
NEPI: An Integration Framework for Network Experimentation

Alina Quereilhac, Mathieu Lacage, Claudio Freire, Thierry Turletti, Walid Dabbous
INRIA, Sophia Antipolis, France

{alina.quereilhac,mathieu.lacage,claudio-daniel.freire,thierry.turletti,walid.dabbous}@inria.fr

Abstract: Many different experimentation environments ad-
dress complementary aspects of network protocol evaluation, but
because of their disparities and complexities it is often hard to
use them to reproduce the same experiment scenario. NEPI, the
Network Experimentation Programming Interface, was created to
make evaluation of network protocols and applications easier and
more reproducible using different experimentation environments,
by providing a uniform object model for designing, deploying,
and controlling experiments. In this paper we describe how we
enhanced the design of NEPI and provided experiment validation,
distributed experiment control, and failure recovery functionali-
ties. We also validate the NEPI approach by implementing sup-
port for three complementary environments, a physical testbed,
a network emulator, and a network simulator. Furthermore, we
show with a concrete experiment use case, available online for
reproduction, how easy it is with NEPI to integrate these environ-
ments for hybrid-experimentation.

1. INTRODUCTION

Simulators, emulators and physical testbeds are different ap-
proaches to network experimentation that provide a varying
degree of repeatability, scalability, instrumentation and real-
ism. These dimensions are all important to guarantee accu-
rate results but can not be completely satisfied by the use of
a single approach. While simulators allow fine grained con-
trol of experimentation parameters, easy instrumentation, good
scalability and perfect repeatability1, they lack the realism that
physical testbeds provide, due to the use of simplified models
of the underlying physical network. Emulators are a middle
term between these two options, having better repetability and
scalability than physical testbeds, and better realism than sim-
ulators.

The use of different approaches to conduct experiments
grants a better insight on the behavior of the evaluated proto-
cols and applications. In this context, several complementary
environments for network experimentation have proliferated.
But due to their heterogeneities and complexities it is often
hard to use them to reproduce the same experiment scenario,
or to make them collaborate to conduct hybrid-experiments.
This has introduced the need for an integration framework to
simplify conducting network experiments under arbitrary ex-
perimentation environments, avoiding human errors, and also
to enable experiment reproducibility 2.

1Perfect repeatability in simulators is given by the absolute control over
experimentation parameters.

2Experiment reproducibility requires full knowledge of the experiment
methodology and parameters.

NEPI [11], which stands for Network Experimentation Pro-
gramming Interface, was created to address the need of easily
managing network experiments across arbitrary experimenta-
tion environments, enabling design, deployment and control
of complex experiments. The initial challenge, as described
in [11], consisted in producing an adequate object model that
would be generic enough to unify the description and control
interfaces of experiments under different environments, with-
out losing the ability to express the different levels of detail
provided by them. In this paper we apply NEPI’s object model
to support heterogeneous experimentation environments and
enhance the framework by adding new functionalities. We
enforce separation between experiment design and execution
stages, with off-line experiment validation. We also introduce
a hierarchical distributed monitoring scheme to control ex-
periment execution, we implement a stateless messages based
communication scheme, and add failure recovery mechanisms
to improve robustness.

In Section 2 of this paper we introduce the related work. In
Section 3, we explain the enhancements made to the frame-
work, and in Section 4, we demonstrate the feasibility of the
NEPI approach by implementing support for three comple-
mentary environments, PlanetLab testbed [9], the netns emu-
lator [3], and the ns-3 simulator [5]. Finally, in Section 5, as a
proof of the framework’s ability to conduct experiments under
heterogeneous experimentation environments using a uniform
object model, we provide a concrete experiment use case. The
scripts and steps to reproduce the experiment are made avail-
able online.

2. RELATED WORK

There are several experimentation tools available today that fa-
cilitate conducting network experiments under different exper-
imentation environments. Among the ones that most approx-
imate NEPI’s objectives, we can mention Emulab [14], OMF
[13], and CORE [8].

