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I. INTRODUCTION

a) Position of the problem: High-level specifica-
tion of how the brain represents and categorizes the
causes of its sensory input [13], [9], [6] is a link
between “what is to be done” (perceptual task) with
“how to do it” (neural network calculation). More
precisely [20], [18], a general class of cortical map
computations can be specified representing what is to
be done as optimization problems. One interest of opti-
mization problems is the derivation of a wide range of
applications such as image segmentation, optical flow
estimation and winner take all mechanisms [1]. It has
recently been shown how optimization problems with
regularization mechanisms can be related to neural
network dynamics [5], even in a rather general case
(vector-valued cortical maps, non-linear processing,
interaction between several maps, preliminary imple-
mentation on spiking networks) [12].

b) Biological plausibility of the framework: This
framework has however never been experimented on
a detailed biological plausible neuronal network à la
Hodgkin-Huxley (HH), for two technical reasons. (i)
The required computational resources is really heavy.
(ii) At the present stage of the theory, the local Hebbian
like adaptation rules do not precisely correspond to
usual standard STDP mechanism in this context and
several alternatives must be experimented to push the
state of the art at this level [10].

Thus a very powerful analog simulator of HH neu-
rons but also very versatile in terms of synaptic weights
and axonal delay calculations is required. Such a
platform is available thanks to the mixed analog/digital
set-up developed by the IMS group. In this set-up,
conductance-based and adaptive neural networks are
computed in-silico on customized analog and digital
integrated circuits [21]. The present preliminary study
explores the feasibility of using this unique experimen-
tal tool to help understand the biological plausibility of
the formal approach, with the hope of proving powerful
compilation tools of early-vision functions on such
emerging hardware.

c) What is the contribution about: In the next
section we briefly review the variational framework

specifications, then present the in-silico simulation
platform. We then describe the proposed experiments
and conclude about what are the expected results.

II. SPECIFICATION OF A CORTICAL MAP
COMPUTATION

Variational formulation

Given an input map w, one look for an output map
v̄ verifying

map parameters

map input map output

map
   computation vw

, L

P

v̄ = argmin
v∈H/c(v)=0

L(v), (1)

with

L(v) =
∫
|ŵ −w|2Λ +

∫
φ(|∇v|L) +

∫
ψ(v),(2)

and ŵ = Pv, (3)

where ∇ stands for the gradient operator, φ(·), ψ(·),
P, c(·), Λ and L are commented hereafter. The norms
defined in (2) are weighted norms defined by |u|M =
uTMu, where M is a given symmetric positive matrix.

The first term in (2) is a fidelity attached term
specifying how the output is related to the input, the
second term is a smoothing term which defines the
regularity of the output and the third term allows to
constrain the form of the solution. The equation (3)
defines the relation between the input estimation an the
output. So the formulation (1)–(3) specifies the cortical
map computation in the sense that it explains the
“goal”, what is to be done, but without any reference
to how it is done.

The functions Λ define a so-called measurement
information metric which represents the precision of
the input (the higher this precision in a given direction,
the higher the value of Λ in this direction) and allows
to take into account (in a statistical framework, Λ cor-
responds to the inverse of a covariance matrix) partial
observations and missing data (i.e., null precision)



The functions L define a diffusion tensor mod-
ulated by a function φ which controls the amount
of smoothness required. Low variations, assumed to
be “noise”, are smoothed (using e.g., quadratic and
isotropic smoothing for additive white noise), while
high contrasts, assumed to be the “signal”, are pre-
served (e.g. with diffusion only in the direction tan-
gential to the edges). Furthermore, when a problem is
ill-posed, adding some a priori on the smoothness of
the solution regularizes the problem (e.g. with diffusion
from well-defined values to undefined or ill-defined
values).

Three kinds of constraints are introduced: structural
constraints (via c()) , to define a nonlinear solution, i.e.
to force the solution to belong to a manifold defined
by implicit equations; optimization constraints (via
ψ()) to control the form of the solution; measurement
constraints between both the input and the quantity to
estimate (via P) to obtain an unbiased estimation [19]
in this non-linear case.

Such formalism is in direct link with generative
models of the cortical areas processing, for instance
in the Bayesian framework, the a priori informa-
tion corresponding to the regularization and choice of
constraints and the fidelity term being related to the
conditional probability with respect to the input.

