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The 45mn talk step by step

• (10mn) An introductory example

• (10mn) Specification of visual functions

• (05mn) All what you do not want to know about hidden maths

• (15mn) Implementing variational approaches

• (10mn) Generalization to other sensori-motor functions



Introductory example: Isotropic Diffusion and Gaussian Filtering

• Retinotopic map: “images”

• Linear Gaussian Filtering : Image Smoothing

• The Heat Equation : Isotropic Diffusion

• A Variational Formulation : Image Regularization

• From this example to a general setting



Retinotopic map: “images”

• A digital image may be defined as a

2× 2 array or as a discrete function, a

“map”

u : Ω ⊂ IRN → IRM

• From the analog and continuous world,

it is obtained after both pixelization.

u(i1, i2) =
∫
pixel u(x, y)

and quantification,

and with noise



More general images (image sequences or bundle) . .

. . corresponding to various data type:

. . and in relation with various applications:



Linear Gaussian Filtering : Image Smoothing

• Let u0 an image, the Gaussian Smoothing writes:

uσ(x) = (Gσ ∗ u0)(x) with Gσ(x) = 1
2π σ2 exp

(
− |x|

2

2σ2

)
.

• This is a standard front-end for multi-scale representation of an image.



The Heat Equation : Information Diffusion

• Let u0 an image, the Isotropic Diffusion writes (Partial Differential Equation):{
∂u
∂t

(t, x) = ∆u(t, x), t ≥ 0,
u(0, x) = u0(x).

• The Laplacian ∆ is an isotropic, elementary diffusion operator:

∆u =
∑2
i=1

∂2u
∂x2

i
'
∑
z∈V (x)[u(z)− u(x)]

1 2 1

2 -12 2

1 2 1

(local balanced average)

• Main result: u(t, x) = (G√2 t ∗ u0)(x)

• Diffusion is an infinitesimal smoothing !



A Variational Formulation : Image Regularization

• Let u0 an image, the Regularized Image writes:

infu E(u), E(u) =
∫
Ω
(1− λ) |u(x)− u0(x)|2 + λ |∇u(x)|2 dx

• Main result (Euler-Lagrange equation):

∂u
∂t

(t, x) ≡ −1
2∇E = (1− λ) [u0(x)− u(x)] + λ∆u(x) minimizes E

• When λ→ 1 the heat equation minimizes E.

• This gives : convergence + function specification !

what’s to be done → how to do it



From this example to a general setting

• All main visual functions may be specified from a variational approach

• The partial differential equation is even more general

• Very robust and efficient implementations are derived

• Generalization to non-linear space (Beltrami flow)

• The link with biological neural networks has been built

• . . and it is not that complicated.
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Specification of visual functions

• Image restoration (smoothing, etc..) including using a biological model.

• Image segmentation (object detection, ..)

• Image matching / registration (stereo, motion, ..)

• Others:

– Focus of attention (winner take [almost] all)

– Image completion (in-painting, ..)



. . and more !



Specification of visual functions: image restoration

• Basic model: find u observing u0,

u0︸︷︷︸
measured image

= R︸︷︷︸
image formation

linear operator

u︸︷︷︸
original image

+ ν︸︷︷︸
some additive

Gaussian noise

• Basic specification: minimize,

infu E(u) =
∫
Ω
(u0 −Ru)2 dx+ λ

∫
Ω
φ(|∇u|) dx

– Data attach: least-square solution (statistically optimal . . but ill-posed)

– Regularization: restrain the set of solutions

– Meta-parameter : high-level control of the solution



Specification of visual functions: image restoration

• Automatic derivation of the Euler-Lagrange equation:

(R∗Ru−R∗u0)−
λ

2
div
(

φ′(|∇u|)
|∇u|︸ ︷︷ ︸
c(|∇u|)

∇u
)

= 0

• with a geometrical interpretation of the non-linear diffusion:

div
(
φ′(|∇u|)
|∇u| ∇u

)
=
φ′(|∇u|)
|∇u|

uTT︸ ︷︷ ︸
tangential

+φ′′(|∇u|) uNN︸ ︷︷ ︸
normal

not across edges



Specification of visual functions: image restoration

• A large choice of non-linear profile:
Author φ(x) φ′(x)

x

Malik & Perona log(1 + x2) 2
(1+x2)