Emulab is a network experimentation framework that uni-
fies emulation facilities with physical testbeds, and also inte-
grates a modified version of the ns-2 [4] simulator. Similarly,
OMF, cOntrol, Management and Measurement Framework,
and CORE, Common Open Research Emulator, are frame-
works that support a limited form of the three experimentation
approaches, simulation, emulation and physical testbeds. The
main drawback in all cases is that the choice of the experimen-
tation environment remains limited to a few available options,
and interconnection between different environments is not al-
ways transparent.



What sets NEPI aside from other tools, is that it was de-
signed to unify the use of arbitrary heterogeneous experimen-
tation environments under a uniform object model, while pre-
serving their different features. And also to enable transparent
interaction between them by implementing the necessary com-
munication mechanisms.

3. THE FRAMEWORK

In the present section, we first give a brief introduction to the
framework, a more detailed description can be found in [11].
Then, we explain how we addressed enhancements related to
experiment validation, control, and robustness.

The experiment’s work flow starts with the design stage,
when the user specifies the network topology and applications
to execute. After this, follows the execution stage. NEPI
takes care of deploying the experiment by allocating neces-
sary resources, configuring the environments, and instanti-
ating and interconnecting components according to the user
specifications. A control step occurs during experiment run-
time, where the user can modify the experimental parameters
through NEPI’s user interface. Finally, NEPI collects exper-
iment results, called Traces, from remote locations into the
local machine, at the user’s request. NEPI can be used pro-
grammatically by writing a Python script, or graphically with
NEF, Network Experimentation Frontend [2], a graphical user
interface for NEPI.

To model experiments using heterogeneous experimentation
environments in a generic way, and still expose environment
specific characteristics to the user, NEPI proposes a modeling
abstraction based on ”Boxes and Connectors”. All elements in
the experiment, regardless of the environment, are represented
as boxes associated to other boxes though special ports called
connectors. Each box has a collection of attributes, which hold
configuration information, and a collection of traces, which
represent results associated to the element. For example, a net-
work interface element can be associated to a tcpdump trace
result. For each supported experimentation environment, NEPI
defines specific box types, and the connector types, attributes,
and traces associated to those box types. From the box and
connector types of a given association between boxes, NEPI
can decide what actions should be performed to instantiate and
connect the corresponding elements during the deployment of
the experiment. By defining environment specific box and con-
nector types, attributes, and traces, NEPI provides specific in-
formation on top of the generic experiment modeling abstrac-
tion.

Figure 1 shows two representations of the same experiment
reflecting two possible levels of detail exposed by different en-
vironments. The representation on the left reflects an envi-
ronment that allows less detail in the description of a point-
to-point connection between two nodes, than the one on the
right. This simple example shows how NEPI allows to describe
arbitrarily complex experiments in a generic way, providing
enough flexibility to adapt to the varying degrees of detail pro-
vided by different experimentation environments.

We have seen how a simple experiment can be described us-
ing interconnected boxes, but this is not enough to describe an
experiment composed of many environment instances, whether

Node

iface

Node

app

iface

Iface

ppp

node

Iface

ppp

node

Node

app

Node

app

Ping

node

pppppp

app

Ping

node

Figure 1: Different levels of detail to represent the same experiment

they correspond to the same or different experimentation en-
vironments. To represent this information NEPI provides
two other modeling elements, the TestbedDescription and the
ExperimentDescription objects. A TestbedDescription object
groups the boxes associated to a certain environment instance,
and the ExperimentDescription object groups TestbedDescrip-
tion objects and supports the serialization of the experiment
description to xml format. This xml description can be used
as design documentation, and for later reproducing the experi-
ment in NEPI.

