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FLUID-PARTICLES FLOWS: A THIN SPRAY MODEL WITH ENERGY

EXCHANGES

Laurent Boudin1, 2, Benjamin Boutin1, 3, Bruno Fornet4, Thierry Goudon5, 6,

Pauline Lafitte5,6, Frédéric Lagoutière5, 7 and Benôıt Merlet8

Abstract. This paper is devoted to an asymptotic analysis of a fluid-particles coupled model, in
the bubbling regime. On the theoretical point of view, we extend the analysis done in [4] for the
case of an isentropic gas to the case of an ideal gas, thus adding the internal energy, or temperature,
which is unknown. We formally derive the bubbling limit system in the same way as in [4] and
propose a numerical scheme to solve this limit system.

The numerical resolution of the non-limit system, and the numerical analysis of the asymptotic
properties of the scheme (e.g. the asymptotic preserving property), as performed in [4], is at study.

Résumé. Nous proposons ici une analyse asymptotique formelle d’un modèle de couplage entre
une densité de particules et un fluide, dans la limite dite bubbling. Cette analyse est effectuée en
suivant les pas de [4] où le fluide considéré est isentropique tandis qu’il est ici un gaz parfait (où
donc l’énergie interne, ou la température, est une inconnue supplémentaire). Nous identifions le
système limite et proposons un algorithme pour le résoudre de manière approchée.

La suite de ce travail, en cours, concerne l’écriture d’un algorithme de résolution du système non
limite, et l’étude des propriétés asymptotiques dudit schéma.

1. Introduction

We are interested in a PDE system describing the interaction between a fluid and a set of droplets
immersed in the fluid. This situation occurs in combustion theory [15], motivated for instance by the design
of engines or propulsors [11]. We also mention the dynamics of sprays with many applications e.g. biomedical
sprays [2], dispersion of pollutants [13], the optimization of fine water spray fire suppression systems... The
fluid is described by the evolution of its density ρ(t, x) ≥ 0, its velocity u(t, x) ∈ R

N (N = 1, 2 or 3) and
its total energy E(t, x) ≥ 0, which are functions of time t ≥ 0 and position x ∈ R

N . We define the internal
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energy e, the pressure p, the temperature Θ by the relations

e =
p

(γ − 1)ρ
≥ 0, p = RρΘ, E = e +

u2

2

where R is the perfect gas constant and γ > 1 is the adiabatic constant. The disperse phase is described by
its density distribution in phase space f(t, x, v) ≥ 0, where the variable v ∈ R

N stands for the velocity of
the particles. Macroscopic quantities can be defined as moments with respect to v; in what follows we need
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





the macroscopic density: n(t, x) =

∫

RN

f(t, x, v) dv,

the bulk velocity: nV (t, x) =

∫

RN

v f(t, x, v) dv,

the temperature: n|V |2(t, x) + NnΘp =

∫

RN

|v|2 f(t, x, v) dv,

the heat flux: q(t, x) =

∫

RN

v
|v|2
2

f(t, x, v) dv.

The evolution of the density f is governed by

∂tf + v · ∇xf = divv

(

(v − u)f + Θ∇vf) − ηp∇xΦ · ∇vf. (1)

The divergence term in the right-hand side accounts for both the friction force exerted by the fluid on the
particles, which is supposed to be proportional to the relative velocity (v − u), and the Brownian motion
of the particles, which induces diffusion with respect to the velocity variable, depending on the surrounding
temperature Θ. Note that more complicated and nonlinear expressions of the drag force can be used; the
linear relation with respect to the relative velocity applies when the Reynolds number of the flow is low.
The second term in the right-hand side comes from an external force with potential Φ and ηp is a positive
constant. The evolution of the fluid obeys the Euler system







∂tρ + divx(ρu) = 0,
∂t(ρu) + Divx(ρu ⊗ u) + ∇xp = F − ηfρ∇xΦ,
∂t(ρE) + divx

(

(ρE + p)u) = E − ηfρu · ∇xΦ,
(2)

where ηf is another positive coefficient that accounts for a possible difference of amplitude in the forces
applied to the fluid or the disperse phase. Remark that assuming ηp and ηf positive means that the external
force associated to the potential Φ acts on opposite directions on the particles and on the fluid. Bearing in
mind the example of gravity we have ∇xΦ = g ∈ R

N and we are dealing with a situation where particles are
light compared to the fluid: gravity pushes the fluid downward, while buoyancy effects push the particles
upward. In other words, here and below, the disperse phase is buoyancy driven, while the fluid is gravity
driven. In such a situation, we can expect the formation of sedimentation profiles. We refer to [3], [4] for a
discussion on this modeling issue. Here, the main point we address is the introduction of the energy equation
and the description of energy exchanges.