Tikhonov & Arsenin x2 convex 2

Geman & Reynolds x2

1+x2
2

(1+x2)2

Green 2 log[cosh(x)] convex

(
2 x = 0

2 tanh(x)/x x 6= 0

Aubert & Vese 2
p

1 + x2 − 2 convex 2q
(1+x2)

• Here φ allows to control the regularity of the solution

• In fact φ allows to defined the underlying functional space of the solution



Specification of visual functions: Perona-Malik restoration



Specification of visual functions: Along isophotes diffusion



Specification of visual functions: A few examples



Specification of visual functions: a non variational approach

• Defining the structure tensor from the image gradient ∇u:

kρ ∗ ∇uσ∇utσ = kρ ∗

(
uσxx uσxy
uσxy uσyy

)

• Allows to propose the Weickert diffusion scheme:

∂u

∂t
= div (D(kρ ∗ ∇uσ∇utσ)︸ ︷︷ ︸

matrix

∇u)



Specification of visual functions: another non variational

approach

• The Osher and Rudin shock-filter approach:{
ut(t, x) = − |ux(t, x)| sign (uxx(t, x)),
u(0, x) = u0(x),

can not be derived from a variational approach (convergence not guarantied !)



Specification of visual functions: the Cottet-Ayyadi model

Cottet and Ayyadi consider the Hebbian adaptive diffusion processes:

min
∫
||∇u||2L() ⇒ u̇ = −l(u) ∆Lu with u(0) = u0

with contrast threshold s, adaptation time constant τ , spatial smoothing S:

∂L
∂t + 1

τ L = 1
τ

h
ρ2 Pg⊥ + 3

2 (1− ρ2) I
i

with

ρ = min
“
1, ||g||

2

s2

”
, g = S ∗ ∇u

P(g1,g2)⊥ =

 
g2g2 −g1g2

−g1g2 g1g1

!



Specification of visual functions: the Cottet-Ayyadi model

thus with:
- anisotropic diffusion along edges but not across edges for high contrasted areas

(i.e. L ≡ Pg⊥ when ρ is close to 1 in the previous equation) but

- isotropic diffusion in almost uniform areas when low-contrast

(i.e. L ≡ I when ρ is close to 0 in the previous equation).

u v = g(u) v = l(v) u. .

Including the non-linear

relationship between:

- the neuronal state u

(usually related to the membrane potential) and

- the neuronal output v ∈ [0, 1]N

(usually related to the average firing rate probability).



Specification of visual functions: the Cottet-Ayyadi model

Raw Isotropic Anisotropic

The blue image contains a huge (80%) amount of noise. The complex image contains features

at several scales. Edges are preserved, while an important smoothing has been introduced.



Specification of visual functions: restoration of complex images

• Color image restoration



Specification of visual functions: restoration of complex images

• Vector field restoration



Specification of visual functions: restoration of complex images

• Vector field restoration



Specification of visual functions: restoration of a tensor field

• Saturation of a tensor field T = RT DR with

(i) diffusion on D and (ii) regularization of R with orthonormal preservation



Specification of visual functions: image segmentation

Specification:

minu,K

Z
W

(u− u0)
2| {z }

approximation

quality

”data attach”

+ α
2
Z
W−K

||∇u||2| {z }
homogeneity of

each component

“regularization”

+ β

Z
K

1| {z }
parsimony of

the segmentation

“edge length”

minu,z
R
W

(u− u0)
2 + α2

R
W
z2 ||∇u||2 + β

R
W
λε(z)

where:

- β > 0 controls the fine/coarse grained segmentation and

- α > 0 controls the scale,
while “resistance to noise” (≡ β/α4)

and “sensibility to contrast/threshold” (≡ (β/α6)1/4)



Specification of visual functions: image segmentation

Here
∫
K

1 is the length of K in the Hausdorff sense (i.e. using the limit of the

diameters of a covering)

The border K may be represented by an auxiliary function

z : W → [0, 1] with z/K ' 0 and z/(W −K) ' 1
writing λε(z) = ε ||∇z||2 + (z−1)2

4 ε .



