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Abstract
We investigate the well posedness of stationary Vlasov-Boltzmann equations both in the

simpler case of linear problem with a space varying force field and a collisional integral satisfy-
ing the detailed balanced principle with a non-singular scattering function, and, the non-linear
Vlasov-Poisson-Boltzmann system. For the former we obtain existence-uniqueness results for
arbitrarily large integrable boundary data and justify further a priori estimates. For the later
the boundary data needs to satisfy an entropy condition guaranteeing classical statistical equi-
librium at the boundary. This stationary problem relates to the existence of phase transitions
associated with slab geometries.
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1 Introduction

The present study focus on the solvability of stationary boundary value problems associated to
Boltzmann-Poisson systems. These problems are related to basic questions associated with ex-
istence of non classical statistical equilibrium states in bounded domains as well as stable phase
transition problems in kinetic theory of plasmas. In addition, they also appear boundary and inter-
face regions described by transition layers where a stationary kinetic equation is solved. A standard
assumption is for the layer to have a slab symmetry, that is, the particle distribution is constant
on surfaces parallel to the interface.

Previously to our work, rigorous analysis for the boundary value problem associated to these
kinetic equations have been studied in the framework of boundary layers (the half space and Milne
problem), and in the case of full space boundary prescribed data, as investigated in [13] where
the proof appeals to comparison principles based on the fact that the boundary condition are
comparable to equilibrium states that nullify the transport and collision terms. In such cases an
absolute Maxwellian distributions can be used to derive pointwise a priori estimates and then it
leads to existence results for incoming data comparable to Maxwellian distribution. The case of
one sided boundary value problems for transport kinetic equations in the absence of forces, known
as the half space problem, and its corresponding limiting behavior in a strong collisional regime
and long time scaling linear, as the length of the transition layer is comparable to the reference
collision frequency, known as the Milne problem, was initiated in [2] by means of spectral methods
and semigroup theory.

For collisional plasma models, the force field, gradient of the electrostatic potential, is bounded
along flat boundaries where the potential is either prescribed or is a solution of the corresponding
mean field equation. In both cases, the force field will become a constant in the rescaled layer. In
the case of a linear collisional integral satisfying the detailed balanced principle with a non-singular
scattering function and weak force field forces, the rescaled force field vanishes and the correspond-
ing half space and Milne problem was studied by [12], where in particular the asymptotic behavior
exhibits a classical statistical equilibrium corresponding to a Maxwellian behavior, independent of
the force field. In the case of strong force field regimes also a slab symmetry is obtained whenever
the curvature of the interface is small compared to the reciprocal of the mean free path and the
force field is normal to the interface. Consequently, the space coordinate reduces to, say, x the
distance to the boundary or interface. After scaling it like x

ε
, where ε is the order magnitude of the

mean free path, one has to solve a kinetic half-space problem where the corresponding stationary
equation depends on the force field. Such problem has been solved by Ben Abdallah, Gamba and
Klar in [4] in the case of both negative or positive constant force fields. These strong force field
scalings are characterized by non-statistical equilibrium states P = P (v), that is they are L1(Rv)
space homogeneous solution to the layer problem, with non-vanishing mean or first moment, which
depend on the force field and on the Maxwellian in the kernel of the collision operator and the
scattering function. This problem was treated by Trugman and Taylor [16] for the relaxation op-
erator, and by Poupaud [14] for the general linear operator in higher dimensions. These problems
related to non-equilibrium statistical states where also solved by comparisons methods provided
the boundary data was comparable to these dominant state.

However the question associated to the full boundary value of connecting two states with just
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bounded incoming fluxes, in a slab geometry of an interface, with a varying force remains open.
This fundamental problem we address in this paper is related to the existence of phase transitions
for the Boltzmann-Poisson system of equations.

In this manuscript we first develop the study of existence of solutions to the linear stationary
boundary value problem for the Vlasov-Boltzmann equation, with given force fields having bounded
gradients, and incoming boundary data having bounded incoming fluxes (first moments). We use
constructive techniques such as integrator along characteristics and the construction of monotone
sequences with boundary control estimates. Both existence and uniqueness follows from the mass
(order) preserving, non-expansive (dissipative) nature of the collisional form: these properties are
the basis of the derivation of new sharp estimates for the stationary boundary value problem. Fur-
ther, we also develop moments, L∞ and entropy estimates. These estimates, which are interesting
in themselves, allow us to consider the stationary boundary value problem for the self consistent
Boltzmann-Poisson system; they not only control the regularity of self consistent force fields but
also yield the existence of weak solutions by solving an auxiliary absorption perturbation problem
and using compactness arguments.

1.1 Statement of problems

We consider the problem

v∂xf + E(x)∂vf = κQ(f), x ∈ (0, L), v ∈ R (1.1)

where κ > 0 and Q is the linear collision operator (cf. [14, 4]) satisfying the detailed balance
principle, defined by

Q(f)(x, v) =

∫ +∞

−∞
s(v, v′){Mθ(v)f(x, v′)−Mθ(v

′)f(x, v)} dv′ = Q+(f)(x, v)− σ(v)f(x, v) (1.2)

whereQ+(f)(x, v) =
∫ +∞
−∞ s(v, v′)Mθ(v)f(x, v′) dv′ is the gain operator, σ(v) =

∫ +∞
−∞ s(v, v′)Mθ(v

′) dv′

is the collision frequency and Mθ is the Maxwellian equilibrium

Mθ(v) =
e−v2/2θ

√
2πθ

, v ∈ R

with θ > 0. The scattering function s(v, v′) satisfies

s(v, v′) = s(v′, v) and 0 < s0 ≤ s(v, v′) ≤ s1 < +∞, v, v′ ∈ R

for some constants s0, s1 ∈ (0,+∞). Notice that the collision frequency verifies

0 < s0 ≤ σ(v) ≤ s1 < +∞, v ∈ R.

In particular, when the scattering function is constant we obtain the simple relaxation operator
defined by

Q(f)(x, v) = s{
〈
f
〉
(x) Mθ(v)− f(x, v)},

〈
f
〉
(x) =

∫ +∞

−∞
f(x, v) dv.
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The equation has to be completed by incoming data

f(0, v)|v>0 = f0(v), f(L, v)|v<0 = fL(v). (1.3)

This equation arises in the modeling of charge transport phenomena, with applications in semi-
conductor theory or plasma physics [11]. There, the force field E, which is space-varying, describes
electric forces that influence the motion of the electrons. The problem has been investigated in
[13]: the proof appeals to comparison principles based on the fact that

Mθ,Φ(x, v) = exp
(
− v2/2 + Φ(x)

θ

)
, E(x) = −Φ′(x)

makes vanish both the transport operator v∂x + E(x)∂v and the collision operator Q. Therefore
the absolute Maxwellian distribution Mθ,Φ can be used to derive pointwise a priori estimates and
we are led to existence results for incoming data comparable to Mθ,Φ.

We also notice that more difficulties arise from the space variation of the force E or the variation
of the scattering function. Indeed, in the specific case where E is constant and s = 1, it turns out
that a solution of (1.1)-(1.2) is given by the explicit formula, see [16, 14]

PE(v) = Z
κ√
π E

exp
(
− κ

E
v +

1

2θ

( κ
E

)2) ∫ +∞

−(v−κ/E)/
√

2θ

e−u2

du

where Z > 0 is a normalizing constant (so that the v−average of PE is 1 when Z = 1). Again, this
particular solution can be used with comparison principles to prove existence results for boundary
value and Milne problems when considering incoming data compatible with PE, see [4].

In this manuscript, we consider more general incoming data, only requiring some integrability
conditions of moments and we treat the case of general linear collision operator.

We now state our main results. The first one is the existence and uniqueness of the stationary
boundary value problem for the linear Vlasov-Boltzmann equation for a given electric field with
bounded first derivative and boundary data whose incoming part has finite mean. The second main
result is the existence of the stationary boundary value problem for the self-consistent Boltzmann-
Poisson system, where now the incoming boundary data satisfies an entropy condition type. The
results are stated as follows.

Theorem 1.1 (The linear Vlasov-Boltzmann equation) Let E ∈ W 1,∞((0, L)). Assume that the
incoming data satisfy∫ +∞

0

v |f0(v)| dv = M0 <∞,

∫ 0

−∞
(−v) |fL(v)| dv = ML <∞. (1.4)

Then, there exists a unique (mild) solution f(x, v) ∈ L1((0, L) × R) of (1.1)-(1.3); the outgoing
traces are well-defined and satisfy∫ 0

−∞
(−v)|f(0, v)| dv <∞,

∫ ∞

0

v|f(L, v)| dv <∞.

If f0, fL ≥ 0, then f ≥ 0 as well.
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Our strategy of proof is different and allows to deal with arbitrary integrable data. The proof only
relies on “energy” estimates and properties of the characteristics associated to the field (v, E(x)).