In (2), the force F arising in the right-hand side of the momentum equation is given by the friction force
exerted by the particles on the fluid and it reads

F (t, x) = n(V − u)(t, x) =

∫

RN

(v − u)f(t, x, v) dv. (3)

The energy exchanges between the two phases split as follows:

E (t, x) =
(

n(V − u) · u + Nn(Θp − Θ)
)

(t, x) + E ′(t, x)

=

∫

RN

(v − u)f(t, x, v) dv · u

+N(Θp − Θ)(t, x)

∫

RN

f(t, x, v) dv + E
′(t, x).

(4)
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In this expression, the first term is nothing but the work of the friction force F while the second describes
the heat transfer between the two phases; the last term, which will be specified later on, guarantees the total
energy conservation. As a matter of fact, we remark that the evolution of the internal energy is driven by

∂t(ρe) + divx(ρeu) + pdivxu = Nn(Θp − Θ) + E
′(t, x).

In this modeling, we disregard many physical effects that could be non negligible for applications (added
mass effects, Basset forces...). Nevertheless in most cases, these effects are of many orders smaller than the
drag and gravity forces. We restrict ourselves to the description of thin sprays which means that

- we neglect inter-particles collisions and coagulation-fragmentation phenomena.
- the volume fraction of the particles is neglected as well.

We refer for instance to [12] for further discussions of the modeling issues.
In this paper, the goal is to extend, at least formally, the analysis performed in [3] (see also [9, 10]) and,

having identified relevant asymptotic regimes, to design adapted Asymptotic Preserving schemes, in the
spirit of [4, 5, 8]. The dissipative or relaxation properties of the system are crucial to this approach.

2. Dissipation properties

Let us start by considering the evolution of the macroscopic quantities

∂tn + divx(nV ) = 0,

∂t(nV ) + Divx

(

∫

RN

v ⊗ vf dv
)

= −n(V − u) + ηpn∇xΦ,

∂t

(

∫

RN

v2

2
f dv

)

+ divxq = −
∫

RN

(v − u) · v f dv + NnΘ + ηpnV · ∇xΦ,

(5)

where we use integration by parts for evaluating the right-hand sides. Observe that the total momentum is
conserved (up to the gravity term) since

∂t(ρu + nV ) + Divx

(

ρu ⊗ u +

∫

RN

v ⊗ vf dv
)

+ ∇xp = (ηpn − ηfρ)∇xΦ. (6)

Next, since we consider the mixture fluid/particles as a whole, the total energy should also be conserved,
which will give the definition of E ′. We remark that

∫

RN

(v − u) · v f dv =

∫

RN

|v − u|2f dv + n(V − u) · u
= n(|V |2 + NΘp − 2V · u + |u|2) + n(V − u) · u
= n|V − u|2 + NnΘp + n(V − u) · u.

Therefore the kinetic energy of the particles obeys

∂t

(

∫

RN

|v|2
2

f dv
)

+ divxq = −n|V − u|2 + Nn(Θ − Θp) − n(V − u) · u + ηpnV · ∇xΦ.

Accordingly, we set
E

′(t, x) = n|V − u|2
so that the total energy is driven by

∂t

(

ρE +

∫

RN

|v|2
2

f dv
)

+ divx

(

(ρE + p)u + q
)

= (ηpnV − ηfρu) · ∇xΦ. (7)

Hence, the term E ′ appears as a source of internal energy, or a source of heat, for the fluid, produced by the
friction with the particle, and proportional to the macroscopic kinetic energy defined by the relative velocity
V − u.
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Next, we consider the entropy S(t, x) defined by the relation

S = − R

γ − 1
ln

(

pρ−γ
)

= − R

γ − 1
ln

(

R
Θ

ργ−1

)

.

