Variational methods as
a computational model for cortical visual maps

2006-01-10



http://www-sop.inria.fr/odyssee/team/Pierre Kornprobst
http://www-sop.inria.fr/odyssee/team/Thierry.Vieville

The 45mn talk step by step

e (10mn) An introductory example
e (10mn) Specification of visual functions
e (05mn) All what you do not want to know about hidden maths

e (15mn) Implementing variational approaches

e (10mn) Generalization to other sensori-motor functions




Introductory example: Isotropic Diffusion and Gaussian Filtering

e Retinotopic map: “images”
e Linear Gaussian Filtering : Image Smoothing
e The Heat Equation : Isotropic Diffusion

e A Variational Formulation : Image Regularization

e From this example to a general setting




Retinotopic map: “images”

and with noise

image originale

o A may be defined as a
2 X 2 array or as a , a
“map’

u:QcRY - RY

it is obtained after both pixelization.
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and quantification,
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More general images (image sequences or bundle) . .

corresponding to various data type:
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Linear Gaussian Filtering : Image Smoothing

e Let ug an image, the Gaussian Smoothing writes:

u (z) = (G *ug)(z) with G (7) = =5 exp (__

2T o

e This is a standard front-end for multi-scale representation of an image.
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The Heat Equation : Information Diffusion

e Let up an image, the Isotropic Diffusion writes (Partial Differential Equation):
Ou( z) = Au(,z), t>0,
u(0, ) = up(x).

e The Laplacian A is an isotropic, elementary diffusion operator:
5 1| 2
Ay = Zle % ~ ) ev(mlu(z) — ulz)] [ 52 > (local balanced average)
E 1 p) 1

e Main result: | u( ,z) = (G  *ug)(x)

e Diffusion is an infinitesimal smoothing !




A Variational Formulation : Image Regularization

e Let up an image, the Regularized Image writes:
inf, E(u), BEu)= [,(1-2X) |u(z)—uo(x)|®+\|Vu(z)|* dz

e Main result (Euler-Lagrange equation):

%(t, 7)) = —% VE = (1- X)) [up(x) — u(x)] + A Au(z) minimizes E

e When A\ — 1 the heat equation minimizes F.

e This gives : convergence + function specification !

what’s to be done — how to do it




From this example to a general setting

e All main visual functions may be specified from a variational approach
e The partial differential equation is even more general

e Very robust and efficient implementations are derived

e Generalization to non-linear space (Beltrami flow)

e The link with biological neural networks has been built

e . . and it is not that complicated.
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Specification of visual functions

e Image restoration (smoothing, etc..) including using a biological model.
e Image segmentation (object detection, ..)
e Image matching / registration (stereo, motion, ..)

e Others:

— Focus of attention (winner take [almost] all)

— Image completion (in-painting, ..)




. . and more
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Specification of visual functions: image restoration

e Basic model: find u observing uy,

Uo = R E ’le, + <V _
measured image image formation original image some additive

linear operator Gaussian noise

e Basic specification: minimize,
inf, E(u) = [,(uo — Ru)? dx + A

— Data attach: least-square solution (statistically optimal . . but ill-posed)

- . restrain the set of solutions

— Meta-parameter : high-level control of the solution




Specification of visual functions: image restoration

e Automatic derivation of the Euler-Lagrange equation:

A
(R*Ru — Rug) — 7 =0

e with a geometrical interpretation of the non-linear diffusion:

div (£ vu) = urT + unN

~N"~

\ 4
~~ normal

tangential

not across edges




Specification of visual functions: image restoration

e A large choice of non-linear profile:

/
Author d(x) ¢ :gn)
. 2 2
Malik & Perona log(1 + z*) (1+$2)
Tikhonov & Arsenin 2 convex 2
2
x
Geman & Reynolds T2 m
2 z =0
Green 2 log[cosh(x)] convex
2tanh(z)/z x #0

Aubert & Vese

e Here ¢ allows to control the regularity of the solution

e In fact ¢ allows to defined the underlying functional space of the solution
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Specification of visual functions: Perona-Malik restoration