Remark 1.1 Note that the boundary condition (1.4) is satisfied by both the classical equilibrium
state Mθ,Φ(v) and the strong forced non-equilibrium distribution PE(v) above. This is a signature
for the existence of strong phase transitions for the Vlasov-Boltzmann linear transport equation.

Remark 1.2 The notion of “mild” solution refers to a solution satisfying the equation integrated
along the characteristics, as it will be detailed below. We do not detail the different notions of
solutions for transport equations we use, referring instead to a textbook on this topics, like e.g. [8].

The second main statement, which requires further moments boundedness and entropy esti-
mates, ensures the existence of weak solutions to the Boltzmann-Poisson system

v∂xf + E(x)∂vf = κQ(f), x ∈ (0, L), v ∈ R (1.5)

E(x) = −Φ′(x), −Φ′′(x) = 〈f〉(x)− nb(x), x ∈ (0, L) (1.6)

with the boundary conditions

f(0, v)|v>0 = f0(v), f(L, v)|v<0 = fL(v) (1.7)

Φ(0) = Φ0, Φ(L) = ΦL. (1.8)

The function nb(x) ≥ 0, nb ∈ L1((0, L)) represents the concentration of a background population
of ions. The following result of existence of weak solutions follows.

Theorem 1.2 (The self-consistent Boltzmann-Poisson system) Assume that f0, fL are non-
negative and satisfy the following boundary entropy condition

H
L

=

∫ +∞

0

v
(
1 +

v2

2
+ | ln f0|

)
f0 dv −

∫ 0

−∞
v
(
1 +

v2

2
+ | ln fL|

)
fL dv < +∞. (1.9)

Then there is a weak solution (f, E) for the Boltzmann-Poisson problem (1.5)-(1.8) satisfying E ∈
L∞((0, L)) ∩W 1,1((0, L)) and∫ L

0

∫ +∞

−∞

(
| ln f |+ 1 +

v2

2

)
f(x, v) dv dx < +∞∫ +∞

0

v

(
| ln f |+ 1 +

v2

2

)
f(L, v) dv −

∫ 0

−∞
v

(
| ln f |+ 1 +

v2

2

)
f(0, v) dv < +∞∫ L

0

| ln〈f〉|〈f〉 dx < +∞.

The proof of Theorem 1.2 uses an α-perturbed linear kinetic transport problem coupled to (1.6)-
(1.8) and its subsequent stability results letting the parameter α going to zero.

In the next section, we set up a few notation and recall basic properties of the characteristics.
The proof of Theorem 1.1 is detailed in Section 3. Then, in order to prove the weak existence of
the self-consistent system, we discuss in Section 4 entropy estimates and L∞ bounds when dealing
with entropy bounded incoming data and non-smooth force fields. Finally, we prove Theorem 1.2
in the last section.
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2 Characteristics

It is convenient to introduce the potential Φ(x) such that E(x) = −Φ′(x), namely we set

Φ(x) = Φ0 −
∫ x

0

E(y) dy, (2.10)

for some constant Φ0. Since E belongs to W 1,∞((0, L)), Φ ∈ C1((0, L)), with Φ′′ ∈ L∞((0, L)). We
define the characteristic curves as the solutions of the ODEs system{

d

dt
X (t; s, x, v) = V(t; s, x, v),

d

dt
V(t; s, x, v) = E(X (t; s, x, v)) = −Φ′(X (t; s, x, v)),

X (s; s, x, v) = x, V(s; s, x, v) = v.
(2.11)

The system is autonomous so that it suffices to consider the solution (X(t;x, v), V (t;x, v)) corre-
sponding to the data (x, v) at time s = 0 and we get

(X ,V)(t; s, x, v) = (X,V )(t− s;x, v).

In particular, X(−t;x, v) (resp. V (−t;x, v)) gives the position (resp. the velocity) at time 0 of a
particle that starts at time t from position x and velocity v. An important property is the local
energy conservation which means, for any t ∈ R,

V 2(t;x, v)

2
+ Φ(X(t;x, v)) =

v2

2
+ Φ(x). (2.12)

For any x ∈ [0, L] and v ∈ R, we define the exit times

Tout(x, v) = sup
{
t ≥ 0 such that for any s ∈ (0, t), X(s;x, v) ∈ (0, L)

}
,

Tinc(x, v) = sup
{
t ≥ 0 such that for any s ∈ (0, t), X(−s;x, v) ∈ (0, L)

}
.

Next, we introduce the critical velocities

V0 =

(
2
(

max
x∈[0,L]

Φ(x)− Φ(0)
))1/2

≥ 0, VL = −
(

2
(

max
x∈[0,L]

Φ(x)− Φ(L)
))1/2

≤ 0.

We shall need a few properties of the characteristics. Using the conservation of the total energy
v2

2
+ Φ(x) along the characteristics we first prove as in [6] (see also [10]):

Proposition 2.1 Assume that E ∈ W 1,∞((0, L)). Then, the following properties hold:

i) For any 0 < v < V0 (resp. VL < v < 0) there exist x? ∈ (0, L) and 0 < s? ≤ Tout(0, v) ≤ +∞
(resp. 0 < s? ≤ Tout(L, v) ≤ +∞) such that, for any 0 < s < s?,

0 < X(s; 0, v) < x?, V (s; 0, v) > 0, lim
s↗s?

(X,V )(s; 0, v) = (x?, 0)

(resp. x? < X(s;L, v) < L, V (s;L, v) < 0 and lims↗s?(X,V )(s;L, v) = (x?, 0)).
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ii) Under the assumptions of i), if moreover, Φ′(x?) 6= 0, then Tout(0, v) (resp. Tout(L, v))
is finite, s? = Tout(0, v)/2 (resp. s? = Tout(L, v)/2) and for any 0 < s < s?, we get
(X,V )(s; 0, v) = (X,−V )(2s? − s; 0, v) (resp. (X,V )(s;L, v) = (X,−V )(2s? − s;L, v)). In
particular, we have X(Tout(0, v); 0, v) = 0 (resp. X(Tout(L, v);L, v) = L).

iii) For any v > V0, Tout(0, v) is finite, and furthermore, X(Tout(0, v); 0, v) = L and V (s; 0, v) > 0
holds for any 0 < s < Tout(0, v).

Similarly, for any v < VL, Tout(L, v) is finite, and X(Tout(L, v);L, v) = 0 and V (s;L, v) < 0
holds for any 0 < s < Tout(L, v).

We shall use crucially the third property which tells us that, choosing large enough velocities,
the characteristics cross the entire domain (0, L).

Example 2.1 If E(x) ≥ 0 and Φ0 = 0, then the potential is non-increasing and non-positive.
In this case, we obtain readily estimates on the exit time: for any v > 0, L/

√
v2 − 2Φ(L) ≤

Tout(0, v) ≤ L/v and for any v < −
√

2|Φ(L)|, L/|v| ≤ Tout(L, v) ≤ L/
√
v2 + 2Φ(L).

Example 2.2 If E(x) is non-decreasing, the potential is concave and the exit times are always
finite, but for the initial data (0, V0) and (L, VL).

Example 2.3 Let us set E(x) = E−−∆Ex for some E−,∆E > 0. Hence Φ(x) = ∆Ex2/2−E−x.
The energy conservation can be recast as(√

∆EX(t;x, v)− E−/
√

∆E
)2

+ V 2(t;x, v) =
(√

∆Ex− E−/
√

∆E
)2

+ v2

which means that (
√

∆EX, V ) describes the circle centered at (E−/
√

∆E, 0) with radius
(
v2 +

(
√

∆Ex− E−/
√

∆E)2
)1/2

.

Next, we will make use of the following claim (see [5] for a more general result)

Lemma 2.1 Let E ∈ W 1,∞((0, L)). Then for any characteristic we have

|V (s1)− V (s2)| ≤ 2 (2L ‖E‖∞)1/2 , for Tinc ≤ s1 ≤ s2 ≤ Tout.

Proof. Suppose that V (s1), V (s2) have the same sign, for example 0 ≤ V (s1) ≤ V (s2). The
conservation of the energy along the characteristics

1

2
V (s1)

2 + Φ(X(s1)) =
1

2
V (s2)

2 + Φ(X(s2))

implies that V (s2) = (V (s1)
2 + a)

1/2
with a = 2(Φ(X(s1))− Φ(X(s2))) ∈ [0, 2L‖E‖∞]. It is easily

seen that
V (s2)− V (s1) =

a

(V (s1)2 + a)1/2 + V (s1)
≤
√
a ≤ (2L ‖E‖∞)1/2.