We check that it satisfies

∂t(ρS) + divx(ρSu) =
Rρ

p

(

n(V − u) · u − n(V − u) · u − Nn(Θp − Θ) − E
′
)

= −Nn
(Θp

Θ
− 1

)

− n

Θ
|V − u|2.

(8)

Finally, we look at the entropy of the disperse phase

d

dt

∫

RN

∫

RN

f ln(f) dv dx = −
∫

RN

∫

RN

(

(v − u)f · ∇vf

f
+ Θ

|∇vf |2
f

)

dv dx

= N

∫

RN

n dx −
∫

RN

∫

RN

Θ
|∇vf |2

f
dv dx.

Hence, the total entropy satisfies

d

dt

(

∫

RN

ρS dx +

∫

RN

∫

RN

f ln(f) dv dx
)

= −
∫

RN

∫

RN

Θ
|∇vf |2

f
dv dx + 2N

∫

RN

n dx

−N

∫

RN

n
Θp

Θ
dx −

∫

RN

n|V − u|2
Θ

dx

The next argument is two-fold. On the one hand, we observe that

N

∫

RN

n dx = −
∫

RN

∫

RN

v − V√
Θ

√

f ·
√

Θ
∇vf√

f
dv dx,

and on the other hand we have

∫

RN

|v − V |2f dv = n|V |2 + NnΘp − 2nV · V + n|V |2 = NnΘp.

It follows that

d

dt

(

∫

RN

ρS dx +

∫

RN

∫

RN

f ln(f) dv dx
)

= −
∫

RN

∫

RN

(

Θ
|∇vf |2

f
+ 2

v − V√
Θ

√

f ·
√

Θ
∇vf√

f
+

|v − V |2
Θ

f
)

dv dx

−
∫

RN

n
|V − u|2

Θ
dx

= −
∫

RN

∫

RN

∣

∣

∣

√
Θ
∇vf√

f
+

v − V√
Θ

√

f
∣

∣

∣

2

dv dx −
∫

RN

n
|V − u|2

Θ
dx,

which indicates that the total entropy of the system is dissipated.
Let us summarize the computation as follows.
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Proposition 1. Let (ρ, u, E, f) be a (smooth enough) solution of (1)–(4). Then, both the total momentum
and the total energy are conserved while the total entropy is dissipated and we have

d

dt

(

∫

RN

ρE dx +

∫

RN

∫

RN

v2

2
f dv dx

)

=

∫

RN

(ηpnV − ηfρu) · ∇xΦ dx,

d

dt

(

∫

RN

ρS dx +

∫

RN

∫

RN

f ln(f) dv dx
)

= −
∫

RN

∫

RN

∣

∣

∣

√
Θ
∇vf√

f
+

v − V√
Θ

√

f
∣

∣

∣

2

dv dx −
∫

RN

∫

RN

f
|V − u|2

Θ
dv dx ≤ 0.

(9)

Note that the dissipation terms vanish when

u = V and f(t, x, v) =
n(t, x)

(

2πΘ(t, x)
)N/2

exp
(

− |v − V (t, x)|2
2Θ(t, x)

)

.

3. Bubbling Regime

According to [3], the “Bubbling Regime” relies on the following scaling:











































∂tf
ǫ +

1

ǫ
v · ∇xf ǫ =

1

ǫ2
divv

(

(v − ǫuǫ)f ǫ + Θǫ∇vf ǫ) − 1

ǫ
∇xΦ · ∇vf

ǫ,

∂tρ
ǫ + divx(ρǫuǫ) = 0,

∂t(ρ
ǫuǫ) + Divx(ρǫuǫ ⊗ uǫ) + ∇xpǫ =

1

ǫ

∫

RN

(v − ǫuǫ)f ǫ dv − 1

1 − ǫ2
ρǫ∇xΦ,

∂t(ρ
ǫEǫ) + divx

(

(ρǫEǫ + pǫ)uǫ)