So far we have only discussed how an experiment is de-
scribed using NEPI, this corresponds to the experiment design
stage. But NEPI also takes care of performing deployment,
control, and results gathering, which belongs to the experi-
ment execution stage. Since the initial framework prototype,
we have enhanced the architecture and design of NEPI, spe-
cially in relation with the execution stage, which presented
some problems. The initial NEPI prototype used a single Con-
troller object to orchestrate the complete experiment execu-
tion, this object was also involved in design, which tied de-
sign and execution stages. A Server object was used to run
environment specific code during execution. Having a single
controlling entity to monitor the complete experiment and be
aware of all experiment components proved to be a deficient
approach as any failure in the Controller would risk the whole
experiment to fail. Furthermore, the communication between
Controller and Servers relied on the RPyC [6] Python library to
access remote objects as if they were local. This communica-
tion mechanism associates a complex state of object references
to the RPyC connection object. In the eventuality of a connec-
tion rupture, recovering the state of object references between
local and remote side was not easily done. This issues required
enhancements in the design and architecture of NEPI.

3.1. Enhancements

Off-line Validation. One important enhancement consisted
in enforcing a clear separation between design and execution
stages. This change was intended to allow to design experi-
ments without the need of interacting with the experimentation
environments. Making design completely independent from



execution excludes the need of having testbed resources, or in-
ternet access, available and ready to use at design time. This
is important when design can take a long time and testbed re-
sources are expensive or scarce. But this flexibility does not
come at no cost. The main reason for imposing on-line design,
with full resource availability, is to support experiment valida-
tion. In order to defer execution and still be able to validate
environment specific configurations during design, we chose
to add special metadata information for each supported envi-
ronment version. The validation data is represented by a Meta-
data object that should be reimplemented for each supported
environment, and holds sufficient information to perform off-
line evaluation of the attributes values and allowed connections
between boxes. Additionally, in environments where the pro-
grammatic interface and the behavior can change from one
version to another, like ns-3 or PlanetLab, it is necessary to
add validation information per environment version basis. To
satisfy this requirement a new Metadata class can be imple-
mented to support the new environment version in NEPI.

Hierarchical Distributed Monitoring and Control. We
added to NEPI a hierarchical structure to monitor and control
the different parts of the experiment during execution. Sep-
arate specialized TestbedControllers are each responsible for
monitoring and controlling one environment instance, while
a single ExperimentController is used to control all Testbed-
Controllers and provide global coordination for the experi-
ment. This hierarchical structure allows to decentralise respon-
sibilities, improving modularity and avoiding to concentrate
the whole experiment control in a single entity. This isolates
failures, facilitating error detection and recovery. If the Ex-
perimentController fails, as control of environment instances
occurs independently, it is possible to recover by simply re-
launching and re-connecting the ExperimentController to ev-
ery TestbedController.

Stateless messages based communication. When an ex-
periment requires to be executed in a distributed way, the new
implementation of NEPI, employs an ad-hoc stateless mes-
saging protocol for communication between the remote con-
trollers. NEPI assigns to every element in the experiment a
global unique numeric identifier, as part of the experiment de-
scription, which is used in the protocol messages to identify the
target element for the requested operation. This simple com-
munication scheme turned out to be resilient to communication
failures because no persistent connection state is required.

Robustness in distributed execution. The new implemen-
tation of NEPI contemplates several distributed execution fail-
ure scenarios and handles them transparently to the user when-
ever it is possible. An example of a failure scenario that can be
handled transparently is a disconnection error. When it is not
possible to handle failures in this way, the failure policy spec-
ified by the user on a TestbedController is taken into account.
The failure policy can instruct a TestbedController to fail, to
reconstruct, or to rerun the experiment on the testbed. The
possible failure policies are limited by the testbed characteris-
tics. For instance, the PlanetLab TestbedController uses Plan-
etlab’s xml-rpc interface to remotely interact with the slice re-
sources, so if the TestbedController fails it is possible to recon-
struct the controller and reconnect it to the running experiment
in the slice. This is not the case for other testbeds, such as ns-
3, where the simulated experiment is executed by the Testbed-

Controller process, and in case of failure the only recovery
possibility would consist in reconstructing the TestbedCon-
troller and rerunning the part of the experiment from scratch.