If V (s1), V (s2) have opposite signs, there exists s3 ∈ [s1, s2] such that V (s3) = 0 and thus |V (s1)−
V (s2)| ≤ |V (s1)− V (s3)|+ |V (s3)− V (s2)| and we can apply the previous result to both terms of
the right hand side.
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3 Existence-Uniqueness for Bounded first Moments of In-

coming Data

The goal of this section is to prove Theorem 1.1. First of all, let us recall a few basic facts about
the solutions of the stationary transport equation

v∂xf + E∂vf + κσ(v)f = S (3.13)

for a given S ∈ L1((0, L)×R) and boundary condition (1.3). We recall that the incoming data are
required to satisfy (1.4) and for further purposes it is convenient to introduce the quantity

J =

∫ +∞

0

vf0(v) dv −
∫ 0

−∞
vfL(v) dv

which is positive when the incoming data are non-negative. We refer e.g. to [1, 15, 17] for details
on the following classical results.

Proposition 3.1 For any κ > 0, (3.13) admits a unique solution f ∈ L1((0, L)× R) the outgoing
traces of which verify vf(0, v) ∈ L1((−∞, 0)) and vf(L, v) ∈ L1((0,+∞)). The solution is given
by the following explicit formula

f(x, v) = finc(Xe, Ve) e
−κ

R Tinc(x,v)
0 σ(V (−τ ;x,v)) dτ

+

∫ Tinc(x,v)

0

e−κ
R t
0 σ(V (−τ ;x,v)) dτ S

(
X(−t;x, v), V (−t;x, v)

)
dt (3.14)

where finc(Xe, Ve) stands for f0(V (−Tinc(x, v);x, v)) if X(−Tinc(x, v);x, v) = 0, V (−Tinc(x, v);x, v) >
0 or fL(V (−Tinc(x, v);x, v)) if X(−Tinc(x, v);x, v) = L, V (−Tinc(x, v);x, v) < 0.

Corollary 3.1 The solution of (3.13) given by (3.14) verifies the following properties:

i) If the data f0, fL and S are non-negative, then f ≥ 0 as well.

ii) If f0, fL and S are bounded, then f is bounded too with

‖f‖L∞ ≤ max
{
‖f0‖L∞((0,+∞)), ‖fL‖L∞((−∞,0)),

1

κs0

‖S‖L∞((0,L)×R)

}
.

iii) Assume that vf0 ∈ L1((0,+∞)), vfL ∈ L1((−∞, 0)) and S ∈ L1((0, L)× R). Then, we have

κs0‖f‖L1((0,L)×R) + ‖vf(0, ·)‖L1((−∞,0)) + ‖vf(L, ·)‖L1((0,+∞))

≤ ‖vf0‖L1((0,+∞)) + ‖vfL‖L1((−∞,0)) + ‖S‖L1((0,L)×R).
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Finally, we shall also need the following integrated formula∫ L

0

∫ +∞

−∞
f ψ dv dx =

∫ +∞

0

vf0(v)

(∫ Tout(0,v)

0

e−κ
R s
0 σ(V (τ ;0,v)) dτ ψ(X(s; 0, v), V (s; 0, v)) ds

)
dv

−
∫ 0

−∞
vfL(v)

(∫ Tout(L,v)

0

e−κ
R s
0 σ(V (τ ;L,v)) dτ ψ(X(s;L, v), V (s;L, v)) ds

)
dv

+

∫ L

0

∫ +∞

−∞
S(x, v)

(∫ Tout(x,v)

0

e−κ
R s
0 σ(V (τ ;x,v)) dτ ψ(X(s;x, v), V (s;x, v)) ds

)
dv dx,

(3.15)

which holds for any bounded test function ψ.

We show now that the proof of Theorem 1.1 relies on an iterative procedure with sufficient
boundary control estimates.
Proof of Theorem 1.1: Notice that, by linearity, it suffices to deal with non-negative incoming
data: f0, fL ≥ 0. Then, the existence result follows by proving the convergence of the sequence(
f (n)

)
n∈N constructed as follows:

• Set f (0) = 0;

• Given f (n), define f (n+1) by using (3.14) with S(x, v) = κQ+(f (n))(x, v) = κ
〈
f (n)

〉
s
(x, v)Mθ(v),

where we denote
〈
g
〉

s
(x, v) =

∫ +∞
−∞ s(v, v′)g(x, v′) dv′.

Thus, the proof of Theorem 1.1 is a consequence of the following claims.

Lemma 3.1 Let f0, fL ≥ 0 satisfy (1.4). The sequence
(
f (n)(x, v)

)
n∈N is non-decreasing:

0 ≤ f (n)(x, v) ≤ f (n+1)(x, v) ≤ . . .

and the outgoing traces satisfy the following estimate∫ ∞

0

vf (n)(L, v) dv +

∫ 0

−∞
(−v)f (n)(0, v) dv ≤M0 +ML. (3.16)

Lemma 3.2 Let f0, fL ≥ 0 satisfy (1.4). The sequence
(
f (n)

)
n∈N is bounded in L1((0, L)× R).

Let us postpone for a while the proof of these statements.
By combining Lemma 3.1 and 3.2 and appealing to the Beppo-Levi theorem we deduce that

f (n) converges in L1((0, L)× R) to

f(x, v) = sup
n∈N

f (n)(x, v) . (3.17)
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This is clearly enough to conclude by letting n → ∞ that f is a solution of (1.1)-(1.3). So the
existence follows.

To justify uniqueness, we repeat the tricky argument of [3, 4] which is a consequence of the non-
expansive nature of the collision map, in the spirit of [7]. Indeed, for any non decreasing bounded
function H we have by the symmetry of the scattering function∫ +∞

−∞
Q(f)H

(
f

Mθ

)
dv =

∫ +∞

−∞

∫ +∞

−∞
s(v, v′){Mθ(v)f(x, v′)−Mθ(v

′)f(x, v)}H
(
f(x, v)

Mθ(v)

)
dvdv′

=

∫ +∞

−∞

∫ +∞

−∞
s(v, v′){Mθ(v

′)f(x, v)−Mθ(v)f(x, v′)}H
(
f(x, v′)

Mθ(v′)

)
dvdv′

= −1

2

∫ +∞

−∞

∫ +∞

−∞
s(v, v′)Mθ(v)Mθ(v

′)

(
f(x, v)

Mθ(v)
− f(x, v′)

Mθ(v′)

)
×

(
H

(
f(x, v)

Mθ(v)

)
−H

(
f(x, v′)

Mθ(v′)

))
dvdv′

≤ 0. (3.18)

In particular, taking H = sgn we obtain∫ +∞

−∞
Q(f)(x, v)sgn(f(x, v)) dv ≤ 0

with equality iff sgnf does not depend on v. Therefore, if f solves

v∂xf + E∂vf = κQ(f)

with vanishing incoming data, we are led to∫ +∞

0

v|f(L, v)| dv +

∫ 0

−∞
(−v)|f(0, v)| dv = κ

∫ L

0

∫ +∞

−∞
Q(f)sgn(f) dv dx ≤ 0.

We deduce on the one hand that f(0, v) = 0 = f(L, v) for a.e. v ∈ R and, on the other hand,
that sgn(f(x, v)) does not depend on v. It follows that

(v∂x + E(x)∂v)|f |+ κσ(v)|f | = κMθ(v)

∫ +∞

−∞
s(v, w)f(x,w) dw sgn(f(x, v))

= κMθ(v)

∫ +∞

−∞
s(v, w)|f(x,w)| dw

with |f |(0, v) = 0 = |f |(L, v) for a.e. v ∈ R. Integrating along characteristics, see (3.14), we get
for ξ ∈ {0, L} and any v ∈ R

0 =

∫ Tinc(ξ,v)

0

κe−κ
R t
0 σ(V (−τ ;ξ,v)) dτ

〈
|f |
〉

s
(X(−t; ξ, v), V (−t; ξ, v)) Mθ(V (−t; ξ, v)) dt.

Using Proposition 3.1, we conclude that |f(x, v)| = 0 for a.e. x ∈ (0, L), v ∈ R.
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So the proof of Theorem 1.1 is completed, provided the proofs of next two lemmas are completed
as well

Proof of Lemma 3.1. The monotonicity property is proved recursively by using formula (3.14);
we also know that each term of the sequence belongs to L1((0, L)× R). Next, integration of{

v∂xf
(n) + E∂vf

(n) + κσ(v)f (n) = κ
〈
f (n−1)

〉
s
(x, v)Mθ(v)

f (n)(0, v)|v>0 = f0(v), f (n)(L, v)|v<0 = fL(v)

yields∫ ∞

0

vf (n)(L, v) dv +

∫ 0

−∞
(−v)f (n)(0, v) dv =

∫ ∞

0

vf0(v) dv +

∫ 0

−∞
(−v)fL(v) dv

+κ

∫ L

0

∫ +∞

−∞

∫ +∞

−∞
s(v, v′){Mθ(v)f

(n−1)(x, v′)−Mθ(v
′)f (n)(x, v)} dv′dvdx.

The last term is nothing but

κ

∫ L

0

∫ +∞

−∞

∫ +∞

−∞
s(v, v′)Mθ(v

′)(f (n−1)(x, v)− f (n)(x, v)) dv′dvdx

which is non-positive as a consequence of the monotonicity of f (n)(x, v) and (3.16) holds.