Specification of visual functions: Along isophotes diffusion




Specification of visual functions: A few examples

Originale Chaleur Perona-Malik Weickert
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Specification of visual functions: a non variational approach

e Defining the structure tensor from the image gradient Vu:

u U
Uogy Uoyy

e Allows to propose the Weickert diffusion scheme:

ou ,
i div (D( it ) Vu)




Specification of visual functions:
approach

another non variational

e The Osher and Rudin shock-filter approach:

u(t,x) = — |ux(t, )| sign (uz(t, x)),

u(0, ) = up(x),

can not be derived from a variational approach (convergence not guarantied !)
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Specification of visual functions: the Cottet-Ayyadi model

Cottet and Ayyadi consider the Hebbian adaptive diffusion processes:

min [ HVUHQL() = 1 = —I(u) Apu with u(0) = ug

with contrast threshold s, adaptation time constant 7, spatial smoothing S-

p = min (1,||g|2| ), g=S5x*Vu
g292 —3g192 >

w

J_ p—
(91.92) —dJi192 9191

»
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Specification of visual functions: the Cottet-Ayyadi model

- anisotropic diffusion along edges but not across edges for high contrasted areas
thus with: (ie. L = P_1 when pis close to 1 in the previous equation) but
- isotropic diffusion in almost uniform areas when low-contrast

(i.,e. L =T when p is close to 0 in the previous equation).

- the neuronal state u
Including the non-linear  (usually related to the membrane potential) and
relationship between: - the neuronal output v € [0, 1]

(usually related to the average firing rate probability).
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Specification of visual functions: the Cottet-Ayyadi model

Raw Isotropic Anisotropic

The blue image contains a huge (80%) amount of noise. The complex image contains features

at several scales. Edges are preserved, while an important smoothing has been introduced.
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Specification of visual functions: restoration of complex images

e Color image restoration




Specification of visual functions: restoration of complex images

e \ector field restoration

— — —r =, P — .




Specification of visual functions: restoration of complex images




Specification of visual functions: restoration of a tensor field

e Saturation of a tensor field 7= RT D R with
(i) diffusion on

D and (ii) regularization of R with orthonormal preservation

i B ; - il




Specification of visual functions: image segmentation

Specification:

MMy K /(u—u0)2 + a2/ |Vl + ﬁ/ 1
LW N W-K / \_\5_/

J
~~

approximation homogeneity of parsimony of
quality each component the segmentation
"data attach” “regularization” “edge length”

MiN,, fW(u—u0)2 4+ ol fW22||Vu||2 + B fW Ae(2)
where:

- 8 > 0 controls the fine/coarse grained segmentation and

- o > 0 controls the scale,
while  “resistance to noise” (= 5/a?)

and “sensibility to contrast/threshold” (= (8/a%)'/4)

B NRIA




Specification of visual functions: image segmentation

Here [, 1 is the length of K in the Hausdorff sense (i.e. using the limit of the
diameters of a covering)

The border K may be represented by an auxiliary function
z: W —0,1] with z/K ~0and z/(W — K) ~ 1
2
writing A (2) = €||Vz||* + %.




Specification of visual functions: image segmentation

Up to € the Blake & Zisserman equations:
v = —(v—w)+a?(z2Av+22VzIV)
¢ = —a?z||Vu||P+ B (eAz — Z1)
solve the Mumford-Shah problem.

U (random colormap)




Specification of visual functions: image segmentation

e More generally, it involves two unknowns

— u is a function defined on an N-dimensional space
— K is an (N — 1)-dimensional set.

o £ — HNL(OE) is not lower semi-continuous w.r.t. any compact topology.

e Solutions:

— identifying the set of edges as the jump set of a BV function (see below)
— approximation by elliptic functional (as done previously)

— Chambolle discrete approximation by a suitable finite-difference scheme

— etc..
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Specification of visual functions: object segmentation

e Considering the figure/background segmentation

e The segmentation curve is defined a function level-set (Osher & Sethian)

- N
e T T S, f=Tm'
i e S B0 =4

40




Specification of visual functions: object segmentation

e [ he level-set evolution induces the curve evolution

C(O7 Q) — CO(Q)'

e Including with topological changes

e Including in higher dimensions




Specification of visual functions: object segmentation




Specification of visual functions: image matching

(Ha)

A large variety of problems / conditions:

(H1) Intensity conservation
(H2) Global intensity variation

(H3) Local intensity variation

but a synthetic approach.