3.2. The new architecture

Figure 2 shows how all parts of NEPI come together to con-
duct network experiments. We modified the architecture of the
framework to enforce separation between Design and Execu-
tion stages. The ExperimentDescription and TestbedDescrip-
tion objects are used to model the experiment. Each of the lat-
ter will represent one environment instance, and will validate
elements, attributes an connections using environment specific
Metadata objects. The ExperimentDescription object can then
produce an xml representation of the experiment, which is used
by the ExperimentController object to deploy it. For each en-
vironment instance participating in the experiment, the Exper-
imentController will construct a TestbedController object to
handle the communication and control. The TestbedController
can be constructed locally to the ExperimentController, or re-
motely, using ssh, with authentication information provided
by the user, to tunnel the communication protocol. For each
supported experimentation environments, a TestbedController
class must be implemented to extend a common execution in-
terface and provide the environement specific implementation.
In this way, it should be possible to create a TestbedController
class to support any arbitrary environment in NEPI by just
mapping the generic execution interface to environment spe-
cific actions.

    

                        

                                   

    

Script

User

NEPI

GUI

Design Execute

ExperimentControllerExperimentDescription

XML

TestbedDescription
Testbed

Controller A

Testbed

Controller B
Design 

Metadata A 

Design 

Metadata B

Testbed 

Instance A

Execute 

Metadata A

Execute

Metadata B

Testbed 

Instance B

Figure 2: NEPI’s architecture

4. SUPPORTED ENVIRONMENTS

In a previous publication [11], we left the open question to
whether it was possible to define a uniform object model that
could be used with heterogeneous network experimentation
environments. In the present section we give an answer to



that question by explaining how NEPI’s object model was con-
cretely applied to capture the different degrees of granularity
provided by three complementary environments, the Planet-
Lab testbed [9], the netns emulator [3], and the ns-3 simulator
[5].

PlanetLab is a globally distributed network of computers
connected to the Internet for research purposes. From an ex-
periment’s topology point of view, PlanetLab provides little
flexibility as it only allows to select nodes connected to the
Internet, with a predefined number of network interfaces and
fixed IP addresses. NEPI models these components using Node
boxes connected to a Internet box trough NodeInterface boxes.
A hostname attribute in the Node allows to select a specific
host, otherwise the number of associated NodeInterface and
the IP addresses set on them, as Address attributes, is employed
for resource discovery. As arbitrary applications can be ex-
ecuted on the nodes, PlanetLab constraints are minimum in
this respect. An Application box with a Command attribute is
used to input the execution command. TAP devices are used
to create overlay topologies of bridges between environment
instances, represented by a TapInterface box. Specific connec-
tors in this box, such as tcp, udp, and others, will define the
communication protocol.

netns emulator is a network emulator, developed by the
Planete team at INRIA [10], which provides lightweight vir-
tualisation of the Linux network stack. It uses the netns Linux
Containers technology [1], to enable emulation of a complete
network inside a single host. The netns emulator is similar
to PlanetLab in the type of components it provides to build a
network, but differs in that it permits creation of an arbitrary
number of virtual nodes and interfaces, and that nodes inside
the netns emulators are interconnected through virtual Ethernet
links (veth) [7], instead of real links. To model netns emulator,
NEPI also uses Node, Application, NodeInterface, and TapIn-
terface abstractions represented by boxes. But NodeInterfaces
are connected trough a Switch instead of an Internet box.

ns-3 is a discrete-event network simulator developed mainly
for research and education purposes. As opposed to PlanetLab
and the netns emulator, ns-3 allows a better control of the ex-
periment definition by providing lower level components, such
as network stack protocols, loss, and delay models for certain
devices. By directly mapping these ns-3 native components to
boxes, it is possible to export the same level of control on ns-3
experiments though NEPI’s object model. In order to provide
interconnection with other testbed instances, we created a new
type of ns-3 called FileDescriptorNetDevice. This device can
read Ethernet frames from a file descriptor, and write into it
frames generated by the simulated experiment. When the file
descriptor is associated to an external TAP device, this mech-
anism can be used to communicate a ns-3 simulation with a
netns emulation or PlanetLab experiment.