=
1

ǫ2

(
∫

RN

(v − ǫuǫ)f ǫ dv · ǫuǫ + Nnǫ(Θǫ
p − Θǫ) + nǫ|V ǫ − ǫuǫ|2

)

− 1

1 − ǫ2
ρǫuǫ · ∇xΦ,

(10)

where it is convenient to introduce the following notation

nǫ =

∫

RN

f ǫ dv, Jǫ =
1

ǫ
nǫV ǫ =

∫

RN

v

ǫ
f ǫ dv,

nǫ|V ǫ|2 + NnǫΘǫ
p =

∫

RN

v2 f ǫ dv, qǫ =

∫

RN

v

ǫ

v2

2
f ǫ dv.

The scaling can be explained as follows. Given the radius d of the particles, the particles density ρp and the
typical fluid density ρf , the dynamic viscosity of the fluid µ we define the Stokes settling time

τS =
2ρpd

2

9µ

and the Stokes settling velocity
VS = τSg|1 − ρf/ρp|.

Dropping a particle in the fluid at rest, VS is the asymptotic velocity of the particle, and τS the corresponding
relaxation time. Hence, τS characterizes the strength of the drag force and VS characterizes the effect of
the external force, here gravity-buoyancy, on the particles. Then, we introduce time and length scales of
observation, T and L respectively and we set U = L/T which stands for the velocity unit. It is the typical
velocity of the fluid. It has to be compared to both VS and the thermal velocity

Vth =

√

3kΘ

4πρpd3
,

with Θ a typical value of the temperature and k the Boltzmann constant. The scaling assumes the following
relations

τS = ǫ2T ≪ T, VS ≃ U = ǫVth, ρp = ǫρf .
5



Therefore, the Richardson number, which is the ratio of potential to kinetic energy, is 1/(1− ǫ2) for the fluid
and 1/ǫ for the particles. Similarly, the temperature relaxation is characterized by

τth =
1

Nu 4πdΛΘ

where Nu is the Nusselt number, and Λ the thermal conductivity. We remind that the Nusselt number is a
dimensionless ratio of convection heat transfer to fluid conduction heat transfer. In the present context, we
have the following relation

τth = ǫ2T.

Of course, many other different scaling are relevant, as described in the above mentioned references. Never-
theless, we restrict ourselves to this regime, extension of the bubbling regime considered in [3, 4]. Our goal
is two-fold:

- firstly, we derive the asymptotic hydrodynamic system corresponding to the limit ǫ → 0,
- secondly, we design a numerical scheme for the limit system and comment on numerics the influence of

the energy exchanges.

In this context Proposition 1 recasts as

d

dt

(

∫

RN

ρǫEǫ dx +

∫

RN

∫

RN

v2

2
f ǫ dv dx

)

=

∫

RN

(

nǫV ǫ

ǫ
− ρǫuǫ

1 − ǫ2

)

· ∇xΦ dx,

d

dt

(

∫

RN

ρǫSǫ dx +

∫

RN

∫

RN

f ǫ ln(f ǫ) dv dx
)

+
1

ǫ2

∫

RN

∫

RN

[∣

∣

∣

√
Θǫ

∇vf ǫ

√
f ǫ

+
v − V ǫ

√
Θǫ

√

f ǫ
∣

∣

∣

2

+ f ǫ|V ǫ − ǫuǫ|2
]

dv dx ≤ 0,

(11)

and we infer the following relaxation effects

V ǫ ≃ ǫuǫ

f ǫ(t, x, v) ≃ nǫ(t, x)
(

2πΘǫ(t, x)
)N/2

exp
(

− |v − V ǫ(t, x)|2
2Θǫ(t, x)

)

≃ nǫ(t, x) MΘǫ(t,x)(v)

where MΘ stands for the centered Maxwellian with temperature Θ

MΘ(v) = (2πΘ)−N/2 e−v2/(2Θ).

