= \sum_{j}\sigma_{j}\,ar{\mu}_{j}^{\mathbf{e}_{k}}(\mathbf{x}), \ orall is \mathbf{v}^{k}(\mathbf{x}) &= \sum_{j}\sigma_{j}\,ar{\mu}_{j}^{\mathbf{e}_{k}}(\mathbf{x}), \end{aligned}$$

But also, we define an optimal solution, as close a possible to the differential operator

Our Contribution

• How to prove it?

Interest of that approach: Using a weak assumption about neuronal field geometry yields an unbiased discrete form

$$\mathbf{v}_j = \int_{\mathcal{S}_j} \mathbf{v}(\mathbf{y}) \, \mu_j(\mathbf{y}) \, d\mathbf{y}$$

Approximation Error Rates

Error between theorical and computed laplacian mask in function of a gaussian noise for gaussian function and for an approximation order r=4

General Network Compilation Rule

- Convergence of the operator yields the convergence of solutions (*L* is positive but not necessarily symmetric).
- General family of solution for bounded neighbourhoods
- Definition of an optimal solution

with
$$\sum_{ij} \sigma_{ij}^2$$
 minimal

(close to the differential operator).

Conversely....

- Given the network dynamic
- $\frac{\partial \mathbf{u}_i}{\partial t} = -\epsilon_i(\mathbf{u}_i) + \sum_j \sigma_{ij}(\mathbf{u}_i) \mathbf{v}_j + \kappa_i \mathbf{w}_i \text{ with } \mathbf{v}_i = Sig(\mathbf{u}_i),$

As soon as the weights verify (C2), the NN locally minimizes the criterion

$$\mathcal{L}(v) = \int_{\Omega} |\hat{\mathbf{w}} - \mathbf{w}|^2 + \int_{\Omega} |\nabla \mathbf{v}|_{\mathbf{L}}^2 + \int_{\Omega} \psi(\mathbf{v}),$$

With suitable weights.

Consequences

- This representation is well-defined for neural network connectivity with short-range excitatory connections
- Applicable to several classical NN, e.g., Hopfield, Cohen-Grossberg
- No more restriction on weight symmetry

Back to Goals

 Implement a general variational formulation as a neural network

 Relate an optimization problem to a cortical map estimation

 Consider the coupling between several cortical maps

Cortical Hypercolumns

Cortical Hypercolumns

We Model an Averaged Hypercolumn

Remote intra-cortical backward input

Extra-cortical Input or intra-cortical Forward input

Internal connections

We Model an Averaged Hypercolumn

Finding Causes from Inputs...

 Related to Dayan and Abbott (01), Friston (02)

Back to Goals

 Implement a general variational formulation as a neural network

 Relate an optimization problem to a cortical map estimation

 Consider the coupling between several cortical maps

What can we say for several maps interacting together? w_m v_m $\overline{w_k}$ v_k Λ_m, L_m Λ_k, L_k $\inf_{\mathbf{v}_m \in H_m = 0} \mathcal{L}_m(\mathbf{v}_m)$ $\inf_{\mathbf{v}_k \in H_k = 0} \mathcal{L}_k(\mathbf{v}_k)$ IA

Edge map used for restoration

 $\operatorname{div}\left(D\nabla v\right)$

Restored image

Edge map used for restoration

 $\operatorname{div}\left(D\nabla v\right)$

Edge map used for restauration

 $\operatorname{div}\left(D\nabla v\right)$

 $D = c(|\nabla v|)$

What Do We Learn From **Bioloav?** Forward = Driving **Backward** = one-to-c We keep two non-ton one-to-c we keep two non-ton one-to-c we keep two non-ton terminations non-topographic projections vergence 굳 large spatial divergence define a lattice transcend several levels ¥ slow time-constants more numerous

What Do We Learn From Biology?

- Forward connections define an acyclic grap $\overset{\text{\tiny -}}{w}_{m'}=\rho(v_m)$
- Feedback values are smoothed in space, before influencing other maps

 $\Lambda_m(\mathcal{S} * \rho(v_{\bullet})) \text{ and } L_m(\mathcal{S} * \rho(v_{\bullet}))$

 v_{\bullet} \blacksquare Rectification ρ \blacksquare Smoothing kernel S

RINRIA

Link with Well-posedness...

- Perona and Malik ani $\inf_v \int_\Omega \phi(|\nabla v|)$ diffusion model (1990) is ill-posed

$$\frac{\partial v}{\partial t} = \operatorname{div}\left(c(|\nabla v|)\nabla v\right)$$

• The regularization of the PM model, by Catte etal becomes well-posed! $\frac{\partial v}{\partial t} = \operatorname{div} \left(c(|G_{\sigma} \star \nabla v|) \nabla v \right)$

Our Result

• Locally minimizing the criteri \mathcal{L}_m with respervino is equivalent to locally minimize with revect to , in the general case:

$$\mathcal{L}_{ullet} = \sum_m \lambda(|
abla_m \mathcal{L}_m|) \mathcal{L}_m$$

writing $\nabla_m = \partial/\partial \mathbf{v}_m$ and $\lambda(\cdot) : \mathcal{R}^+ \to \mathcal{R}^+$ a positive strictly increasing profile with $\lambda(u) \ge 0, \lambda'(u) > 0, \lambda(0) = 0$ and $\lim_{u\to 0} \lambda'(u)/u < +\infty$., (e.g. $\lambda(u) = u^{\alpha}$ with $\alpha > 2$).

Common Objective for Different Cortical Maps

- Feedback links in our framework yields a well-defined process
- We need $a\psi$ convex in this context

- Backward connections change the processing of a cortical map
- Forward connections act as a "data propagation"

Conclusion

 Implement a general variational formulation as a neural network

 Relate an optimization problem to a cortical map estimation

 Consider the coupling between several cortical maps

Perspectives

- Apply this framework for visual appli (Mumford Shah)
- From an optimization approach to an spiking neural network
- Cf abstract ecvp!

Thank you!

This work was partially supported by the EC IP project FP6-015879, FACETS

Département d'Informatique

Projet Odyssée

RINRIA

Centre d'Enseignement et de Recherche en Technologies de l'Information et Systèmes