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A review about what can be computed with spikes . . .

To which extend is the neural code a metric
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GLOBAL TIME CONSTRAINTS IN SPIKE TRAINS NEURAL CODING AND SPIKE TRAIN METRICS

In computational or biological contexts, spike times are
constrained by the neural dynamics and

- [C1] bounded by a refractory period,

- [C2] defined up to some absolute precision,

- [C3] with a minimal delay between one spike and its target
- [C4] there is often a maximal inter-spike interval with the

next spike (if any) In ms:
i ot dt D
1 0.1 > 0.01 10°—°

*[C4] is not obvious :
X true when leak + conductances (cortical neurons ?)
X false when internal currents (thalamic neurons ?)

Different dynamics. Without [C4]:

A "“vicious'" neuron can remain silent a very long period of time, and
then suddenly fire inducing a complete change in the non-linear system.

“same neural code”’
- equivalence-relation
permutations are equivalence classes

- Two trains correspond to the °
E.g.: rank coding &

“approximately " to the same code
- metric-representation
E.g.: - Binned metric, spikes grouping in bins (e.g. rate coding ),
- Convolution metrics,
defined on spike train convolution,

- Two trains correspond °

- Spike time metrics,
such as alignment metrics.

* [C1-2] yields a spike train information upper-bound

N % log, %)

for N during neurons during T, ~1Kb/neuron/seconds.

* [C1-3] allows to study time discretized model instances:
[H1] The raster plot is generically periodic,

periods are unbounded
(= external current or synaptic weights),

[H2] There is a one-to-one correspondence between
orbits and raster (raster plots provides a symbolic coding).

True for conductance based leaky integrate and fire neurons.

Likely for any model with reset and contracting dynamics.
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Parameters variation:

[A] The phase space is partitioned into bounded domain and for each initial
condition the initial trajectory is attracted to a periodic orbit. [B] If the
parameters (input, weights) change, the landscape is modified and several
phenomena can occur: change in the basins shape, number of attractors,
modification of the attractor.

* [C3-4] allows to optimize event-based simulation
+ Ultra-fast event-time's queue with bounded size

+ Allows to introduce "“lazy”” event management
(next-event time is given after lower-bounds estimations)

A minimal 10Kb C++ kernel with O(D/dt + N) buffer size and
101> operation/spikes —» > 10° spike/sec on a laptop.

Used as plugin for existing simulators http://enas.gforge.inria.fr

www.loria.fr/~vthierry
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* Convolution metrics:
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relate the spike-train p with a continuous signal s.
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[A] The spike train itself, [B] A causal local frequency measure estimation,
[C] A non-causal spike density, [D] A normalized causal exponential profile.
Related to: evoked post-synaptic potential, representations using Fourier or
Wavelet Transforms,including Mercer scalar-products (" “kernel”” methods). .

- Kernel identification: given s and p yields K
- Laplace transform via Parseval theorem
- Signal deconvolution: given s and K yields p
- Inverse usual kernels are well-defined
- Signal reconstruction (Shanon generalization):
A [-Q, Q] frequency signal s is defined by p iff max [t", t"*'] < Q/n

* Alighment metrics:

Minimum cost ¢ of transforming one spike train into the other with:
- spike insertion or spike deletion ¢ += 1
- spike shift c+=|t-t'|/T

quadratic algorithm available.
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+ Non-linear cost generalization, integrating [C2].
+ Causality integration (*older””

+ Applicable to spike-interval, spike-motifs, ...
includes: spike-time differences, rate distance, etc...

spikes less matter).

- Characterize neuronal variability and coding
- Allow to perform spike train computation/training:

E.g.:considering a SRM model:

Vilt) = vt =7 + 3 wijalt —t7), 77 <t < ¢,
yields the following formal learning rule:

Awij = 3, (8 — F7) Za-(t7) [ G @)
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