Specification of visual functions: image segmentation

Up to ε the Blake & Zisserman equations:{
v̇ ≡ −(v − w) + α2 (z2 ∆v + 2 z∇zT∇v)
ż ≡ −α2 z ||∇v||2 + β (ε∆z − z−1

4ε )
solve the Mumford-Shah problem.



Specification of visual functions: image segmentation

• More generally, it involves two unknowns

– u is a function defined on an N -dimensional space

– K is an (N − 1)-dimensional set.

• E → HN−1(∂E) is not lower semi-continuous w.r.t. any compact topology.

• Solutions:

– identifying the set of edges as the jump set of a BV function (see below)

– approximation by elliptic functional (as done previously)

– Chambolle discrete approximation by a suitable finite-difference scheme

– etc..



Specification of visual functions: object segmentation

• Considering the figure/background segmentation

• The segmentation curve is defined a function level-set (Osher & Sethian)



Specification of visual functions: object segmentation

• The level-set evolution induces the curve evolution

{
∂c
∂t

= v N,

c(0, q) = c0(q).
=⇒

{
∂u
∂t

= v |∇u|
u(0, x) = u0(x).

• Including with topological changes

• Including in higher dimensions



Specification of visual functions: object segmentation



Specification of visual functions: image matching

A large variety of problems / conditions:

(H1) Intensity conservation

(H2) Global intensity variation

(H3) Local intensity variation

but a synthetic approach.



Specification of visual functions: image matching

• (H1) Assuming intensity conservation

u(t+ δt, x+ δx) ' u(t, x)
defines the optical-flow constraint:

v = dx
dt
, v · ∇u(t, x) + ∂u

∂t
(t, x) = ε ' 0

• Approximate equation: true only for Lambertian surfaces in translation

• The approximation is better on edges (where |∇u(t, x)| >> |ε|)

• Aperture problem: only 1 equation, for a 2D problem



Specification of visual functions: image matching

Specification of the solution:

infu
∫
Ω
A(v) + S(v)

A(v) = [v · ∇u+ ut]2

S(v) =
2∑
j=1

∫
Ω

|∇vj|2dx (Horn & Schunck)

=
2∑
j=1

∫
Ω

φ(|∇vj|)dx (Preservation of discontinuities)

=
∫

Ω

ϕ(div(v), rot(v))dx (Differential properties)

=
∫

Ω

trace
(
(∇v)TD(∇u)(∇v)

)
dx

|∇u|2 + 2λ2 (Image properties)

= etc..



Specification of visual functions: image matching



Specification of visual functions: image matching

• (H2) Assuming global intensity variation between, say

I1 = u(t, x) and I2 = u(t+ δt, x+ δx) viewed as random variables

A(v) is now computed on the joint histogram:

– Using Parzen density estimation

– i.e. Gaussian smoothing of the histogram



Specification of visual functions: image matching

• The chosen criterion depends on the relation between the two images:
Cross correlation Correlation ratio Mutual information

Affine relation Functional relation Statistical relation



Specification of visual functions: image matching



Specification of visual functions: focus of attention

Combining diffusion and binarization:

minv ||∇v||2︸ ︷︷ ︸
smoothness

+ ψ(v)︸︷︷︸
binarization

ψ : [0, 1]→ R

for some skew-symmetric bi-modal function ψ() defining a threshold

- initialized to the distribution mean and

- incremented/decremented during the process

to maintain a small binarization with respect to diffusion

- the iteration is stopped when the output has a predefined small size.



Specification of visual functions: focus of attention

Input Intermediate Output Output (zoom)

An example of result for the winner-take-all mechanism implemented using the proposed method.

The very noisy (more than 80%) original image is on the left; the intermediate result shows how

diffusion is combined with erosion yielding the final result, shown also with a zoom.