Proof of Lemma 3.2. Applying (3.15) with ψ(x, v) = σ(v) yields

∫ L

0

∫ +∞

−∞
σ(v)f (n+1)(x, v) dv dx =

∫ +∞

0

vf0(v)

(∫ Tout(0,v)

0

e−κ
R s
0 σ(V (τ ;0,v)) dτσ(V (s; 0, v)) ds

)
dv

−
∫ 0

−∞
vfL(v)

(∫ Tout(L,v)

0

e−κ
R s
0 σ(V (τ ;L,v)) dτσ(V (s;L, v)) ds

)
dv

+

∫ L

0

∫ +∞

−∞

〈
f (n)

〉
s
(x, v) Mθ(v)

×

(∫ Tout(x,v)

0

κe−κ
R s
0 σ(V (τ ;x,v)) dτσ(V (s;x, v)) ds

)
dv dx.

Let us denote, for any (x, v) ∈ [0, L]× R, the auxiliary function

h(x, v) = Mθ(v)

∫ Tout(x,v)

0

κe−κ
R s
0 σ(V (τ ;x,v)) dτσ(V (s;x, v)) ds . (3.19)

Obviously we have for any x ∈ [0, L]∫ Tout(x,v)

0

e−κ
R s
0 σ(V (τ ;x,v)) dτσ(V (s;x, v)) ds ≤ 1

κ

11



and by monotonicity we obtain

∫ L

0

∫ +∞

−∞
σ(v)f (n+1)(x, v) dv dx ≤ 1

κ
J +

∫ L

0

∫ +∞

−∞

〈
f (n+1)

〉
s
(x, v) h(x, v) dvdx. (3.20)

We now prove that there are β ∈ (0, 1), R > 0 such that

0 < h(x, v) ≤Mθ(v)− βMθ(v)1{|v|>R}.

For R > 0, we write h(x, v) = h(x, v)1{|v|≤R} + h(x, v)1{|v|>R} = h(x, v) + h(x, v). We have

0 ≤ h(x, v) ≤Mθ(v)1{|v|≤R}.

For estimating h we use Lemma 2.1 which motivates a suitable choice of the parameter R. Indeed
for any (x, v) ∈ (0, L) × R, and s ∈ [0, Tout(x, v)], when |v| ≥ 4

√
2L(‖E‖∞ + α) for some α > 0,1

we deduce from Lemma 2.1 that

|V (s;x, v)| ≥ |v| − |V (s;x, v)− v| ≥ |v| − 2
√

2L‖E‖∞ ≥ |v|
2
,

holds which in turn implies

Tout(x, v) ≤
2L

|v|
≤

√
L

8(‖E‖∞ + α)

for such v’s. Therefore, choosing R = 4
√

2L(‖E‖∞ + α), we obtain

h(x, v) ≤ 1{|v|>4
√

2L(‖E‖∞+α)}Mθ(v)

∫ √L/8(‖E‖∞+α)

0

κe−κ
R s
0 σ(V (τ ;x,v)) dτσ(V (s;x, v)) ds

= 1{|v|>4
√

2L(‖E‖∞+α)}Mθ(v)
(
1− e−κ

R√L/8(‖E‖∞+α)
0 σ(V (τ ;x,v)) dτ

)
≤ 1{|v|>4

√
2L(‖E‖∞+α)}Mθ(v)

(
1− e−κ

√
L/8(‖E‖∞+α) s1

)
for any x ∈ [0, L]. We conclude that

h(x, v) ≤ 1{|v|≤4
√

2L(‖E‖∞+α)}Mθ(v) + 1{|v|>4
√

2L(‖E‖∞+α)}Mθ(v)
(
1− e−κ

√
L/8(‖E‖∞+α) s1

)
= Mθ(v)− βMθ(v)1{|v|>4

√
2L(‖E‖∞+α)}

1The parameter α is not particularly relevant: it is used to obtain formulae which make sense even when there
is no electric field.
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with β = e−κ
√

L/8(‖E‖∞+α) s1 ∈ (0, 1). Coming back to (3.20) we deduce that∫ L

0

∫ +∞

−∞
σ(v)f (n+1)(x, v) dv dx ≤ J

κ
+

∫ L

0

∫ +∞

−∞
〈f (n+1)〉s(x, v)Mθ(v) dv dx

− β

∫ L

0

∫ +∞

−∞
〈f (n+1)〉s(x, v)Mθ(v)1{|v|>R} dv dx

=
J
κ

+

∫ L

0

∫ +∞

−∞
σ(v)f (n+1)(x, v) dv dx

− β

∫ L

0

∫ +∞

−∞
〈f (n+1)〉s(x, v)Mθ(v)1{|v|>R} dv dx.

Finally one gets

β s0

∫ L

0

∫ +∞

−∞

∫ +∞

−∞
f (n+1)(x, v′)Mθ(v)1{|v|>R} dv′ dv dx ≤ J

κ

implying that ∫ L

0

∫ +∞

−∞
f (n+1)(x, v′) dv′ dx ≤ J

κγ

where

γ = s0 β

∫
|v|>R

Mθ(v) dv = s0 e
−κ
√

L/8(‖E‖∞+α) s1

∫
|v|>4

√
2L(‖E‖∞+α)

Mθ(v) dv > 0.

As a matter of fact, observe that γ tends to 0 when κ, L or ‖E‖∞ tends to +∞.

4 Further A Priori Estimates

4.1 Moments and L∞ Estimates

Let us start with a basic estimate on the current.

Theorem 4.1 Let E ∈ W 1,∞((0, L)) and f0, fL satisfy (1.4). We denote by f ∈ L1((0, L)×R) the
unique (mild) solution of (1.1)-(1.3). Let us denote

j±(x) =

∫
±v>0

±v |f |(x, v) dv ≥ 0.

Then

i) The functions j± belong to L∞((0, L)) and satisfy

‖j±‖∞ ≤
∫ +∞

0

v|f0(v)| dv −
∫ 0

−∞
v|fL(v)| dv + κs1‖f‖L1((0,L)×R).
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ii) The total current j =
∫ +∞
−∞ vf dv is constant with respect to x and, assuming f0, fL ≥ 0, it

verifies |j| ≤ J . In particular we have∫ +∞

0

vf(L, v) dv −
∫ 0

−∞
vf(0, v) dv = J . (4.21)

iii) If f0 ≥ 0 and fL = 0 then j ∈ [0,J ].

Proof. We prove i) by a duality argument. Denoting v± = max(±v, 0), we apply (3.15) with
ψ(x, v) = v±ζ(x) where ζ ∈ L1((0, L)). We can suppose that f ≥ 0 and pick ζ ≥ 0; we get

∫ L

0

j±(x) ζ(x) dx ≤
∫ +∞

0

vf0(v)

∫ Tout(0,v)

0

V±(s; 0, v) ζ(X(s; 0, v)) ds dv

−
∫ 0

−∞
vfL(v)

∫ Tout(L,v)

0

V±(s;L, v) ζ(X(s;L, v)) ds dv (4.22)

+ κ

∫ L

0

∫ +∞

−∞

〈
f
〉

s
(x, v) Mθ(v)

∫ Tout(x,v)

0

V±(s, x, v) ζ(X(s;x, v)) ds dv dx.

By using Proposition 2.1 it is easily seen that for any (x, v) ∈
(
[0, L[×(0,+∞)

)
∪
(
]0, L]× (−∞, 0)

)
we have ∫ Tout(x,v)

0

V±(s;x, v) ζ(X(s;x, v)) ds ≤
∫ L

0

ζ(u) du.

Taking into account that∫ L

0

∫ +∞

−∞
〈f〉s(x, v)Mθ(v) dvdx =

∫ L

0

∫ +∞

−∞
σ(v)f(x, v) dvdx ≤ s1

∫ L

0

∫ +∞

−∞
f(x, v) dvdx

it follows that

0 ≤
∫ L

0

j±(x) ζ(x) dx ≤ J‖ζ‖L1((0,L)) + κs1‖f‖L1((0,L)×R)‖ζ‖L1((0,L))

which proves i).

Consequently, j =
∫ +∞
−∞ vf dv belongs to L∞((0, L)). Integrating (1.1) with respect to v tells us

that d
dx
j = 0 and integrating with respect to space leads to (4.21). When the data are non-negative,

f ≥ 0 we deduce that

−J ≤
∫ 0

−∞
vf(0, v) dv ≤ j(0) = j = j(L) ≤

∫ +∞

0

vf(L, v) dv ≤ J

holds. When fL = 0, the previous estimate becomes 0 ≤
∫ +∞

0
vf(L, v) dv = j(L) = j ≤ J .
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Corollary 4.1 Let E ∈ W 1,∞((0, L)) and f0, fL satisfy (1.4). Let f ∈ L1((0, L)×R) be the unique
(mild) solution of (1.1)-(1.3). If, furthermore the incoming data are bounded, then the macroscopic
density

〈
f
〉
(x) belongs to L∞((0, L)) and f belongs to L∞((0, L)× R).