Partial differential implementation

The local solution of the previous criterion can be
implemented -in the general case- using a network
dynamics of the form of Cohen-Grossberg analog
network, using linearized integral approximation of a
diffusion operator introduced by Cottet, Degond and
Mas-Gallic [7], [5], [8], [17]. More precisely, for a
neuron of index i, we have

∂vi
∂t

= −εi(vi) vi +
∑
j

σi,j(vi) vj + κi wi (4)

with:
The term κi is a simple gain, while the corrective

term εi(vi) is a straight-forward but rather complex
non-linear function of the criterion parameters. The
term σij(vi) corresponds to the synaptic weights, and
a linear family of solutions is derived for a given
diffusion tensor L.

Among those solutions, an optimal one (here the
closest discrete approximation with respect to the con-
tinuous one, in the least-square sense, given a well-
formed distance) is chosen. The obtained derivation
turns out to be a short-term adaptive rule and the
synaptic weights are related to the related diffusion
operator using a Hebbian learning scheme [20]. This
describes a biologically plausible mechanism of short-
term adaptation [18] (see [20], [18] for details).

Here we are going to map (4) onto a HH spiking
neuron state. We consider that vi and wi correspond

to the last neuron spike with respect to a fixed clock
at regular time T . This reference is either generated
by an auxiliary neuron (as proposed in e.g. [14]) or
related to competitive temporal coding as discussed in
e.g. [16]. Here εi corresponds to the HH dynamics and
is thus not derived from the specification.

III. MAPPING ON A HODGKIN-HUXLEY NEURAL
NETWORK

Very briefly, the state of a HH neuron (e.g. [10]) is
defined by a dynamics of the form:8>><>>:

C V̇ (t) =
P
k ḡk φk(t)

αk ψk(t)
βk (V (t)− Ek)

+ I(t)

τk,φ φ̇k(t) = φk,∞ − φk(t)
τk,ψ ψ̇k(t) = ψk,∞ − ψk(t)

for the neuronal membrane potential V , input current
I , activation φ and inactivation ψ fractions of either:
- the maximum conductance ḡk available at any given
time for voltage voltage-gated ion channels or
- the synaptic conductance ḡk = wij f (V ′(t), t) driven
by post-synaptic potential induced by another neuron
of membrane potential V ′(t).
The membrane leak is included in this equation for
ḡ0 = wii, k = 0, φ0 = ψ0 = 1. The Nernst potential
Ek is the ionic specie reversal potential, τk,φ and τk,ψ
time-constants and φk,∞ and ψk,∞ steady state values.
We write V̇ (t) = F (V (t), t, · · · ) this dynamics in the
sequel.

Here, we assume that each neuron is in a periodic
regime, now viewed as interacting oscillator1, as dis-
cussed in e.g. [3]. At the experimental level, the regime
is going to be established for each neuron with weak
synaptic couplings, considering in this context regu-
lar spiking neurons, and measuring the current input
bounds which guaranty this regime to be preserved (it
is known from the theory that this condition is stable).
It is thus assumed that this regime is maintained at any
time.

We can define an instantaneous phase v for each
neuron, the phase reduction being formally defined by
the partial differential equation:

∂v(V (t))
∂t

=
∂v(V (t))
∂V

F (V (t), t, · · · ) (5)

(see e.g. [3] for a development). The periodic current
input I(t) is similarly related to its instantaneous phase
w.

In practice, between the occurrence of two consec-
utive spikes, after the spike of index n,

v̇(t) ' 2Π
tn−tn−1

, tn ≤ t < tn+1

is going to be measured as the inverse of the instan-
taneous period. Please note that we do not use the
instantaneous firing rate as coding variable but the
instantaneous phase, the former being the temporal
derivative of the latter.

1This view is not to be mixed with other mean-field coupled
oscillator models, e.g. [15]



With this setting, equation (4) simply represents
the 1st order expansion of the instantaneous phase
equation, with the following correspondence from the
previous setting:

κi = ∇v/C ∂I(w(t))
∂w

σi,j = wi,j∇v/C φαk

k ψβk

k

∂f(Vj(vj))
∂vj

= wi,j λij
εi = −∇v/C [wi,i +

∑
k>0 ḡk φ

αk

k ψβk

k ]
= −[wi,i + µi]λii

(6)

the time dependency being dropped. Here the neuronal
leak is used to control the corrective term; it is trick in
this preliminary set-up, whereas in truth more plausible
mechanisms (e.g. the global conductance state) are
likely in action, but with an equivalent effect in this
case.

At the experimental level, the quantities κi, λij , µi
and λii are estimated in a given context of periodic
activity. So that it is then possible to adjust the synaptic
weight to realize the given function in this regime.