Accordingly, we obtain

∫

RN

v2f ǫ dv = nǫ|V ǫ|2 + NnǫΘǫ
p ≃

∫

RN

v2 nǫMΘǫ dv = NnǫΘǫ

with V ǫ expected to be of order O(ǫ). We deduce that

Θǫ − Θǫ
p −−−→

ǫ→0
0

(an observation which can be seen also by considering the energy equation). Eventually, we guess that
the asymptotic behavior is described by the evolution of the macroscopic quantities n, ρ, u, Θ only, and we
assume that

(nǫ, ρǫ, uǫ, Θǫ) −−−→
ǫ→0

(n, ρ, u, Θ)

(in a strong enough sense...), and consequently

f ǫ(t, x, v) → n(t, x) MΘ(t,x)(v). (12)

It thus remains to determine the equations satisfied by these quantities.
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To this end, we go back to the moments equations (5) which recast here in the following rescaled form















































∂tn
ǫ + divx(Jǫ) = 0,

ǫ2∂tJ
ǫ + Divx

(

∫

RN

v ⊗ vf ǫ dv
)

= −Jǫ + nǫuǫ + nǫ∇xΦ,

∂t

(

∫

RN

v2

2
f ǫ dv

)

+ divxqǫ =
1

ǫ2

(

−
∫

RN

(v − ǫuǫ) · v f ǫ dv + NnǫΘǫ
)

− 1

ǫ
∇x ·

∫

RN

|v|2
2

∇vf
ǫ dv

=
1

ǫ2
nǫ(−|V ǫ|2 − NΘǫ

p + ǫuǫ · V ǫ + NΘǫ
)

+
nǫV ǫ

ǫ
· ∇xΦ

= Nnǫ
Θǫ − Θǫ

p

ǫ2
+ Jǫ ·

(

uǫ − Jǫ

nǫ
+ ∇xΦ

)

.

(13)

We also suppose that

(Jǫ, qǫ) −−−→
ǫ→0

(J, q)

holds and we wish to relate these limits to (n, ρ, u, Θ). The ansatz (12) allows to compute the limit of the
second moment

∫

RN

v ⊗ v f ǫ dv −−−→
ǫ→0

n

∫

RN

v ⊗ v MΘ(v) dv = nΘ I.

Therefore, letting ǫ go to 0 in the momentum equation leads to

0 + ∇x(nΘ) = −J + n(u + ∇xΦ). (14)

Next, we consider the equation for the total energy

∂t

(

ρǫEǫ +

∫

RN

|v|2
2

f ǫ dv
)

+ divx

(

(ρǫEǫ + pǫ)uǫ + qǫ
)

= (Jǫ − ρǫuǫ

1 − ǫ2
) · ∇xΦ. (15)

As ǫ → 0 we get

∂t

(

ρE +
N

2
nΘ

)

+ divx

(

(ρE + p)u + q
)

= (J − ρu) · ∇xΦ. (16)

We are left with the task of identifying the heat flux q. To this purpose, we observe that

ǫ2∂tq
ǫ+Divx

(

∫

RN

v⊗v
|v|2
2

f ǫ dv
)

= −3qǫ+
(

∫

RN

(

v⊗v+
|v|2
2

I

)

f ǫ dv
)

uǫ+(N+2)ΘǫJǫ−
∫

RN

v
|v|2
2

(∇vf ·∇xΦ) dv

Hence, when ǫ goes to 0 we find

0 + ∇x

( n

2N

∫

RN

|v|4MΘ(v) dv
)

= ∇x

(N + 2

2
nΘ2

)

=
N + 2

2
Θ2∇xn + (N + 2)nΘ∇xΘ

= −3q +
N + 2

2
nΘ(u + ∇xΦ) + (N + 2)Θ

(

n(u + ∇xΦ) −∇x(nΘ)
)

= −3q +
3

2
(N + 2)nΘ(u + ∇xΦ) − (N + 2)(nΘ∇xΘ + Θ2∇xn).

since
∫

RN |v|4M1(v) dv = N(N + 2). It defines the heat flux q by means of n, u and Θ:

q =
N + 2

2
nΘ(u + ∇xΦ) − N + 2

2
Θ2∇xn − 2(N + 2)

3
nΘ∇xΘ.