Proof. The existence proof works with an iterative argument looking at

κf (n+1) + v∂xf
(n+1) + E∂vf

(n+1) = κ
〈
f (n)

〉
s
(x, v)Mθ(v)

with the incoming boundary conditions f0, fL. For the sake of simplicity, we suppose that f0, fL ≥ 0
and work with non-negative quantities. The proof of Theorem 4.1 can be adapted to show that

sup
n∈N, x∈[0,L]

∫ +∞

−∞
|v|f (n)(x, v) dv ≤ K <∞

where the bound depends on L, κ, θ, ‖E‖∞, s0, s1 and on the (weighted) L1 norm of the data.
Then, we compute

〈
f (n+1)

〉
(x) =

∫
|v|≤R

f (n+1) dv +

∫
|v|≥R

f (n+1) dv ≤ 2R‖f (n+1)‖∞ +
1

R

∫ +∞

−∞
|v|f (n+1) dv.

Optimizing with respect to R yields〈
f (n+1)

〉
(x) ≤ 2

√
2K ‖f (n+1)‖∞.

Now, the formula along the characteristics leads to

f (n+1)(x, v) ≤ ‖finc‖∞ e−κ
R Tinc(x,v)
0 σ(V (−τ ;x,v)) dτ

+
1

s0

∫ Tinc(x,v)

0

e−κ
R t
0 σ(V (−τ ;x,v)) dτκ(σ

〈
f (n)

〉
s
Mθ)(X(−t;x, v), V (−t;x, v)) dt

≤ ‖finc‖∞ e−κ
R Tinc(x,v)
0 σ(V (−τ ;x,v)) dτ +

s1

s0

‖〈f (n)〉‖∞
1√
2πθ

(1− e−κ
R Tinc(x,v)
0 σ(V (−τ ;x,v)) dτ ).

Let B > 0 such that ‖finc‖∞ ≤ B. Therefore if the induction hypothesis s1

s0

1√
2πθ
‖
〈
fn
〉
‖∞ ≤ B holds

then we also have f (n+1) ≤ B.
We can now show that the set {f(x, v) ∈ L∞(0, L;L1(R)) : 0 ≤

〈
f
〉
≤ s0

s1

√
2πθ B} is left

invariant by the recursion scheme.
Indeed, owing to the previous estimates, it is enough to find B ≥ ‖finc‖∞ such that 2

√
2KB ≤

s0

s1

√
2πθ B, or equivalently (

s1

s0

)2
4K
πθ

≤ B.

Accordingly, choosing B large enough, depending on ‖finc‖∞, L, k, θ, ‖E‖∞, s0, s1 we have for any
n ∈ N

‖f (n)‖L∞((0,L)×R) ≤ B, ‖
〈
f (n)

〉
‖L∞((0,L)) ≤

s0

s1

√
2πθB.
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In particular, by Lemmas 3.1 and 3.2, every fn solution constructed by the iterative monotone
scheme is in the set {f(x, v) ∈ L∞(0, L;L1(R)) : 0 ≤

〈
f
〉
≤ s0

s1

√
2πθ B}, and so the corresponding

limiting function (3.17) belongs to this set as well.

Next we discuss estimates on higher moments of traces.

Proposition 4.1 Let the assumptions of Theorem 1.1 be fulfilled with f0, fL ≥ 0. Suppose moreover
that v2f0 ∈ L1((0,+∞)) and v2fL(v) ∈ L1((−∞, 0)). Then, v2f(x, v) belongs to L∞(0, L;L1(R))
and the outgoing traces fulfill v2f(0, v) ∈ L1((−∞, 0)) and v2f(L, v) ∈ L1((0,+∞)).

More generally, if vkf0 ∈ L1((0,+∞)) and vkfL(v) ∈ L1((−∞, 0)) for some integer k ≥ 1 then
vkf(x, v) belongs to L∞(0, L;L1(R)) and vkf(0, v) ∈ L1((−∞, 0)) and vkf(L, v) ∈ L1((0,+∞)).

Proof. Multiplying (1.1) by v+ = max(0, v) we obtain

∂x

∫ +∞

0

v2f dv − E(x)

∫ +∞

0

f dv + κ

∫ +∞

0

σ(v)vf dv = κ

∫ +∞

0

〈
f
〉

s
(x, v)vMθ(v) dv.

Since f ≥ 0, integration over (0, x) yields∫ +∞

0

v2f(x, v) dv ≤
∫ +∞

0

v2f0(v) dv + ‖E‖L∞((0,L))

∫ L

0

∫ +∞

0

f(y, v) dv dy

+κs1

√
θ

2π

∫ L

0

∫ +∞

−∞
f(y, v) dv dy

(4.23)

We conclude that x 7−→
∫ +∞

0
v2f(x, v) dv belongs to L∞((0, L)) by using the estimates already

obtained in Theorem 1.1. We proceed similarly by multiplying by v− = max(0,−v) and integrat-

ing over (x, L) in order to estimate
∫ 0

−∞ v
2f(x, v) dv. The generalization to higher moments is

straightforward.

4.2 Entropy Estimate

For any f ∈ L1((0, L)× R), we can define the equilibrium state by

ZMθ,Φ(x, v) = Z exp
(
− v2/2 + Φ(x)

θ

)
, Z

∫ L

0

∫ +∞

−∞
Mθ,Φ dv dx =

∫ L

0

∫ +∞

−∞
f dv dx.

Then, we define in the following non-negative quantity (the relative entropy of f and ZMθ,Φ)

r(x, v) = f ln
( f

ZMθ,Φ

)
− f + ZMθ,Φ = f

(
ln f − lnZ +

v2

2θ
+

Φ

θ

)
− f + ZMθ,Φ ≥ 0. (4.24)

We will use this function r(x, v) to compute integral estimates that will be used to control entropy
estimates of the mild solution of (1.1)-(1.3).
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Proposition 4.2 Assume that E belongs to W 1,∞((0, L)) and let f0, fL ≥ 0 satisfy the entropic
boundary condition (1.9), which we rewrite here

H
L

=

∫ +∞

0

v
(
1 +

v2

2
+ | ln f0|

)
f0 dv −

∫ 0

−∞
v
(
1 +

v2

2
+ | ln fL|

)
fL dv < +∞.

Let f ∈ L1((0, L)×R) be the unique (mild) solution of (1.1)-(1.3); we denote 〈f〉(x) =
∫ +∞
−∞ f(x, v) dv.

Then there exists a constant C which depends on κ, θ, L, ‖E‖∞, s0, s1 such that∫ L

0

∫ +∞

−∞

(v2

2
+ | ln f |

)
f(x, v) dv dx ≤ C(1 +H

L
) (4.25)∫ L

0

〈
f
〉
| ln
〈
f
〉
| dx ≤ C(1 +H

L
) (4.26)∫ +∞

0

v
(v2

2
+ | ln f |

)
f(L, v) dv −

∫ 0

−∞
v
(v2

2
+ | ln f |

)
f(0, v) dv ≤ C(1 +H

L
). (4.27)

Proof. Throughout the proof, C denotes a quantity which depends on κ, θ, L, ‖E‖∞, s0, s1, even if
the value of the constant may vary from a line to another. We define the potential by (2.10) with
Φ0 = 0. In particular we have ‖Φ‖∞ ≤ L‖E‖∞ and using the assumption (1.9) on the boundary
data we get the boundary control∫ +∞

0

vr(0, v) dv −
∫ 0

−∞
vr(L, v) dv ≤ CH

L
< +∞ . (4.28)

In addition, if f is a mild solution of (1.1)-(1.3) and the function r(x, v) is defined by (4.24), then

(κσ(v) + v∂x + E∂v)r = κ
〈
f
〉

s
(x, v)Mθ(v) ln

( f

ZMθ,Φ

)
+ κσ(v)ZMθ,Φ − κσ(v)f. (4.29)

Next, we want to obtain integral estimates for (4.29). First, we rewrite the first term in the
right hand side as follows

κ
〈
f
〉

s
Mθ ln

( f

ZMθ,Φ

)
= κ

〈
f
〉

s
Mθ ln

( σ(v)f〈
f
〉

s
Mθ

〈
f
〉

s
Mθ

σ(v)ZMθ,Φ

)
= κ

〈
f
〉

s
Mθ

[
ln
( σ(v)f〈
f
〉

s
Mθ

)
− σ(v)f〈

f
〉

s
Mθ

+ 1
]

+ κσ(v)f + κ
〈
f
〉

s
Mθ

(
ln
(〈f〉

s

σ(v)

)
+

Φ

θ
− ln(

√
2πθZ)− 1

)
.