The main challenge in applying the object model consisted
on choosing the right functional units that would map NEPI’s
generic modeling components, Boxes, Connectors, Attributes,
and Traces, to actual environment components. Interaction be-
tween different experimentation environment is made transpar-
ent to the user by providing special boxes that take care of im-
plementing the necessary communication mechanisms.

5. NEPI IN ACTION

To demonstrate the capabilities of NEPI we will consider a
concrete experiment use case, where we want to study the im-
pact of physical rate control algorithms on a video streaming
application over a wireless network. One possibility would be
to use a physical wireless testbed, but another approach that
allows better control of the experiment consists in using ns-
3 to simulate the wireless and mobility models, and the netns
emulator to emulate realistic network stack conditions, and to
allow execution of arbitrary applications.

netns ns-3 ...

ns-3netnsVLC Server

AP

VLC Server

VLC Server

4 VLC Clients

VLC Server

fd

node

Tap

Node

Iface

devs

Node

node

phy

Wifi

NetDev

node

fd

File

Desc

NetDev

node
App

devs

app
Node

Figure 3: Conceptual diagram of experiment

Figure 3 shows a conceptual diagram of the experiment
we are going to conduct using NEPI. This experiment com-
plements the work done on efficient collision detection by
Maguolo et al [12], providing validation of the AARF-CD rate
control algorithm [12] for real video traffic. The experiment
consists of a netns emulator instance, hosting four VLC servers
in four emulated nodes. These nodes stream RTP video to a
fifth emulated node hosting four VLC clients. The emulated
nodes are interconnected only through a ns-3 simulated 802.11
wireless network, so the RTP traffic is routed through the sim-
ulation.

As stated before, NEPI performs automatic validation of the
experiment description during design, without requiring any
testbed resources to be available. It prevents setting invalid
attribute values, or creating invalid connections between boxes.
As an example, NEPI will validate that IP addresses are well
formed before deploying the experiment.

Additionally, NEPI takes care of implementing the neces-
sary tunneling mechanisms for achieving data transmission be-
tween different environments, and of wrapping this mechanism
in testbed specific boxes that can be interconnected. Figure 3
also shows the detail of how the interconnection between ns-
3 and netns emulator instances can be designed using Boxes



and Connectors. In this example the TapNodeInterface box
represents a TAP device inside a netns emulation, and the
FileDescriptorNetDevice box represents an ns-3 object capa-
ble of interacting with the outside of the simulation through a
file descriptor. When NEPI performs the deployment of the
experiment, it will handle the passing of the file descriptor as-
sociated to the TAP device in the netns emulator side to the
FileDescriptorNetDevice object in the ns-3 side, establishing
the communication line.

The wireless ns-3 network in our experiment is composed
of four mobile stations and one AP, connected respectively to
the emulated VLC server and VLC client nodes. The simu-
lated mobile stations are evenly arranged 10 m apart from the
AP, and they move away at a speed of 1 m/s until they reach a
distance of 100 m. We consider four scenarios where we mod-
ify only the rate control algorithm to be used by ns-3 wireless
nodes. The objective is to evaluate, under the presence of con-
tention and the increment in the distance from the AP, which
of three rate control algorithms, ARF, AARF, and AARF-CD,
better preserves the streamed video quality. For the fourth sce-
nario, we chose the ideal rate control algorithm, which will be
used as a reference for comparison. See [12], for details about
these four algorithms.

To measure the received video quality we considered the
packet loss per stream, taking into account the packets sent by
the streaming servers to the clients within a 3 s time window
to ensure correct video playback.