Specification of visual functions: image matching

e (H;) Assuming intensity conservation
u(t + 6t,x + dx) ~ u(t, x)
defines the optical-flow constraint:

vzccll—f, U-Vu(t,a})—l—%—?(t,x) =e~0

e Approximate equation: true only for Lambertian surfaces in translation

e The approximation is better on edges (where |Vu(t, x)| >> |e]|)

e Aperture problem: only 1 equation, for a 2D problem




Specification of visual functions: image matching

Specification of the solution:
inf, [, A(v) + S(v)

Aw) = [v-Vu+ w?
2
S(v) = Z/ Vv, |?dx (Horn & Schunck)
j=1"1
2
— Z/ ¢(|V’l}j’)d3} (Preservation of discontinuities)
j=1"¢
— /gp(div(’v),rot(v))dx (Differential properties)
Q
o /trace ((Vv)'D(Vu)(Vv))dx I <
— . |Vu|2 TN (Image properties)

= etc..




Specification of visual functions: image matching
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Specification of visual functions: image matching

e (H>) Assuming global intensity variation between, say
I = u(t,x) and Is = u(t + 6t,z + dx) viewed as random variables

A(v) is now computed on the joint histogram:
— Using Parzen density estimation
— i.e. Gaussian smoothing of the histogram

Ph(Yh)
pX) e

p(X|Yy, = I (x + h(x)) )__/j_‘ ,'\__




Specification of visual functions: image matching

e The chosen criterion depends on the relation between the two images:
Cross correlation  Correlation ratio Mutual information

Affine relation Functional relation  Statistical relation




Specification of visual functions: image matching




Specification of visual functions: focus of attention

Combining diffusion and binarization:

min, (Vo) + $0)  pij0,1—R

smoothness binarization

for some skew-symmetric bi-modal function () defining a threshold

- initialized to the distribution mean and

- incremented /decremented during the process

to maintain a small binarization with respect to diffusion

- the iteration is stopped when the output has a predefined small size.




Specification of visual functions: focus of attention

Input Intermediate Output Output (zoom)

An example of result for the winner-take-all mechanism implemented using the proposed method.
The very noisy (more than 80%) original image is on the left; the intermediate result shows how

diffusion is combined with erosion yielding the final result, shown also with a zoom.
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Specification of visual functions: image completion

Same kind of criterion as for restoration with a distance to the image statistic
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AWYDWKAM: The foundation of the PDE approach

e \We define a multi-scale analysis (or equivalently the scale-space) as

a family of operators {73},
which applied to the original image ug(x)
yield a sequence of images u(t,z) = (T ug)(x).

o \We are going to list below a series of axioms to be satisfied by {73}, -

(X denotes the space C2°(R?) and uy € Cy(R?))

These formal properties are very natural from an image analysis point of view.

(*) All What You Don't Want to Know About Maths
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AWYDWKAM: Axioms and Properties

(A1)

(A2)

GX)

(A4)

(11)

(12)

Recursivity:

To(u) = u, TsoTiy(u) = Tsi¢(u) forall s, ¢t > 0 and all u € X.

Regularity:

| Ti(uw 4+ hv) — (Tiy(u) + hv) ;00 < chtforall hand tin [0,1] and all u, v € X.
Locallity:

(T3 (u) — T3 (v))(z) = o(t), t — 0T for all w and v € X such that V*u(z) = VY (x)
for all |a| > 0 and all x (V®u stands for the derivative of order «).

Comparison principle:

Ty(u) < Ty(v) on R forallt > 0and u,v € X such that u < v on R

Gray-level shift invariance:
T:(0) =0, Tiy(u+ c¢) = Ty(u) + ¢ for all w in X and all constant c.