Specification of visual functions: image completion

Same kind of criterion as for restoration with a distance to the image statistic

Before Mask After
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AWYDWKAM: The foundation of the PDE approach

• We define a multi-scale analysis (or equivalently the scale-space) as

a family of operators {Tt}t≥0,

which applied to the original image u0(x)
yield a sequence of images u(t, x) = (Tt u0)(x).

• We are going to list below a series of axioms to be satisfied by {Tt}t≥0.

(X denotes the space C∞b (<2) and u0 ∈ Cb(<2))
These formal properties are very natural from an image analysis point of view.

(*) All What You Don’t Want to Know About Maths



AWYDWKAM: Axioms and Properties

(A1) Recursivity:

T0(u) = u, Ts ◦ Tt(u) = Ts+t(u) for all s, t ≥ 0 and all u ∈ X.

(A2) Regularity:

|Tt(u+ h v)− (Tt(u) + h v) |L∞ ≤ c h t for all h and t in [0, 1] and all u, v ∈ X.

(A3) Locality:

(Tt(u) − Tt(v))(x) = o(t), t → 0+ for all u and v ∈ X such that ∇αu(x) = ∇αv(x)

for all |α | ≥ 0 and all x (∇αu stands for the derivative of order α).

(A4) Comparison principle:

Tt(u) ≤ Tt(v) on <2, for all t ≥ 0 and u, v ∈ X such that u ≤ v on <2.

(I1) Gray-level shift invariance:

Tt(0) = 0, Tt(u+ c) = Tt(u) + c for all u in X and all constant c.

(I2) Translation invariance:

Tt(τh.u) = τh.(Ttu) for all h in <2, t ≥ 0, where (τh.u)(x) = u(x+ h).



AWYDWKAM: The main result

Alvarez et al. theorem: Under assumptions A1, A2, A3, A4, I1, and I2:

(i) There exists a continuous function F : <2 × S2 → <
satisfying F (p,A) ≥ F (p,B) for all p ∈ <2, A and B in S2 with A ≥ B such that

δt(u) =
Tt(u)−u

t → F (∇u,∇2u), t→ 0+

uniformly for x ∈ <2, uniformly for u ∈ X.

(ii) Then u(t, x) = (Tt u0)(x) is the unique viscosity (say “weak”) solution of{
∂u
∂t

= F (∇u,∇2u),
u(0, x) = u0(x),

and u(t, x) is bounded, uniformly continuous on <2.



AWYDWKAM: What the hell is a “weak” solution ?

• A way to deal with non-linear degenerated equations:
∂u
∂t

(t, x) +H(t, x,∇u(x),∇2u(x)) = 0, t ≥ 0, x ∈ Ω
Here H : ] 0, T ]× Ω× R× RN × SN → = is continuous, elliptic and degenerated

Here u ∈ C(] 0, T ]× Ω) but not differentiable everywhere

• using test functions φ ∈ C2(] 0, T ]× Ω) allowing to bound the solution

E.g. the eikonal equation:

{
|u′(x)| = 1 in [0, 1],
u(0) = u(1) = 0,



YAUHF: In which functional space do we work ?

We consider functions of bounded variation

. (= distributions which derivatives are measurable)

BV (Ω) = {u ∈ L1(Ω)/Du ∈M(Ω)}
with mainly an hyper-surface as singular set Su (where upper/lower limits u+/u− differ)

and which total variation is of the form (nu is the normal to Su) :

Du = ∇u · LN + (u+ − u−)nu · HN−1
|Su + Cv︸︷︷︸

cantor part

H is the Hausdorff measure (i.e. length, surface, etc.. of a curved space);

while we consider Cu = 0 in practice.

In fact not optimal for textures, small structures:

an oscillatory component is also considered v = div(g), g ∈ L∞

(*) Yet Another Useful but Horrible Formalism



YAUHF: In which functional space do we work ?

An example of BV + OSC decomposition:



YAUHF: Which properties to define the minimization ?

u• = Argminu∈VE(u)

• Inferior semi-continuity liminfun⇀u•F (un) ≥ F (u•)

• Coercivity lim|u|→+∞E(u) = +∞

• Convexity (for unicity)

allows to define a minimizing series of the energy (notion of Γ-convergence).



YAUHF: What the hell is Γ-convergence ?

