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Abstract
We propose to demonstrate Direct Code Execution (DCE)1,
a ns-3 simulation framework that enables reproducible net-
work experiments using real Linux kernel space protocol
stacks along with POSIX socket based protocol implemen-
tations. In addition to increased experimentation realism,
it offers a highly configurable topology environment and al-
lows easy debugging of communication protocols distributed
other multiple nodes. Our demonstration will showcase two
typical use cases of DCE: information-centric networking
over mobile ad hoc network using the PARC CCNx code,
and a seamless handoff experiment based on a Linux Multi-
path TCP (MP-TCP) implementation.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support
Systems
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1. INTRODUCTION
The increasing demand for reproducible network experi-

ments requires sophisticated tools to conduct arbitrary net-
work experiments at large scale. Indeed, many features
are needed in addition to providing experimentation real-
ism such as the possibility to configure the network topol-
ogy in a flexible way, to easily replicate experiments at low
cost, to run experiments at large scale and to easily debug
network protocols even over distributed nodes. Container-
based emulation (CBE) [3] approaches such as Mininet pro-
vide experimentation realism and easy/low cost replication
but they are limited by the physical resources of the emula-
tion machine and do not provide easy debugging facilities.
Shared testbeds such as PlanetLab [9] offer experimenta-
tion realism but the performance obtained highly depend on

1Project web page: http://www.nsnam.org/overview/
projects/direct-code-execution/
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Table 1: Requirements for reproducible network ex-
periments.

Simulators Testbeds Emulators

Functional
??? X X

Realism
Timing

X X X
Realism

Topology
X (limited) X

Flexibility
Easy

X X X
Replication

Easy
X

Debug
Scalability X

network conditions which are not controlled, and configura-
bility of the topology is limited. As for network simulators,
they provide a fully reproducible network environment, with
highly configurable topology but they usually lack of func-
tional realism because most often they use simplistic models
of network protocol implementations.

Porting existing network protocol implementations to net-
work simulators is one possible option to increase the level
of realism of experiments. OppBSD [2] or INETQuagga [1]
take this approach to reuse existing protocol implementa-
tions (i.e., TCP/IP stack of FreeBSD and Quagga routing
protocol suite), but they still require to manually patch for
a particular network simulator, which is a complex task to
perform. This makes it difficult to follow the evolutions
and improvements of the simulator code. Network Simu-
lation Cradle (NSC) [5] introduces a different technique; it
automatically generates C source files of different operating
system’s network stacks (e.g., FreeBSD, Linux, OpenBSD,
lwip), and builds shared libraries used in the network sim-
ulators. The automation alleviates the cost of tracking the
latest version of codes and supports a wide range of exist-
ing code on a single framework, but additional effort is still
required to introduce arbitrary protocol implementations in
addition to TCP.

In this demo we showcase Direct Code Execution (DC-
E), the first open source framework integrating both Linux
kernel space protocol stack and POSIX socket based user
space application code within a discrete-event network sim-
ulator. DCE uses the traditional library operating system
(LibOS) approach as Exokernel [6] in its core architectural
design to enable running and evaluating real network proto-

29

http://www.nsnam.org/overview/projects/direct-code-execution/
http://www.nsnam.org/overview/projects/direct-code-execution/


ARP

Qdisc

TCP UDP DCCP SCTP

ICMP IPv4IPv6

Netlink

BridgingNetfilter

IPSec Tunneling

Kernel layer

Heap Stack

memory

Core layer

network simulation core

POSIX layer

Application
(ip, iptables, quagga)

bottom halves/rcu/
timer/interupt

struct net_device
(ns3::NetDevice)

DCE

DCE

Hardware

Simulation Core

Host 
operating system

Process

Network
stack

Applications

Network
stack

Applications

node#1 node#N

Figure 1: Architecture of Direct Code Execution.

col implementations. As a result, DCE provides functional
realism to network simulation-based experimentation, which
traditional simulators do not have, as shown in Table 1.

2. DCE SYSTEM OVERVIEW
The design of DCE is structured around three separate

components as depicted in Figure 1.

• Core. The lowest-level core module handles the virtu-
alization of stacks, heaps, and global memory. It uses a
single-process model that executes every simulated pro-
cess within the same host process and carefully isolates
the namespace of each simulated process.

• Kernel layer. The kernel layer takes advantage of
the core services to provide an execution environment
to the Linux network stack within the single-processed
network simulator. The services of kernel such as the
Linux bottom halves, Read-Copy-Update (RCU) [7],
scheduler, and timer API are re-implemented as a new
architecture based on the asm-generic implementa-
tion to minimize the modifications of the original ker-
nel code.

• POSIX layer. The POSIX layer builds upon the core
and kernel layers to re-implement the standard socket
APIs used by emulated applications.

Theoretically, there is no limitation regarding to the kind
of protocol or application that may run over DCE without
any manual modifications to the original code. In practice,
however, we may need to extend the POSIX layer to add
missing system calls only if the new application requires.
Today, DCE supports a broad range of existing implemen-
tations running on ns-3: Linux kernel (2.6.36, 3.4-3.10
versions), quagga (ripd, ripngd, ospfd, ospf6d, bgpd, and
rtadv), ccnx, iperf, ip, ping/ping6, umip, bind9, unbound,
thttpd, and bittorrent (opentracker, rasterbar).

3. DEMONSTRATION DETAIL

Figure 2: CCNx on WiFi mobile ad hoc network.

We plan to demonstrate two use cases to present major
features of DCE: the first one involves the CCNx protocol
implementation running in user space and the second one,
the MPTCP Linux implementation running in kernel space.

User space protocol implementation running on
DCE: CCNx2 over MANET nodes

Content Centric Networking (CCN) [4] is a new para-
digm proposed by PARC that transforms traditional host-
to-host based communication into content-based communi-
cation. This paradigm is well suited to MA-NETs, because
most application scenarios in mobile ad hoc networks are
data-centric in nature [8].

2http://www.ccnx.org/
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In this first use case, we will showcase the PARC CCN
implementation, called CCNx, over a dynamic topology pro-
vided by ns-3.

Kernel space protocol stack running on DCE:
MPTCP over LTE and WiFi links

Multipath TCP (MPTCP) [10] is an extension of the stan-
dard TCP allowing to use multiple subflows with different IP
addresses without having to modify user space applications.
Basically, this new transport protocol makes it possible to
increase the throughput of an application by running it over
multiple links, and it also enables transparent handoff using
multiple IP addresses.

Figure 3: Handoff simulation using the Linux
MPTCP implementation.

In this second use case, we will use a kernel space Linux
MPTCP implementation3 on DCE / ns-3 and with the sup-
port of various user space applications
(quagga, ip command, udhcpd, iperf). Multiple addresses
will be provided to mobile nodes using two different wire-
less technologies supported by ns-3: LTE and WiFi. So,
MPTCP will switch its primary address between the two
types of links according to the node movement, trying to
keep the ongoing TCP session available. Furthermore, the
TCP session uses multiple subflows to increase the goodput
if two wireless links are available.

Along with DCE / ns-3, our demonstrations will include
animated visualization of simulated nodes, traffic status, as
well as performance graphs obtained from each simulation.
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3https://github.com/multipath-tcp/mptcp
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