The conclusion of the computations states as follows.
7



Theorem 1. Assuming strong enough convergence of the macroscopic quantities, the limit as ǫ goes to 0 is
described by the following set of PDEs















































∂tρ + divx(ρu) = 0,
∂tn + divx

(

nu −∇x(nΘ)
)

= −divx(n∇xΦ),
∂t(ρu) + Divx(ρu ⊗ u + p) = −∇x(nΘ) + (n − ρ)∇xΦ,

∂t

(

ρE +
N

2
nΘ

)

+ divx

(

(ρE + p)u +
N + 2

2
nΘu

)

=
N + 2

2
divx(Θ2∇xn) +

2(N + 2)

3
divx(nΘ∇xΘ)

− N + 2

2
divx(nΘ∇xΦ) + (n − ρ)u∇xΦ + n|∇xΦ|2 −∇xΦ · ∇x(nΘ).

(17)

In System (17) the unknowns are the fluid density ρ, the particle (macroscopic) density n and the common
velocity u and temperature Θ. Assuming a constant temperature and dropping the energy equation, we
recover the equations derived in [3]. There appear some unusual terms in the equations which are reminiscent
of the so-called Soret and Dufour effects, see [14]. The Soret effect relies on the conduction current n∇xΘ:
the temperature gradient produces a flow of particles. Note that particles are also subject to diffusion with a
diffusion coefficient proportional to the temperature. The Dufour effect relies on the effects of concentration
gradients on the evolution of the temperature.

Another way of deriving the limit equations consists in considering fluctuations in the ansatz (12). This
approach motivates the design of “Asymptotic Preserving” schemes, see [4, 5, 8]. Namely, we set

f ǫ(t, x, v) = nǫ(t, x)MΘǫ(t,x)(v) + ǫrǫ(t, x, v)

and we wish to identify the limit r of (rǫ) by using the equation

ǫ∂tf
ǫ + v · ∇xf ǫ = LΘǫrǫ − uǫ · ∇vf

ǫ −∇xΦ · ∇vf ǫ (18)

where LΘ stands for the Fokker-Planck operator

LΘf = divv(vf + Θ∇vf)

(recall that LΘ(MΘ) = 0 for every Θ ∈ R). Indeed, assuming that rǫ converges to r, we can express the
mass and heat fluxes as follows

Jǫ =

∫

RN

vrǫ dv −−−→
ǫ→0

J =

∫

RN

vr dv, qǫ =

∫

RN

v
|v|2
2

rǫ dv −−−→
ǫ→0

q =

∫

RN

v
|v|2
2

r dv.

In the the last two terms of (18), the leading contribution reads

−(uǫ + ∇xΦ) · ∇v(nǫMΘǫ) = +(uǫ + ∇xΦ) · v

Θǫ
nǫMΘǫ .

Therefore, r is characterized by the relation

LΘr = v · ∇x(nMΘ) − (u + ∇xΦ) · v

Θ
nMΘ

= vMΘ ·
(

∇xn − (u + ∇xΦ)
n

Θ
− N

2

n

Θ
∇xΘ

)

+ v
|v|2
2

MΘ · n

Θ2
∇xΘ.

(19)

The solution splits as follows

r = r1 + r2,

r1(t, x, v) = χ(t, x, v) ·
(

∇xn − (u + ∇xΦ)
n

Θ
− N

2

n

Θ
∇xΘ

)

,

r2(t, x, v) = λ(t, x, v) · n

Θ2
∇xΘ,
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where χ = (χ1, ..., χN ) and λ = (λ1, ..., λN ) are solutions of the auxiliary problems (where t, x appear only
as parameters through the temperature)

LΘ(t,x)χj = vjMΘ(t,x), LΘ(t,x)λj = vj
|v|2
2

MΘ(t,x).

We check readily that

χ = −vMΘ, λ = −vMΘ
1

3

( |v|2
2

+ (N + 2)Θ
)

.