Γ-limk→∞Ek = E

⇔
infuk→ulim infk→∞Ek(uk) = supuk→ulim supk→∞Ek(uk)

⇔
∀uk → u,E(u) ≤ lim infk→∞Ek(uk) & ∃uk → u, lim supk→∞Ek(uk) ≤ E(u)

Main result:

If uk is a minimizer of Ek and uk → u then u is a minimizer of E

thus allowing to approximate a “singular” energy by a series of regular energy.
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Implementing variational approaches: standard schemes

• Finite difference methods:
∂u
∂t (t, x) = ∆u(t, x) →

un+1
i,j

−uni,j
∆t = ∆uni,j

→ un+1
i,j = uni,j + ∆t

h
2

h
uni+1,j + uni−1,j + uni,j+1 + uni,j−1 − 4uni,j

i

• Including multi-resolution framework

• Including semi-implicit schemes (solving a linear equation at each step)



Implementing variational approaches: standard schemes

• Linearization methods
0 = ∂u

∂t (t, x) = ∆u(t, x) → 0 = ∆t
h

2

h
uni+1,j + uni−1,j + uni,j+1 + uni,j−1 − 4un+1

i,j

i
→ un+1

i,j = 1
4

h
uni+1,j + uni−1,j + uni,j+1 + uni,j−1

i
• More generally

minuE(u) → un+1
i,j = (1− α)uni,j − αM∇E(uni,j)

– the matrix M allowing to solve the linear part of ∇E,

– the α ∈]0, 1] parameter controls the convergence.



Implementing variational approaches: Chambolle et al. scheme

• The continuous criterion is 1st approximated on a grid:
minu,K

R
W

(u− u0)
2 + α

R
W−K ||∇u||

2 + β
R
K

1

minu
R
W

(u− u0)
2 + hn−1P

p

P
q φ(q)fα,β

“
(u(p)−u(p+h q))2

h

”
where:
φ(t) is a positive even, finite and small support profile

with φ(0) = 0 and
R
t2φ(t) < +∞

fα,β(t) = β f
“
α
β t
”

is a suitable non-decreasing function f(t) ≤ min(t, 1) (e.g. arctan)

• The Γ-convergence when h← 0 is verified, and numerical approximations valid.

• The length
∫
K

1 minimization is obtained thanks to the non-linear function f().



Implementing variational approaches: Software architecture

• The software architecture is straightforward:

– Map loaded with default values

– Until convergence (on the criterion or the inter-iteration distance)

∗ For each cortical map pixel (in sequence, randomly or in parallel)

· Apply a local operator of the form

un+1
i,j = F ({· · ·uni+u,j+v · · · }, u ∈ {−w..w}, v ∈ {−h..h})

• Existing middle-ware defines image iterators and

take into account the application of the operator on the map boundary

must use performant full compiled code (see e.g. CImg open-source)



Implementing variational approaches: Convergence/complexity

• Complexity in O(S) for an image of size S = Nd

• . . with “exponential fast” convergence (contraction) ε(t) < Kε(t−1) < Ktε(0)

• Parallel implementation is straight-forward

• Convergence to a local-minimum is garanty by construction

• . . and “convexification” allows to control which minimum

→ default/a-priori value closest solution



Implementing variational approaches: Hebbian schemes

• Consider the problem minu |u|2 with Cu = u0

Any sequence un+1 = un − γ
with

{
γTg > 0
|γ| < ε

writing g = (CCT )−1 un −CT u0

converges towards the minimum.

• Here γ is related to g combining the input u0 and output un.

• This means γ small enough and approximately in the right direction

• Non-linear generalization is straight-forward

ε = 2 cos(dγ, g) |g|/|γ/|γ||2
CT C



Implementing variational approaches: Particular methods

• Given an input map w, one look for an output map v̄ verifying

map parameters

map input map output

map
   computation vw

, L

P

v̄ = argmin
v∈H/c(v)=0

L(v), with

L(v) =
∫

Ω

|ŵ −w|2Λ +
∫

Ω

φ(|∇v|L) +
∫

Ω

ψ(v),

and ŵ = Pv

• Here |u|M = uTMu is defined by a variable symmetric positive matrix M.