Translation invariance:
Ty (th.u) = 7.(Tyw) for all A in B2, t > 0, where (7,.u)(x) = u(x + h).
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AWYDWKAM: The main result

Alvarez et al. theorem: Under assumptions A1, A2, A3, A4, 11, and 12:
(1)
satisfying F'(p, A) > F(p, B) for all p € 8%, A and B in S® with A > B such that
§i(u) = U=t p(Vu, Vi), t — 0t
uniformly for z € R, uniformly for u € X.
(ii) Then u(t,x) = (T; ug)(x) is the of

o =

{ U _ [(Vu, V2u),
u(0, ) = ug(x),

and u(t, x) is bounded, uniformly continuous on R2.




AWYDWKAM: What the hell is a “weak” solution ?

e A way to deal with non-linear degenerated equations:
%—%(t,x) + H(t,z,Vu(z),Vu(z)) =0, t>0,ze€Q
Here H : ]0,T] x Q© x R x RY x S — s continuous, elliptic and degenerated

Here u € C(] 0, T ] X €2) but not differentiable everywhere

e using test functions allowing to bound the solution

E.g. the eikonal equation: { |




YAUHF: In which functional space do we work ?

We consider functions of bounded variation
(= distributions which derivatives are measurable)
BV(Q) ={u € L'()/ }
with mainly an hyper-surface as singular set S,, (where upper/lower limits ™ /u~ differ)
and which total variation is of the form (n, is the normal to S,,) :

D — . . v _,
u=Vu-Ly+ + tC’ t
cantor par
H is the Hausdorff measure (i.e. length, surface, etc.. of a curved space);

while we consider C,, = 0 in practice.

In fact not optimal for textures, small structures:
an oscillatory component is also considered v = div(g), g € L™

(*) Yet Another Useful but Horrible Formalism
B NRIA




YAUHF: In which functional space do we work ?

An example of BV + OSC decomposition:
TR ™ = ' ol




YAUHF: Which properties to define the minimization ?

Ue = Argmin . E(u)
e Inferior semi-continuity liminf, ., F'(u,) > F(u,)
o Coercivity lim, | 4o F(u) = +00

e Convexity (for unicity)

allows to define a minimizing series of the energy (notion of I'-convergence).




YAUHF: What the hell is I'-convergence ?

[-limg oo B = F
=
inf,, _ulim infy_ oo By (ug) = SUP,,, . [IM SUP. oo Fk (ug)
=
Vur — u, E(u) < lim infy_ o Er(ux) & Furp — u,lim sup,_,  Fr(ug) < E(u)

Main result:

If up i1s @ minimizer of £} and ui — u then u is a minimizer of E

thus allowing to approximate a “singular” energy by a series of regular energy.
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Implementing variational approaches: standard schemes

e Finite difference methods:

%(tpx) = — Dig g = Au,; .

e Including multi-resolution framework

e Including semi-implicit schemes (solving a linear equation at each step)
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Implementing variational approaches: standard schemes

e Linearization methods
0= 2u(t,z) = — 0=4L

e More generally
min,E(u) — v, =1—-a)u,, —aMVE(u, )

2V

— the matrix M allowing to solve the linear part of VFE,

— the a €]0, 1] parameter controls the convergence.




Implementing variational approaches: Chambolle et al. scheme

e The continuous criterion is 1st approximated on a grid:
MM, K fW(u—u0)2 + o fW_KHVuH2 + I6; le

where:

o (t) is a positive even, finite and small support profile
with ¢(0) = 0 and [ t°¢p(t) < +oo
fap(t) = pBf (% t) is a suitable non-decreasing function f(t) < min(t, 1) (e.g. arctan)

e The I'-convergence when h < 0 is verified, and numerical approximations valid.

o The length [, 1 minimization is obtained thanks to the non-linear function f().
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Implementing variational approaches: Software architecture

e The software architecture is straightforward:

— Map loaded with default values
— Until convergence (on the criterion or the inter-iteration distance)
* For each cortical map pixel (in sequence, randomly or in parallel)