The associated mass fluxes are given by

Jχ =

∫

RN

v ⊗ χ dv = −
∫

RN

v ⊗ vMΘ dv = −ΘI,

Jλ =

∫

RN

v ⊗ λ dv = −
∫

RN

v ⊗ v
1

3

(v2

2
+ (N + 2)Θ

)

MΘ dv

= −1

3
(N + 2) (1/2 + 1) Θ2

I = −N + 2

2
Θ2

I,

while for the heat flux we obtain

qχ =

∫

RN

v
v2

2
⊗ χ dv = −N + 2

2
Θ2

I,

qλ =

∫

RN

v
v2

2
⊗ λ dv = −1

3

((N + 4)(N + 2)

4
+

(N + 2)2

2

)

Θ3
I.

Finally, we are led to the following asymptotic behavior

Jǫ −−−→
ǫ→0

Jχ ·
(

∇xn − (u + ∇xΦ)
n

Θ
− N

2

n

Θ
∇xΘ

)

+ Jλ · n

Θ2
∇xΘ,

= −Θ∇xn + n(u + ∇xΦ) +
N

2
n∇xΘ − N + 2

2
n∇xΘ

= n(u + ∇xΦ) −∇x(nΘ).

Similarly, we obtain

qǫ −−−→
ǫ→0

qχ ·
(

∇xn − (u + ∇xΦ)
n

Θ
− N

2

n

Θ
∇xΘ

)

+ qλ · n

Θ2
∇xΘ

= −N + 2

2

(

Θ2∇xn − nΘ(u + ∇xΦ) − N

2
nΘ∇xΘ

)

− (N + 4)(N + 2) + 2(N + 2)2

12
nΘ∇xΘ

=
N + 2

2
nΘ(u + ∇xΦ) − N + 2

2
Θ2∇xn − 2(N + 2)

3
nΘ∇xΘ.

We summarize the result as follows.

Proposition 2. The fluctuation rǫ converges to

r = −vMΘ ·
(

∇xn − (u + ∇xΦ)
n

Θ
− N

2

n

Θ
∇xΘ

)

− vMΘ
1

3

(v2

2
+ (N + 2)Θ

)

· n

Θ2
∇xΘ,

and the mass and heat fluxes have the following behavior

J = n(u + ∇xΦ) −∇x(nΘ),

q =
N + 2

2
nΘ(u + ∇xΦ) − N + 2

2
Θ2∇xn − 2(N + 2)

3
nΘ∇xΘ.

It allows to identify the limit in (13), and, of course, we recover in this way System (17).
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4. Numerical scheme for the limit system

In the section we explore the limit system (17) from a numerical point of view. The space dimension is
N = 1 in the following, and the potential is gravitational: ∇xΦ = g; System (17) reads































∂tρ + ∂x(ρu) = 0,
∂tn + ∂x

(

nu
)

= ∂2
x,x

(

nΘ
)

− g∂x(n),
∂t(ρu) + ∂x(ρu ⊗ u + p) = −∂x(nΘ) + (n − ρ)g,

∂t

(

ρE +
N

2
nΘ

)

+ ∂x

(

(ρE + p)u +
3

2
nΘu

)

=
3

2
∂x(Θ2∂xn) + 2∂x(nΘ∂xΘ) − 5

2
g∂x(nΘ) + (n − ρ)ug + ng2.

The numerical scheme that we derived is based on the following form of the system: denoting p̃ = p + nΘ
and ρẼ = ρE + nΘ/2, the system can be recast as































∂tρ + ∂x(ρu) = 0,
∂tn + ∂x

(

nu
)

= ∂2
x,x

(

nΘ
)

− g∂x(n),
∂t(ρu) + ∂x(ρu ⊗ u + p̃) = (n − ρ)g,

∂t

(

ρẼ
)

+ ∂x

(

(ρẼ + p̃)u
)

=
3

2
∂x(Θ2∂xn) + 2∂x(nΘ∂xΘ) − 5

2
g∂x(nΘ) + (n − ρ)ug + ng2.

Then the design of the scheme is based on a splitting strategy. Every time step is decomposed in 3 stages.

• The first stage solves the system without the right-hand side above:



















∂tρ + ∂x(ρu) = 0,
∂tn + ∂x

(

nu
)

= 0,
∂t(ρu) + ∂x(ρu ⊗ u + p̃) = 0,

∂t

(

ρẼ
)

+ ∂x

(

(ρẼ + p̃)u
)

= 0.