• This defined an non-linear unbiased estimation (which includes almost all cases).



Implementing variational approaches: Particular methods

• The solution can be compiled on a “analog” neural network of the form:

v̇i = −ε̄i(vi) +
∑
j σ̄ij(vi) vj + κ̄iwi

– The weights σ̄ corresponds to a discrete integral approximation of the diffusion

operator L
∆L(x)(f(x)) '

∫
S σ̄(x,y) f(y) dy with

R
S σ̄(x, y)2 dy minimal

where S is a covering of the continuous map by the neuron’s fields.

– The corrective term ε̄ includes a leak and a non-linear adjustment of the

threshold or delay.

• The compilation of the network parameters is straightforward.



Implementing variational approaches: Particular methods

More precisely, it writes:8>><>>:
εi(v) = ρi v + ξ ∂c

∂v
T

c + ψ′,

ρi =
P

j σij + PT ΛiP,

κi = PT Λi,

and
ξ = (1− λ) |∂L∂v |/|

∂c
∂v
T

c|
with λ� 1.

Up to order r (r ≥ 2), at M points, providing M > (n+r)!
n! r! −

n (n+1)
2 ,

the weights σ = (σij) come from:

|α| = 2 L̄kl(x) = 1
2

P
j σj µ̄

ek+el
j (x),

|α| = 1 divk(L̄(x)) =
P

j σj µ̄
ek
j (x),

2 < |α| ≤ r 0 =
P

j σij µ̄
α
j (x)

min
P

ij σ
2
ij

with L̄ = φ′(|∇v|L) L

while σj = (σ1j · · ·σI · · · )
(unbiasness)

(optimality)
which is a quadratic minimization under linear constraints

→ unique generic closed-form solution



Integral approximations of a diffusion operator: examples

A few examples of operator 1D-profiles, considering an isotropic second-order derivative;

from left to right:

- r = 5, s = 10: we obtain a profile with two poles qualitatively equivalent to the δ′′ distribution;

- r = 8, s = 20: increasing the order of correspondence, a profile closer to δ′′ is obtained;

- r = 2, s = 3: when the correspondence is insufficient (r is too small) we obtain a profile which is qualitatively correct but very “flat”;

- r = 6, s =10: when considering without any redundancy, the approximation may be slightly biased with spurious effects.



Integral approximations of a diffusion operator: examples

A few examples of operator 2D-profiles, with r = 3, s = 6, represented in the (x0, x1) plane;

- left view approximation of 1st order derivative isotropic operator ∂(1,0) qualitatively equivalent to the corresponding continuous operator;

- middle view approximation of 2nd order non-isotropic operator Lij(x) = δij x0 and

- right view a 2nd-order non-isotropic operator Lij = δij + i, both illustrating how solutions adapt to such profiles.



Integral approximations of a diffusion operator: examples

This mechanism not only generates numbers but also formulas !2664
.1048 ||n̂||2 + .3782 n̂x n̂y .5053 n̂2

y − .2511n̂2
x .1048 ||n̂||2 − .3782 n̂x n̂y

.5053 n̂2
x − .2511n̂2

y .07255 ||n̂||2 .5053 n̂2
x − .2511n̂2

y

.1048 ||n̂||2 − .3782 n̂x n̂y .5053 n̂2
y − .2511n̂2

x .1048 ||n̂||2 + .3782 n̂x n̂y

3775
An example of anisotropic 2D-mask in the direction n̂ = (n̂x, n̂y)

obtained for r = 2 or 3 and s = 1

The symbolic calculation thus output a piece of code

(automatic generation of Java/C++ code from Maple)



Implementing variational approaches: Particular methods

• The weight/threshold relation is compatible with standard STDP rules

• The architecture of an unit corresponds to an “abstract” cortical column
w Extra cortical input or intra-cortical input from previous layers

v Extra cortical or backward intra-cortical outputP
j σ.j vj Local connections

Λ,L Remote backward connections

Iterative operations Internal connections

• Stability of several cortical maps in interaction can be established
Objective functions can be combined in this context