- Apply a local operator of the form
o = F{---ul i, bhu€{—w.w},ve {-h.h}

2V}

e Existing middle-ware defines image iterators and
take into account the application of the operator on the map boundary
must use performant full compiled code (see e.g. CImg open-source)
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Implementing variational approaches: Convergence/complexity

o Complexity in O(S) for an image of size S = N¢

e . . with “exponential fast” convergence (contraction) e(t) < Ke(t—1) < K'¢(0)
e Parallel implementation is straight-forward

e Convergence to a local-minimum is garanty by construction

e . . and “convexification” allows to control which minimum

— default/a-priori value closest solution




Implementing variational approaches: Hebbian schemes

Consider the problem min, |u|? with Cu = ug

v'g > 0

with
Any sequence u’  =u' — 7 { 7| < €

writing g= (CCT)~ltu" — C! uq

converges towards the minimum.

Here v is related to g combining the input ug and output u'.

This means v small enough and approximately in the right direction

Non-linear generalization is straight-forward

e =2 cos(7,8) |gl/ |7/l

2
cT c
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Implementing variational approaches: Particular methods

e Given an input map w, one look for an output map v verifying

v = argmin L(v), with
veH /c(v)=0

\’ map
W L(v) :/]w—wﬁ—k/(b(]V\f\L) +/¢(v),

and w=Pv

o Here |u|yy = ul’Mu is defined by a variable symmetric positive matrix M.

e This defined an non-linear unbiased estimation (which includes almost all cases).
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Implementing variational approaches: Particular methods

e The solution can be compiled on a “analog” neural network of the form:
v, = —€;(v5) Zj Gij (Vi) v; + Ky w;

— The weights & corresponds to a discrete integral approximation of the diffusion
operator L
A, ) (F( fS y) dy with [, &(x,y)? dy minimal
where S is a covering of the continuous map by the neuron'’s fields.
— The corrective term € includes a leak and a non-linear adjustment of the
threshold or delay.

e The compilation of the network parameters is straightforward.
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Implementing variational approaches: Particular methods

More precisely, it writes:
4

) — , @T /
G'L('U) PzV‘|‘€3V TC+¢7 £:(1_A)|g_£|/|%TC|
9 pi = 2 ;04 +P AP, and . M
v — =7 AL with A < 1.
\

Up to order r (r > 2), at M points, providing M > )t n(ntl)

n!r! 2 z

the weights o = (o;;) come from:

ol = 2 M) = 33,08 "(x), withL =¢/(|Vvlr)L
lal =1 divi(L(x)) = 2.0 ,ujk"(x) while o; = (o1 01+~
2 < |lal <r 0 = > 0l (X) (unbiasness)

min > . sz (optimality)

which is a quadratic minimization under linear constraints

— unique generic closed-form solution




Integral approximations of a diffusion operator: examples

A few examples of operator 1D-profiles, considering an isotropic second-order derivative;

from left to right:
-r =5, s = 10: we obtain a profile with two poles qualitatively equivalent to the s distribution;

- r = 8, s = 20: increasing the order of correspondence, a profile closer to s is obtained;

- r = 2, s = 3: when the correspondence is insufficient (r is too small) we obtain a profile which is qualitatively correct but very “flat”;

- r = 6, s =10: when considering without any redundancy, the approximation may be slightly biased with spurious effects.

B NRIA




Integral approximations of a diffusion operator: examples

A few examples of operator 2D-profiles, with r = 3, s = 6, represented in the (a:o, a:l) plane;
- left view approximation of 1st order derivative isotropic operator 8(1’0) qualitatively equivalent to the corresponding continuous operator;

- middle view approximation of 2nd order non-isotropic operator LY Eoli= 5% 29 and

- right view a 2nd-order non-isotropic operator LY = 84 + 4, both illustrating how solutions adapt to such profiles.




Integral approximations of a diffusion operator: examples

This mechanism not only generates numbers but also formulas !