Here we note the similarity with the classical Euler system. For this stage a standard Lagrange-remap
scheme, as in [6], [7], is used. The stability of this stage relies on a hyperbolic-type condition on the
time step: the time step of the whole time iteration is determined by this “hyperbolic” condition.

• The second stage solves the dissipative terms as well as the “transport” terms due to the gravity:



















∂tρ = 0,
∂tn = ∂2

x,x

(

nΘ
)

− g∂x(n),
∂t(ρu) = 0,

∂t

(

ρẼ
)

=
3

2
∂x(Θ2∂xn) + 2∂x(nΘ∂xΘ) − 5

2
g∂x(nΘ).

This stage imposes a parabolic-type stability condition on the time step and is sub-cycled in the
time step.

• the last stage solves the gravity terms:



















∂tρ = 0,
∂tn = 0,
∂t(ρu) = (n − ρ)g,

∂t

(

ρẼ
)

= (n − ρ)ug + ng2.

This is done numerically with an explicit Euler scheme.
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5. Numerical results

The space domain is a bounded interval (namely [0, 4] in the following) and the chosen boundary conditions
are wall boundary conditions: concerning the fluid, u = 0 and ∂xp = 0. The boundary condition to be
imposed on Θ is to be derived from the microscopic equations. The wall condition on the microscopic
density f reads f(t, x, v) = f(t, x,−v) for every v ∈ R, when x belongs to the boundary. From (19) we have
that r obeys

LΘr = vMΘ

(

∂xn − (u + g)
n

Θ
− 1

2

n

Θ
∂xΘ +

v2n

2Θ2
∂xΘ

)

.

We remark that, imposing that r is an even function in the v variable on the boundary, the left-hand side is
an even function and the right-hand side is an odd function. Thus one has

∂xn − (u + g)
n

Θ
− 1

2

n

Θ
∂xΘ +

v2n

2Θ2
∂xΘ = 0,

for every v ∈ R. Thus ∂xΘ = 0 and ∂xn = (u + g)n/Θ = gn/Θ on the boundary.
The first numerical result we propose is the case of an isentropic fluid with pressure law p = ργ (γ ≥ 1,

namely here γ = 1.4). In this case the energy equation for the fluid is dropped. This allows to compare the
results with those obtained for the microscopic (kinetic) system (for ǫ > 0 but small) in [4]. The test-case
is one of those presented in this reference: this initial condition is at rest, with u(0, x) = 0, ρ(0, x) = 1 and
n(0, x) = 0.5. The final time is T = 2. On figures 1,2,3 we observe the strong similarity between the two
numerical solutions. This similarity is improved when refining the mesh and having ǫ decrease.

The second series of numerical results are obtained with the same initial conditions, but we want here to
analyze the effect of temperature. We thus compare the results of the limit system for an isentropic gas and
for an ideal gas. On this first and preliminary result, we see that the thermal effect is not negligible. Figure
7 shows that the temperature has strong variations in the space variable. The consequences concerning the
fluid density are particularly important, inducing a high fluid density region on the left-hand side (which
can be considered as the bottom, since gravity makes the fluid go leftwards) of the domain. There is a lot
of energy on the left-hand side, because of the fluid ”falling down” with a high velocity, as we can see in
Figures 4, 6 and 7. On the right-hand side, on the contrary, since the particles are going rightwards slowly
because of the buoyancy effect, there is very little energy.
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Figure 1. Fluid density: comparison of the limit solution and the solution with ǫ = 0.1.
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Figure 2. Particles macroscopic density: comparison of the limit solution and the solution
with ǫ = 0.1.
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Figure 3. Fluid velocity: comparison of the limit solution and the solution with ǫ = 0.1.
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Figure 4. Fluid density: comparison of the isentropic and the ideal gas solutions.

14



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2  2.5  3  3.5  4

isentropic solution
ideal gas solution

Figure 5. Particles macroscopic density: comparison of the isentropic and the ideal gas solutions.
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Figure 6. Fluid velocity: comparison of the isentropic and the ideal gas solutions.
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Figure 7. Temperature (ideal gas pressure law).
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