Figure 4: Streaming performance by distance, comparing four rate
control algorithms, with 95% confidence interval.

Figure 4 reflects the video quality of the streams as distance
from the AP increases for the four mentioned rate control al-
gorithms. As shown in [12], AARF-CD, which was created to
handle the presence of collisions, is the one that performs best.
With this simple experiment using NEPI, we have shown the
suitability of the AARF-CD algorithm for use in video stream-
ing applications. We have also shown how NEPI enables easily
combining different experimentation environments to satisfy
research needs. The experiment presented here took only half
an hour to design, and NEPI performed the deployment of each
run of each scenario in only few seconds.

More information on how to reproduce this experiment and
how the results were analyzed can be found at:

http://yans.pl.sophia.inria.fr/trac/nepi/wiki/
nepi/VlcExperiment

6. CONCLUSION

NEPI intends to improve experimental network research by
making it easier to use different experimentation environ-
ments to evaluate and reproduce the same experiment scenar-
ios, granting better reliability to experimental results.

In this paper we presented the full design and implementa-
tion of NEPI, and demonstrated the feasibility of NEPIs ap-
proach by implementing support for three heterogeneous ex-
perimentation environments. We also showed, with a con-
crete reproducible example involving the ns-3 simulator and
the netns emulator, that NEPI makes it possible to easily and
transparently integrate different supported environments in a
single hybrid-experiment.

For the future development of NEPI, work remains to be
done in supporting more experimentation environments and
building up the user community. Due to lack of space, we only
presented in this paper one experiment case. A journal version
is under progress which will include more experiment cases,
involving also PlanetLab, with more details on the hierarchi-
cal distributed control and stateless communication schemes
implemented in NEPI.

REFERENCES
[1] Lxc maintainers, linux containers project page. http://lxc.

sourceforge.net/.
[2] Nef, network experimentation frontend. http://yans.pl.

sophia.inria.fr/trac/nepi/wiki#NEF.
[3] The netns testbed. http://yans.pl.sophia.inria.fr/

trac/nepi/wiki#NETNS.
[4] The network simulator. http://www.isi.edu/nsnam/ns.
[5] The ns-3 network simulator. http://www.nsnam.org/.
[6] Rpyc, remote python call. http://rpyc.wikidot.com/.
[7] Swsoft, openvz. http://www.openvz.org/Veth.
[8] Jeff Ahrenholz, Claudiu Danilov, Thomas R. Henderson, and Jae H.

Kim. Core: A real-time network emulator. In MILCOM 2008. IEEE,
pages 1–7, 2008.

[9] Andy Bavier, Mic Bowman, Brent Chun, David Culler, Scott Karlin,
Steve Muir, Larry Peterson, Timothy Roscoe, Tammo Spalink, and Mike
Wawrzoniak. Operating system support for planetary-scale network ser-
vices. In NSDI’04, pages 19–19, Berkeley, CA, USA, 2004. USENIX
Association.

[10] Martin Ferrari. Netns: End of studies report ubinet master. http:
//hal.inria.fr/inria-00601848/fr/.

[11] Mathieu Lacage, Martin Ferrari, Mads Hansen, Thierry Turletti, and
Walid Dabbous. Nepi: using independent simulators, emulators, and
testbeds for easy experimentation. SIGOPS Oper. Syst. Rev., 43(4):60–
65, 2010.

[12] Federico Maguolo, Mathieu Lacage, and Thierry Turletti. Efficient colli-
sion detection for auto rate fallback algorithm. In MediaWiN 2008, July
2008.

[13] Thierry Rakotoarivelo, Maximilian Ott, Guillaume Jourjon, and Ivan
Seskar. Omf: a control and management framework for networking
testbeds. SIGOPS Oper. Syst. Rev., 43:54–59, January 2010.

[14] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar.
An integrated experimental environment for distributed systems and net-
works. In Proc. OSDI ’02, pages 255–270, Boston, MA, dec 2002.
USENIX Association.