5053 A7 — .25117 .07255 ||4]|? .5053 A7 — .25117

An example of anisotropic 2D-mask in the direction i = (7, Ny)

obtained forr = 2 or 3 and s = 1

The symbolic calculation thus output a piece of code

(automatic generation of Java/C++ code from Maple)

B NRIA
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Implementing variational approaches: Particular methods

e The weight/threshold relation is compatible with standard STDP rules

e The architecture of an unit corresponds to an “abstract” cortical column

W Extra cortical input or intra-cortical input from previous layers
v Extra cortical or backward intra-cortical output
Zj AL Local connections
AL Remote backward connections
Iterative operations Internal connections

e Stability of several cortical maps in interaction can be established
Objective functions can be combined in this context

Local minimization yields global optimization

e The method is valid for any local differential operator (here 1-2nd order)
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Implementing variational approaches: Particular methods

The Maass-Natschlager use of piece-wise linear Gerstner and Kistler S.R.M.

allows to derive a implementation on spiking-networks
The information is coded by the spiking-time w.r.t. to a global clock

The corrective terms correspond to an adaptive delay
(compatible with the neuron biophysic)

Only preliminary results available:




Implementing variational approaches: a link with the BCM rule

e The Bienenstock, Cooper & Munro rule states that the weight adaptation:
og=a¢(v,0)w
is proportional to the pre-synaptic activity w
and proportional to a non-monotonic function ¢ of the post-synaptic activity v
with some “depression” for low activity and “potentiation” for higher activity
the threshold 6 being an increasing function of post-synaptic activity history v




Implementing variational approaches: a link with the BCM rule

e The BMC rule can be derived form an energy

— which can be viewed as a measure of the amount of neuro-transmitter release

e It has been extended to network with feed-forward inhibition

e It has been also (weakly) linked to information theory




The 45mn talk step by step

e (10mn) An introductory example
e (10mn) Specification of visual functions
e (05mn) All what you do not want to know about hidden maths

e (15mn) Implementing variational approaches

e (10mn) Generalization to other sensori-motor functions




Cortical maps: the Mumford-Dayan-Abbott-Friston roadmap

The brainis . . say . .

a machine to find “causes” v from inputs u

via a functional equation of the form:

u = P(v, )




Cortical maps: the Mumford-Dayan-Abbott-Friston roadmap

. using the Fliess fundamental formula and related Volterra kernels:

uft) = / ra(r) ol — ) ir + / t / “ealr ) ot — P (b — ) drdr o

NG 7

. . VO ANV
linear influence modulatory influence between causes

from previous causes

including higher order terms, this causal relationship is parametrized with:

- _ Ou(t i ou(t)
A e e

, K
t=0




Cortical maps: the Mumford-Dayan-Abbott-Friston roadmap

Estimating causes v from inputs w is -de facto- a forward /backward process:

° Expectation: which “infers” the causes from the given inputs

(here parametrized by forward connections ®) and

o estiMation: which “predicts” the input from “a-priory” causes

(here parametrized by backward connections [3)

V= R(ua ) forward connection

_— causes representation

VI nfered ‘‘causes’

u= P(V @ ) backward connection

I nputs

the inference being coherent if and only if : uw = P(R(u, ®), 3).

B NRIA




Cortical maps: the Mumford-Dayan-Abbott-Friston roadmap

The Bayes approach (“maximally probable” estimation) , knowing «, thus:

max log(p( [1)) = max [log(p(:| )+ log(p( ))] —log(p(1))
(forget log(p(:1)) constant with respect to the v)

max log(p(v| ) + log(p( ))
Conditional information A priory information
[ tuning : ® tuning :
max log(p( )+ log(p( )
Estimation Expectation

Is a canonical instantiation of this architecture = | criterion optimization |.
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Cortical maps: interpretation of Grossberg systems

e A Cohen-Grossberg dynamical system is of the form:
Ui = a;(u;) [bi(uz‘) — 2.5 Cij dj(uj)}

with a;() > 0 and d;() > 0 (convergence is demonstrated for the case where c;; = cj;).

e As soon as c¢;; is unbiased (in practice local and mainly excitatory)
a Cohen and Grossberg dynamical system locally minimizes,in the general case:

3 S 8(IVollR) + 24 (v) | with v = d(w) wi v(w) = - [0~ ) + §oo?

considering, an integral approximation of the diffusion operator ¢'(||Vv||3) L

e Also applicable to Hopfield networks




Cortical maps: the Mumford-Dayan-Abbott-Friston roadmap

Forward connections
are “driving” for
promulgation and segregation

of sensory information

consistent with

(i) their sparse axonal bifurcation
(ii) patchy axonal terminations
(iii) topographic projections

(iv) one-to-one / small divergence

(vi) define a lattice

Backward connections,

are “modulatory” for
mediation of contextual effects,
co-ordination of processing

(i) their frequent bifurcation

(ii) diffuse axonal terminations
(iii) non-topographic projections
(iv) large spatial divergence

(v) slow time-constants

(vi) transcend several levels

(vii) more numerous

B NRIA




Cortical maps: the Mumford-Dayan-Abbott-Friston roadmap

e Where to process:
- a rough but fast edge detector feedback which areas have to analyzed in details
- and automatically tune early-vision parameters
- large scale (smoothed, eliminating noise) detector tune further process (e.g. figure/background segmentation)

- low-level focus of attention towards close, mobile or textured feedback from rotational motion

e What to process:
- choose processing modes, configurations of parameters with respect to first recognition,

- drive visual tasks such as object-background segmentation, using fast categorization.
e Holistic perception: Holistic perception may be related to feedback from what has been detected by the “fast-brain”.

o Opportunism . Feedback in the visual cortex seems to be used to select the relevant attributes, given a task / context.

B NRIA




Beyond visual functions: visual path planning

e Planning is huge abstract problem:

Let us consider:

(a) a system, defined by a state vector x € R", n > 2
(b) an initial state, written xg € R",

(c) r constraints / obstacles c;(x) > 0,7 € {1..r},

(d) a goal defined by an constraint of the form co(x) < 0,

e Including: visual navigation, gesture generation, etc...

e Harmonic control introduced by Connolly-Grupen yields a variational solution

B NRIA




Beyond visual functions: visual path planning

e |t is solvable by the minimization of an harmonic potential such that:
Co The goal corresponds to minima of the potential.
C; Obstacles are maxima of the potential.

C. There is no local minimum (or flat regions) of the potential

starting at any initial point and
e So that < Y > leads to the goal

moving in the direction of potential decreases

e Such “loci-map” corresponds to hippocampal place fields (sparse representation)

e Other sensori-motor loops have been related to harmonic control

B NRIA




Beyond visual functions: data reduction

1
e Minimizing energy of the form |ulP = [> . ul]? with p < 1

1

yields sparse solution (many w; = 0, while lim,_q|u[P = #u;, u; # 0)

e Object categorization statistical learning is based on margin maximization

again specified as a variational problem

e Dimensional reduction is also expressed as an optimization problem,
e.g. a Kohonen map is specified via a potential (Fort & Pages)

e ctc . .




The 45mn talk step by step : done !

e (10mn) An introductory example
e (10mn) Specification of visual functions
e (05mn) All what you do not want to know about hidden maths

e (15mn) Implementing variational approaches

e (10mn) Generalization to other sensori-motor functions




More . .

Three accessible documents and . . one software:

° F Guichard et J-M Morel
o

Tshumperle
) S. Osher et R. Fedwik

e The open-source



http://www.ipam.ucla.edu/publications/gbm2001/gbmtut_jmorel.pdf
ftp://ftp-sop.inria.fr/odyssee/Publications/PhDs/tschumperle:02.pdf
http://www.ipam.ucla.edu/publications/gbm2001/gbmtut_sosher.pdf
http://cimg.sourceforge.net

More .

THEORETICAL NEUROSCIENCE FACETS contributions:
Applied
Mathen!atical Computational and Mathemantcal
YN | Gilles Aubert Modeling: of Noural Systeme e Kornprobst et al.

147 Pierre Kornprobst )
(cortical maps)

Mathematical
Problems in
Image Processing

e Escobar et al.

(high-level function)

Partial Differential
Equations and the
Calculus of Variations

Second Edition

e Kornprobst, Masson et al.

(transparent motion)

e Deriche et al.

(segmentation)

e ctc..

@ Springer
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