Therefore, identity (4.29) can be rewritten as

(κσ(v) + v∂x + E∂v)r = κ
〈
f
〉

s
Mθ

[
ln
( σ(v)f〈
f
〉

s
Mθ

)
− σ(v)f〈

f
〉

s
Mθ

+ 1
]

+κσ(v)ZMθ,Φ + κ
〈
f
〉

s
Mθ

(
ln
(〈f〉

s

σ(v)

)
+

Φ

θ
− ln(

√
2πθZ)− 1

)
(4.30)
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where we observe that the first term in the right hand side is non-positive due to the concavity
of the function τ 7→ ln(τ). Next, we use integrated representation formula (3.15) with the test
function σ(v) to obtain∫ L

0

∫ +∞

−∞
σ(v)r(x, v) dv dx ≤

∫ +∞

0

vr(0, v)

∫ Tout(0,v)

0

e−κ
R s
0 σ(V (τ ;0,v)) dτσ(V (s; 0, v)) ds dv

−
∫ 0

−∞
vr(L, v)

∫ Tout(L,v)

0

e−κ
R s
0 σ(V (τ ;L,v)) dτσ(V (s;Lv)) ds dv

+

∫ L

0

∫ +∞

−∞

〈
f
〉

s

[Φ
θ

+ ln
(〈f〉

s

σ(v)

)
− ln(

√
2πθZ)− 1

]
h(x, v) dv dx

+

∫ L

0

∫ +∞

−∞
σ(v)

ZMθ,Φ

Mθ

h(x, v) dv dx

(4.31)

where we got rid of the non-positive term having ln
( σ(v)f〈
f
〉

s
Mθ

)
− σ(v)f〈

f
〉

s
Mθ

+ 1 and we have used

the same notation of function h(x, v) defined in (3.19) for the proof of Lemma 3.2, where we have
shown, for some β ∈ (0, 1), R > 0, the inequality

0 < h(x, v) ≤Mθ(v)− βMθ(v)1{|v|>R}, (x, v) ∈ [0, L]× R . (4.32)

In order to control the third term of (4.31) we use Jensen’s inequality

〈f〉s(x, v) ln
( 〈f〉s(x, v)
σ(v)

√
2πθ

)
≤
∫ +∞

−∞
s(v, v′)f(x, v′)

((v′)2

2θ
+ ln f(x, v′)

)
dv′

which comes by considering the convex function u→ u ln
( u

σ(v)
√

2πθ

)
, the measure

s(v, v′)

σ(v)
Mθ(v

′) dv′

and the application v′ → σ(v)f(x, v′)

Mθ(v′)
. Based on the above inequality one gets

〈
f
〉

s

[Φ
θ

+ln
(〈f〉

s

σ(v)

)
− ln(

√
2πθZ)−1

]
≤
∫ +∞

−∞
s(v, v′)f(x, v′)

(Φ

θ
+

(v′)2

2θ
+ln f(x, v′)− lnZ−1

)
dv′.

Notice also that the last term of (4.31) can be written∫ L

0

∫ +∞

−∞
σ(v)

ZMθ,Φ

Mθ

h(x, v) dv dx =

∫ L

0

∫ +∞

−∞

∫ +∞

−∞
s(v, v′)Mθ(v

′)
ZMθ,Φ(x, v′)

Mθ(v′)
h(x, v) dv′ dv dx

=

∫ L

0

∫ +∞

−∞
h(x, v)

∫ +∞

−∞
s(v, v′)ZMθ,Φ(x, v′) dv′ dv dx .
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Hence, collecting the above computations, the left hand side from (4.31) is bounded by∫ L

0

∫ +∞

−∞
σ(v)r(x, v) dv dx ≤ 1

κ

(∫ +∞

0

vr(0, v) dv −
∫ 0

−∞
vr(L, v) dv

)
+

∫ L

0

∫ +∞

−∞
h(x, v)

∫ +∞

−∞
s(v, v′)

×
[
f
(Φ

θ
+

(v′)2

2θ
+ ln f − lnZ − 1

)
+ ZMθ,Φ

]
(x, v′) dv′ dv dx

=

∫ L

0

∫ +∞

−∞
h(x, v)

∫ +∞

−∞
s(v, v′)r(x, v′) dv′ dv dx .

As in the proof of Lemma 3.2, using (4.32) yields∫ L

0

∫ +∞

−∞
σ(v)r(x, v) dv dx ≤ 1

κ

(∫ +∞

0

vr(0, v) dv −
∫ 0

−∞
vr(L, v) dv

)
+

∫ L

0

∫ +∞

−∞
Mθ(v)

∫ +∞

−∞
s(v, v′)r(x, v′) dv′ dv dx

−β
∫ L

0

∫ +∞

−∞
Mθ(v)1{|v|>R}

∫ +∞

−∞
s(v, v′)r(x, v′) dv′ dv dx

≤ 1

κ

(∫ +∞

0

vr(0, v) dv −
∫ 0

−∞
vr(L, v) dv

)
+

∫ L

0

∫ +∞

−∞
σ(v′)r(x, v′) dv′ dx

−s0β

∫ L

0

∫ +∞

−∞
r(x, v′) dv′ dx

∫
|v|>R

Mθ(v) dv .

Then it is clear that ∫ L

0

∫ +∞

−∞
r(x, v) dv dx ≤ C

κγ
H

L
. (4.33)

Now, in order to show (4.25), we fist observe that the following inequality holds∫ +∞

−∞
g| ln g| dv ≤

∫ +∞

−∞
g(ln g + av2) dv +

4

e

∫ +∞

−∞
e−av2/4 dv ;

then, combining with (4.33), (4.25) follows. It is, then, easy to see that (4.26) becomes a conse-
quence of the Jensen’s inequality

〈f〉(x) ln
(〈f〉(x)√

2πθ

)
≤
∫ +∞

−∞
f(x, v)

(
ln f(x, v) +

v2

2θ

)
dv .

Finally, we obtain (4.27) by integrating (4.29) when written in the equivalent form

(v∂x + E∂v)r = κQ(f)
[
ln
( f

Mθ

)
+

Φ(x)

θ
− ln(

√
2πθZ)

]
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since ∫ L

0

∫ +∞

−∞
κQ(f)

[Φ(x)

θ
− ln(

√
2πθZ)

]
dv dx = 0

and by (3.18) applied with the function H = ln we know that∫ L

0

∫ +∞

−∞
κQ(f) ln

( f

Mθ

)
dv dx ≤ 0 .

4.3 Non-Smooth Electric Fields

Theorem 1.1 establishes the well-posedness of (1.1)-(1.3) when dealing with smooth electric fields
E ∈ W 1,∞((0, L)) and integrable data. Since all the estimates discussed above actually depend
only on the L∞ bound of E, we can extend this result to non-smooth electric fields, at the price of
a slightly strengthened assumption on the boundary data.

Theorem 4.2 Let E ∈ L∞((0, L)) and consider f0, fL ≥ 0 such that (1.9) holds. Then there is a
unique weak solution f ∈ L1((0, L)×R), which also satisfies (4.25)-(4.27), of (1.1)-(1.3). Moreover
we have∥∥∥∫ +∞

−∞
|v|f(·, v) dv

∥∥∥
∞
≤ 2
(∫ +∞

0

vf0(v) dv −
∫ 0

−∞
vfL(v) dv

)
+ 2ks1‖f‖L1((0,L)×R).

Proof. We establish first the existence part. To this end, we consider a sequence
(
En

)
n∈N of

smooth fields — for each n, En ∈ W 1,∞((0, L)) — which converges a.e. towards E ∈ L∞((0, L)),
with ‖En‖∞ ≤ ‖E‖∞. For any n, denote by fn the unique mild solution of (1.1)- (1.3) associated
to the field En. Theorem 4.1 and Proposition 4.2 tell us that∥∥∥∫ +∞

−∞
|v|fn(·, v) dv

∥∥∥
∞
≤ 2
(∫ +∞

0

vf0(v) dv −
∫ 0

−∞
vfL(v) dv

)
+ 2ks1‖fn‖L1((0,L)×R)

sup
n∈N

∫ L

0

∫ +∞

−∞

(
1 +

v2

2
+ | ln fn|

)
fn dv dx ≤ C(1 +H

L
), sup

n∈N

∫ L

0

〈
fn

〉
| ln
〈
fn

〉
| dx ≤ C(1 +H

L
)

sup
n∈N

(∫ +∞

0

v
(
1 +

v2

2
+ | ln fn|

)
fn(L, v) dv +

∫ 0

−∞
(−v)

(
1 +

v2

2
+ | ln fn|

)
fn(0, v) dv

)
≤ C(1 +H

L
)

where the constant C depends only on κ, θ, L, ‖E‖∞, s0, s1. The Dunford-Pettis theorem, see e.g.
[9], allows to consider a subsequence, still denoted with the index n, such that fn ⇀ f weakly in
L1((0, L) × R) and

〈
fn

〉
⇀
〈
f
〉

weakly in L1((0, L)). Furthermore, the outgoing traces vfn(L, v)
and vfn(0, v) converge weakly in L1((0,+∞)) and L1((−∞, 0)) respectively. It can be easily seen
that f remains non-negative and, in addition,∫ L

0

∫ +∞

−∞

(
1 +

v2

2
+ | ln f |

)
f dv dx ≤ C(1 +H

L
),

∫ L

0

〈
f
〉
| ln
〈
f
〉
| dx ≤ C(1 +H

L
)
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∫ +∞

0

v
(
1 +

v2

2
+ | ln f |

)
f(L, v) dv +

∫ 0

−∞
(−v)

(
1 +

v2

2
+ | ln f |

)
f(0, v) dv ≤ C(1 +H

L
)∥∥∥∫ +∞

−∞
|v|f(·, v) dv

∥∥∥
∞
≤ 2
(∫ +∞

0

vf0(v) dv −
∫ 0

−∞
vfL(v) dv

)
+ 2ks1‖f‖L1((0,L)×R).