Local minimization yields global optimization

• The method is valid for any local differential operator (here 1-2nd order)



Implementing variational approaches: Particular methods

• The Maass-Natschläger use of piece-wise linear Gerstner and Kistler S.R.M.

allows to derive a implementation on spiking-networks

• The information is coded by the spiking-time w.r.t. to a global clock

• The corrective terms correspond to an adaptive delay

(compatible with the neuron biophysic)

• Only preliminary results available:



Implementing variational approaches: a link with the BCM rule

• The Bienenstock, Cooper & Munro rule states that the weight adaptation:

σ̇ = φ(v, θ)w
is proportional to the pre-synaptic activity w
and proportional to a non-monotonic function φ of the post-synaptic activity v
with some “depression” for low activity and “potentiation” for higher activity

the threshold θ being an increasing function of post-synaptic activity history v̄

v

v



Implementing variational approaches: a link with the BCM rule

• The BMC rule can be derived form an energy

– which can be viewed as a measure of the amount of neuro-transmitter release

• It has been extended to network with feed-forward inhibition

• It has been also (weakly) linked to information theory



The 45mn talk step by step

• (10mn) An introductory example

• (10mn) Specification of visual functions

• (05mn) All what you do not want to know about hidden maths

• (15mn) Implementing variational approaches

• (10mn) Generalization to other sensori-motor functions



Cortical maps: the Mumford-Dayan-Abbott-Friston roadmap

The brain is . . say . .

a machine to find “causes” ν from inputs u

via a functional equation of the form:

u = P (ν, β)



Cortical maps: the Mumford-Dayan-Abbott-Friston roadmap

. . using the Fliess fundamental formula and related Volterra kernels:

u(t) =
∫ t

0

κ1(τ) ν(t− τ) dτ︸ ︷︷ ︸
linear influence

from previous causes

+
∫ t

0

∫ t

0

κ2(τ, τ ′) ν(t− τ) ν(t− τ ′) dτdτ ′︸ ︷︷ ︸
modulatory influence between causes

+ · · ·

including higher order terms, this causal relationship is parametrized with:

β =
[
κ1(τ) = ∂u(t)

∂ν(t−τ)

∣∣∣
t=0

, κ2(τ, τ ′) = ∂u(t)
∂ν(t−τ) ∂ν(t−τ ′)

∣∣∣
t=0

, · · ·
]



Cortical maps: the Mumford-Dayan-Abbott-Friston roadmap

Estimating causes ν from inputs u is -de facto- a forward/backward process:

• Expectation: which “infers” the causes from the given inputs

(here parametrized by forward connections Φ) and

• estiMation: which “predicts” the input from “a-priory” causes

(here parametrized by backward connections β)

v  u

v  u= P(   ,   )

input prediction

causes representation

v  forward connection

backward connection

Infered  ‘‘causes’’  Inputs

= R(u ,   )

the inference being coherent if and only if : u = P (R(u,Φ), β).



Cortical maps: the Mumford-Dayan-Abbott-Friston roadmap

The Bayes approach (“maximally probable” estimation) ν, knowing u, thus:

maxν log(p(ν|u)) = maxν [log(p(u|ν)) + log(p(ν))]− log(p(u))
(forget log(p(u)) constant with respect to the ν)

maxν log(p(u|ν)) + log(p(ν))
Conditional information A priory information

β tuning : u = P (ν, β) Φ tuning : ν = R(u,Φ)
maxν log(p(P (ν, β)|ν)) + log(p(R(u,Φ))

Estimation Expectation

is a canonical instantiation of this architecture ⇒ criterion optimization .



Cortical maps: interpretation of Grossberg systems

• A Cohen-Grossberg dynamical system is of the form:

u̇i = ai(ui)
[
bi(ui)−

∑
j cij dj(uj)

]
with ai() > 0 and d′j() > 0 (convergence is demonstrated for the case where cij = cji).