IV. PRESENTING THE HARDWARE SIMULATION
PLATFORM

The set-up we designed is dedicated to the temporal
simulation of spiking neural networks. It is archi-
tectured to process in biological real-time adaptive
neural networks of conductance-based models of neu-
rons. Computation is distributed on analog hardware
(custom-made integrated circuits), digital hardware
(configurable logic devices) and software. Therefore,
the simulation platform is organized in 3 layers, as
shown in figure 1.

Fig. 1. Architecture of the simulation platform.

The analog hardware layer comprises full custom
specific integrated circuits (ASICs), that were designed

using a proprietary library of electronic modules [2].
The ASICs run in continuous and real-time the com-
putation of the neurons and synapses ionic currents.
Neurons can be modeled by up to 5 ionic conductances,
following the HH formalism. Each mathematical func-
tion appearing in the neuron model corresponds to an
analog module in the library, with inputs for tunable
parameters, stored on-chip in analog memory cells.
The ASICs output the neural spikes as time-stamped
events. They receive pre-synaptic events as binary
pulses, which length encodes the synaptic strength.
The digital hardware layer is in charge of the neu-
ral network connectivity: it processes spike events
from the analog neurons, and computes the synaptic
weights, applied back on the ASICs. The adaptation
rules of the network, that dynamically influence these
weights, are computed by the FPGAs of the digital
layer, provided that the computation respect the real-
time constraints: in the current configuration of the
platform, each synaptic weight has to be refreshed
every 50 µs. Predefined stimulation patterns can also be
applied to individual neurons; such patterns are useful
to emulate background cortical activity. The third layer
includes the software driver and interface, in charge
of controlling the data bi-directional transfer to the
software via a PCI bus. The personal computer runs
a real-time operating system. It is available to host
software functions that compute adaptive connectivity
functions that would not be supported by the FPGAs.
The software also includes user interface functions to
control (off-line and on-line) the simulation parameters
and results.

V. EXPERIMENTING 1D NON-LINEAR DIFFUSION

In order to show the interest of the previous plat-
form, let us revisit an edge-preserving smoothing
approach proposed by Cottet and Ayyadi [5] which
corresponds to the framework presented in this paper,
here in 1D. Here, (2) corresponds to a 1D non-linear
diffusion, depending on the norm of the gradient of
the intensity. The smoothing term infers two kinds of
behaviors:

• For low contrasts, the smoothing term is quadratic
which corresponds to an isotropic smoothing.

• For high contrasts, the smoothing term vanishes
in order to preserve edges.

and considering a simple nearest-neighbor connectivity
as illustrated in Fig. 2 we can directly write:

wi,i = γ[wi,i−1 + wi,i+1]− µi
wi,i−1 = wi,i+1 + = ψ(vi+1 − vi−1)

(7)
with ψ(t) = αH(2−|t|) (1+|t|/β) (2−|t|/β−2)2

4 where
κ (the input gain), α, β and γ are tunable parameters.
Here the ψ(t) profile is not critical, providing it is



a sigmoid like profile2 (we write H(t) the Heaviside
function).

Network output 

Network input 

 recurrent connections
Lateral 1D

1D Input/output diffusion layer

Fig. 2. Schematic representation of the experimental network. Each
input is combined with local nearest-neighbor left-right diffusion, to
drive the network output.

In other words, this mechanism is designed to
weakly poly-synchronize the neurons as observed in
simulated or biological neural networks [11], [4]. s

Such a mechanism has already been experimented
as reported in [12] (see Fig. 3) considering a software
simulation of a restrained spiking neuronal network,
while in the present study we plan to experiment it on
biological plausible HH neurons, where the membrane
potential dynamics is explicitly considered.

Noisy input Smoothed output

Fig. 3. Example of 1D implementation of anisotropic edge-
preserving smoothing using a spiking network, from [12].

The proposal is to implement mechanisms for dif-
ferent families of parameter and eventually different
weight adjustment profiles.

VI. CONCLUSION

We propose to experiment how non-linear diffusion
processes which allow to implement rather sophisti-
cated visual functions as derived from a variational
approach can be mapped onto a biologically plausible
HH neuronal network. To attain this goal the in-silico
implementation of such a network is the optimal tool
to experiment many variant of such mechanisms and
to understand how the non-linear diffusion parameters
map onto the neuronal dynamics.

It must be clear that this preliminary proposal of
such implementation is to be tested, adapted and

2typically with:
ψ(0) = α, ψ′(0) = 0, ψ(+∞) = 0, ψ(β) = α/2, ψ′′(β) = 0 .

validated on the network. Here we are in a situation
where the neuronal dynamics is complicated enough
for analytical methods to be virtually usable. Therefore,
the experimentation is mandatory, as proposed here.
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