Since fn is a weak solution of (1.1)-(1.3), we have∫ L

0

∫ +∞

−∞
fn (κσ(v)− v∂x − En∂v)ψ dv dx+

∫ +∞

0

v fnψ(L, v) dv −
∫ 0

−∞
v fnψ(0, v) dv

=

∫ +∞

0

v f0(v)ψ(0, v) dv −
∫ 0

−∞
v fL(v)ψ(L, v) dv + κ

∫ L

0

∫ +∞

−∞

〈
fn

〉
s
(x, v)Mθ(v)ψ(x, v) dv dx,

for any n ∈ N and any trial function ψ ∈ C1
c ([0, L] × R). Combining the a.e. convergence of En

with the weak convergence of fn, we can pass to the limit n→∞ in this relation, which proves that
f is indeed a solution, in the sense of distributions, of (1.1)-(1.3) with the field E and incoming
traces f0, fL.

We discuss now the uniqueness of the weak solution. Notice that we can not apply exactly the
same arguments as for the uniqueness of the mild solution since in this case the electric field is
not smooth (the formulation by characteristics does not make sense anymore). Nevertheless, as in
Section 3, if f solves v∂xf + E(x)∂vf = kQ(f) with vanishing incoming data we are lead to∫ +∞

0

v|f(L, v)| dv +

∫ 0

−∞
(−v)|f(0, v)| dv = k

∫ L

0

∫ +∞

−∞
Q(f) sgn(f) dv dx ≤ 0.

Therefore f(0, v) = 0 = f(L, v) a.e. v ∈ R and sgnf does not depend on v, implying that

v∂x|f |+ E(x)∂v|f | = κQ(|f |). (4.34)

From now on the argument is different. We use the entropy computation

(v∂x + E(x)∂v)

[(
ln |f |+ v2

2θ
+

Φ(x)

θ

)
|f |
]

= kQ(|f |)
(

1 + ln |f |+ v2

2θ
+

Φ(x)

θ

)
= kQ(|f |)

(
ln
|f |
Mθ

+ ln
1√
2πθ

+ 1 +
Φ(x)

θ

)
.

Since f(0, ·) = f(L, ·) = 0, after integration over (0, L)× R we deduce that∫ L

0

∫ +∞

−∞
Q(|f |) ln

|f |
Mθ

dv dx = 0

and therefore, since ln is strictly increasing, one gets by (3.18) that |f(x)| = n(x)Mθ(v) for some

non-negative function n satisfying n(0) = n(L) = 0. By (4.34) we have d
dx
n − n(x)E(x)

θ
= 0,

x ∈ (0, L) and finally n = 0 implying that f = 0.

Remark 4.1 It is easy to see that a similar existence result holds for incoming data in L∞ by just
using the estimates in Corollary 4.1.

21



4.4 On a Perturbed Problem

We intend to investigate the coupling between the Boltzmann-Vlasov equation with the Poisson
equation defining the electric field. In preparation of the fixed point procedure we have in mind, it
is convenient to study the following perturbed equation

αf + v∂xf + E(x)∂vf = κQ(f), x ∈ (0, L), v ∈ R (4.35)

with the boundary conditions (1.3), where α > 0 is a fixed parameter. In the sequel, the notation
C stands for various constants depending only on κ, θ, L, s0, s1 but not on α.

Proposition 4.3 Let E ∈ L∞((0, L)) and consider f0, fL ≥ 0 such that (1.9) holds. Then for any
α > 0 there is a unique weak solution f of (4.35), (1.2), (1.3) satisfying∫ L

0

∫ +∞

−∞

(
| ln f |+ v2

2
+ 1

)
f(x, v) dv dx ≤ C

α
(1 +H

L
(1 + ‖E‖∞)) (4.36)

∫ +∞

0

v

(
| ln f |+ v2

2
+ 1

)
f(L, v) dv −

∫ 0

−∞
v

(
| ln f |+ v2

2
+ 1

)
f(0, v) dv ≤ C(1 +H

L
(1 + ‖E‖∞))

(4.37)∫ L

0

| ln〈f〉|〈f〉 dx ≤ C
α

(1 +H
L
(1 + ‖E‖∞)). (4.38)

Proof. We only sketch the arguments, the details are left to the reader. The existence and
uniqueness proofs are much simpler than those of Theorem 4.2 since we have for free the L1 bound∫ L

0

∫ +∞

−∞
f(x, v) dv dx ≤ 1

α

(∫ +∞

0

vf0(v) dv −
∫ 0

−∞
vfL(v) dv

)
. (4.39)

We consider first mild solutions corresponding to smooth electric fields. Then we construct weak
solutions by using weak L1 compactness (cf. estimates (4.36)-(4.38). Since f is non-negative, the
current j =

∫ +∞
−∞ f dv satisfies d

dx
j = −α〈f〉 ≤ 0 implying that∫ 0

−∞
vfL(v) dv ≤ j(L) ≤ j(x) ≤ j(0) ≤

∫ +∞

0

vf0(v) dv, ∀ x ∈ (0, L).

Therefore the current is bounded uniformly with respect to α > 0 and we have

‖j‖∞ ≤ J . (4.40)

At this stage also notice that the solution f satisfies entropy estimates. Indeed, with the notation
Φ(x) = −

∫ x

0
E(y) dy we have

(α+ v∂x + E(x)∂v)

[(
ln f +

v2

2θ
+

Φ(x)

θ

)
f

]
= kQ(f)

(
1 + ln f +

v2

2θ
+

Φ(x)

θ

)
− αf

≤ kQ(f)

(
ln

f

Mθ

+ 1 +
Φ(x)

θ
− ln

√
2πθ

)
.
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The estimates (4.36) and (4.37) follow easily integrating over (0, L)×R and using the inequalities∫
| ln f |f dµ ≤

∫
(ln f + av2)f dµ+

4

e

∫
e−

a
4
v2

dµ

with the measures dv, v± dv. The estimate (4.38) is a consequence of the Jensen inequality

〈f〉 ln 〈f〉√
2πθ

≤
∫ +∞

−∞

(
v2

2θ
+ ln f

)
f(x, v) dv dx.

5 Boltzmann-Poisson System

In this section we construct weak solutions for the stationary boundary value problem for the
Poisson-Boltzmann system (1.5)-(1.8), with with entropic boundary conditions given by (1.9).
Without loss of generality, we assume that Φ0 = 0.

We first start by justifying the existence of weak solution for the perturbed problem (4.35)
coupled to (1.6)-(1.8). We conclude by stability results, letting the parameter α going to zero.

Proposition 5.1 Assume that f0, fL are non-negative and satisfy (1.9). Then for any ΦL ∈
R, nb ≥ 0, α > 0 there is a weak solution (fα, Eα) of (4.35) coupled to (1.6)-(1.8). Furthermore,
the following uniform in α estimates hold

sup
0<α≤1

‖Eα‖∞ < +∞ (5.41)

sup
0<α≤1

∫ L

0

∫ +∞

−∞

(
| ln fα|+ 1 +

v2

2

)
fα(x, v) dv dx < +∞ (5.42)

sup
0<α≤1

(∫ +∞

0

v

(
| ln fα|+ 1 +

v2

2

)
fα(L, v) dv −

∫ 0

−∞
v

(
| ln fα|+ 1 +

v2

2

)
fα(0, v) dv

)
< +∞

(5.43)

sup
0<α≤1

∫ L

0

| ln〈fα〉|〈fα〉 dx < +∞. (5.44)

Proof. We proceed by a standard fixed point argument. For any bounded force field E ∈
L∞((0, L)) we denote by FE the unique solution of (1.6), (1.8), associated to the macroscopic
density 〈fE〉, where fE is the unique weak solution of (4.35), (1.7). Combining (1.6), (1.8) to
(4.39), it is easily seen that FE ∈ C([0, L]) and

‖FE‖∞ ≤ |ΦL|
L

+ 2Lnb + 2

∫ L

0

∫ +∞

−∞
fE(x, v) dv dx

≤ |ΦL|
L

+ 2Lnb + 2
J
α

=: Cα. (5.45)
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By (1.6) and (4.38) we have, for any E verifying ‖E‖∞ ≤ Cα,∫ L

0

ln((FE)′ + nb)((FE)′ + nb) dx ≤ C
α

(1 +H
L
(1 + ‖E‖∞)) ≤ C

α
(1 +H

L
(1 + Cα)) =: C̃α.