• As soon as cij is unbiased (in practice local and mainly excitatory)

a Cohen and Grossberg dynamical system locally minimizes,in the general case:
1
2

∫
φ(||∇v||2L) + 2ψ(v) with v = d(u) while ψ(v) = −

R
b(d−1(v)) + 1

2 ν v
2

considering, an integral approximation of the diffusion operator φ′(||∇v||2L)L

• Also applicable to Hopfield networks



Cortical maps: the Mumford-Dayan-Abbott-Friston roadmap

Forward connections Backward connections,

are “driving” for are “modulatory” for

promulgation and segregation mediation of contextual effects,

of sensory information co-ordination of processing

consistent with

(i) their sparse axonal bifurcation (i) their frequent bifurcation

(ii) patchy axonal terminations (ii) diffuse axonal terminations

(iii) topographic projections (iii) non-topographic projections

(iv) one-to-one / small divergence (iv) large spatial divergence

(v) slow time-constants

(vi) define a lattice (vi) transcend several levels

(vii) more numerous



Cortical maps: the Mumford-Dayan-Abbott-Friston roadmap

• Where to process:

- a rough but fast edge detector feedback which areas have to analyzed in details

- and automatically tune early-vision parameters

- large scale (smoothed, eliminating noise) detector tune further process (e.g. figure/background segmentation)

- low-level focus of attention towards close, mobile or textured feedback from rotational motion

• What to process:

- choose processing modes, configurations of parameters with respect to first recognition,

- drive visual tasks such as object-background segmentation, using fast categorization.

• Holistic perception: Holistic perception may be related to feedback from what has been detected by the “fast-brain”.

• Opportunism : Feedback in the visual cortex seems to be used to select the relevant attributes, given a task / context.



Beyond visual functions: visual path planning

• Planning is huge abstract problem:

Let us consider:

(a) a system, defined by a state vector x ∈ Rn, n ≥ 2

(b) an initial state, written x0 ∈ Rn,

(c) r constraints / obstacles ci(x) > 0, i ∈ {1..r},
(d) a goal defined by an constraint of the form c0(x) ≤ 0,

0
c (x) < 0

c (x) < 0
i

c (x) < 0j

x
0

(t)

• Including: visual navigation, gesture generation, etc...

• Harmonic control introduced by Connolly-Grupen yields a variational solution



Beyond visual functions: visual path planning

• It is solvable by the minimization of an harmonic potential such that:

C0 The goal corresponds to minima of the potential.

Ci Obstacles are maxima of the potential.

Cc There is no local minimum (or flat regions) of the potential

• So that
starting at any initial point and

moving in the direction of potential decreases
leads to the goal

• Such “loci-map” corresponds to hippocampal place fields (sparse representation)

• Other sensori-motor loops have been related to harmonic control



Beyond visual functions: data reduction

• Minimizing energy of the form |u|p = [
∑
i u
p
i ]

1
p with p < 1

yields sparse solution (many ui = 0, while limp→0|u|p = #ui, ui 6= 0)

• Object categorization statistical learning is based on margin maximization

again specified as a variational problem

• Dimensional reduction is also expressed as an optimization problem,

e.g. a Kohonen map is specified via a potential (Fort & Pagès)

• etc . .



The 45mn talk step by step : done !

• (10mn) An introductory example

• (10mn) Specification of visual functions

• (05mn) All what you do not want to know about hidden maths

• (15mn) Implementing variational approaches

• (10mn) Generalization to other sensori-motor functions



More . .

Three accessible documents and . . one software:

• Image Analysis and P.D.E.’s F Guichard et J-M Morel

• PDE-Based Regularization of Multivalued Images and Applications D

Tshumperle

• Level Set methods S. Osher et R. Fedwik

• The CImg middle-ware open-source

http://www.ipam.ucla.edu/publications/gbm2001/gbmtut_jmorel.pdf
ftp://ftp-sop.inria.fr/odyssee/Publications/PhDs/tschumperle:02.pdf
http://www.ipam.ucla.edu/publications/gbm2001/gbmtut_sosher.pdf
http://cimg.sourceforge.net


More . .

FACETS contributions:

• Kornprobst et al.

(cortical maps)

• Escobar et al.

(high-level function)

• Kornprobst, Masson et al.

(transparent motion)

• Deriche et al.

(segmentation)

• etc..