We deduce that the set Dα of continuous fields E ∈ C([0, L]) satisfying

‖E‖∞ ≤ Cα, E ′ ∈ L1((0, L)), E ′ + nb ≥ 0,

∫ L

0

ln(E ′ + nb)(E
′ + nb) dx ≤ C̃α

is left invariant by the application F . Observe that Dα is convex and compact with respect to the
topology of C([0, L]) (the equi-continuity of Dα follows by the equi-integrability of {E ′ + nb : E ∈
Dα}). In order to apply the Schauder fixed point theorem it remains to check that F is continuous.
Take (En)n ⊂ Dα a convergent sequence in C([0, L]) towards E ∈ Dα. We denote by fn, f the weak
solutions of the Boltzmann-Vlasov problems corresponding to En, E respectively. By standard
arguments we deduce that limn→+∞ fn = f weakly in L1((0, L) × R) (the uniqueness of the weak
solution is crucial here), implying the pointwise convergence of (FEn)n towards FE. Since (FEn)n

belongs to Dα which is a compact set of C([0, L]), finally we get limn→+∞FEn = FE in C([0, L]).
Therefore the application F has a fixed point Eα ∈ Dα meaning that (fα = fEα , Eα) is a weak
solution of (4.35)) with (1.6)-(1.8).

Next, we show uniform estimates with respect to the parameter α. First, multiplying (4.35) by
v yields after integration

α〈vfα〉+
d

dx
〈v2fα〉 − Eα(x)〈fα〉 = κ

∫ +∞

−∞
〈fα〉sMθ(v)v dv − κ〈vσ(v)fα〉. (5.46)

It is convenient to consider the potentials φ, φext such that

−φ′′ = 〈fα〉, x ∈ (0, L), φ(0) = φ(L) = 0

and
−φ′′ext = nb, x ∈ (0, L), φext(0) = 0, φext(L) = −ΦL.

Thus, the electric field Eα = −Φ′
α can be written

Eα = −φ′ + φ′ext =: E − Eext.

Next, notice that E is non-decreasing and therefore supx∈[0,L] |E(x)| = max{|E(0)|, |E(L)|}. We
deduce by (5.46) that

d

dx

{
〈v2fα〉 −

1

2
|Eα(x)|2 + Φα(x)nb

}
= −α〈vfα〉 − κ〈σ(v)vfα〉+ κ

∫ +∞

−∞
〈fα〉sMθ(v)v dv . (5.47)

Integration over (x0, x) yields

〈v2fα〉(x)−
1

2
|E(x)− Eext(x)|2 + Φα(x)nb = 〈v2fα〉(x0)−

1

2
|E(x0)− Eext(x0)|2 + Φα(x0)nb

−α
∫ x

x0

〈vfα〉 dy − κ

∫ x

x0

〈σ(v)vfα〉 dy

+κ

∫ x

x0

∫ +∞

−∞
〈fα〉sMθ(v)v dv dy . (5.48)
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If |E(0)| ≤ |E(L)| we have supx∈[0,L] |E(x)|2 = |E(L)|2 and by taking x0 = L in (5.48) we get

〈v2fα〉(x) ≤ 〈v2fα〉(L) + E(L)Eext(L)− E(x)Eext(x)−
1

2
|Eext(L)|2 +

1

2
|Eext(x)|2

+(Φα(L)− Φα(x))nb + α

∫ L

x

〈vfα〉 dy + κ

∫ L

x

〈σ(v)vfα〉 dy

−κ
∫ L

x

∫ +∞

−∞
〈fα〉sMθ(v)v dv dy .

Notice that we have∣∣∣∣∫ L

x

∫ +∞

−∞
〈fα〉sMθ(v)v dv dy

∣∣∣∣ ≤
∫ L

0

∫ +∞

−∞
s1〈fα〉(y)Mθ(v)|v| dv dy

≤ C

∫ L

0

〈fα〉(y) dy

≤ C(1 + ‖Eα‖∞) (5.49)

and that Theorem 4.2 implies∣∣∣∣∫ L

x

〈σ(v)vfα〉 dy
∣∣∣∣ ≤ s1

∫ L

0

∫ +∞

−∞
|v|fα(y, v) dv dy

≤ 2s1L

(∫ +∞

0

vf0(v) dv −
∫ 0

−∞
vfL(v) dv

)
+ 2κs2

1L‖fα‖L1((0,L)×R)

≤ C(1 + ‖Eα‖∞) . (5.50)

Then, combining this last estimates with (4.37) and (4.40) yields

sup
0<α≤1

‖〈v2fα〉‖∞ ≤ C(1 + ‖Eα‖∞). (5.51)

If |E(L)| ≤ |E(0)| we obtain a similar estimate by taking x0 = 0 in (5.48). Consider now the point
x1 ∈ (0, L) such that

−Eα(x1) = Φ′
α(x1) =

Φα(L)− Φα(0)

L
=

ΦL

L
. (5.52)

Integrating (5.47) between x and x1 and using (5.51), (5.52) together with (4.40), (5.49), (5.50)
yields

‖Eα‖2
∞ ≤ C(1 + ‖Eα‖∞),

which shows that the sequence
(
‖Eα‖∞

)
α>0

remains in a bounded set, independently of the param-
eter α. Once we have obtained a uniform bound for ‖Eα‖∞, we then get the uniform in α estimates
(5.42)-(5.44) as well (cf. Lemma 3.2, Proposition 4.2).

Therefore, letting α tend to zero we obtain the existence of a weak solution for the problem
(1.5)-(1.8) with the entropic boundary condition (1.9). In particular we complete the prove of
Theorem 1.2 as follows.
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Proof of Theorem 1.2: Take (αn)n a sequence of positive numbers converging to zero. Combin-
ing (5.41), (5.44) and the Poisson equation we deduce that (En)n is relatively compact in C([0, L]).
Using (5.42), (5.43) we can also extract a subsequence of (fn)n weakly compact in L1. The proof
follows easily by passing to the limit as n → +∞ in the weak formulations of (fαn , Eαn) (see the
proof of Theorem 4.2).
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Ecole Norm. Sup. (4) 3 (1970), 185–233.

[2] Bardos C., Santos R., Sentis R., Diffusion approximation and computation of the critical size,
Trans. Amer. Math. Soc. 284 (1984), no. 2, 617–649.

[3] Ben Abdallah N., Dolbeault J., Relative entropies for kinetic equations in bounded domains
(irreversibility, stationary solutions, uniqueness), Arch. Ration. Mech. Anal. 168 (2003), no.
4, 253–298.

[4] Ben Abdallah N., Gamba I. M., Klar, A., The Milne problem for high field kinetic equations,
SIAM J. Appl. Math. 64 (2004), no. 5, 1709–1736.

[5] Bostan M., Permanent regimes for the 1D Vlasov-Poisson system with boundary conditions,
SIAM J. Math. Anal. 35 (2003), 922–948.

[6] Bostan M., Stationary solutions of the 1D Vlasov-Maxwell equations for laser-plasma interac-
tion, Indiana Univ. Math. J. 56 (2007), no. 2, 581–613.

[7] Crandall, M. G., Tartar, L., Some relations between nonexpansive and order preserving map-
pings, Proc. Amer. Math. Soc. 78 (1980), no. 3, 385–390.

[8] Dolbeault, J., An introduction to kinetic equations: the Vlasov-Poisson system and the Boltz-
mann equation, Discrete Contin. Dyn. Syst. 8 (2002), no. 2, 361–380.

[9] Edwards R. E., Functional analysis. Theory and applications (Holt, Rinehart and Winston,
1965).

[10] Greengard C., Raviart P.-A., A boundary value problem for the stationary Vlasov-Poisson
equations : the plane diode, Comm. Pure Appl. Math. XLIII (1990), 473–507.

26



[11] Markowich P. , Ringhofer C., Schmeiser C., Semiconductor equations (Springer-Verlag, Vienna,
1990).

[12] Poupaud, F., Diffusion approximation of the linear semiconductor equation; analysis of bound-
ary layers, Asymptotic Anal. 4 (1991), no. 4, 293–317.

[13] Poupaud F., Boundary value problems for the stationary Vlasov-Maxwell system, Forum Math.
4 (1992), no. 5, 499–527.

[14] Poupaud F., Runaway phenomena and fluid approximation under high fields in semiconductor
kinetic theory, Z. Angew. Math. Mech. 72 (1992), no. 8, 359–372.
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