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1 Introduction

We are interested in numerical simulations of “intermediate” models for kinetic equations
in diffusion regimes. Such questions arise in many application fields where we adopt a
statistical description of a large set of “particles”: neutron transport in nuclear engineer-
ing, radiative transfer, rarefied gas dynamics... The unknown is the particle distribution
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function that gives the number of particles being at time t and position x in a certain
physical state described by the variable v. In most of the applications, v is nothing but the
translational velocity, or the direction of flight of the particles and, assuming that v be-
longs to a certain measured set (V, dµ), the quantities of interest are essentially averages
over v of the unknown. The evolution of the particles obeys the following equation

ε∂tfε + v∂xfε =
1

ε
Q(fε). (1)

In the right hand side, the operator Q is intended to describe the interactions that par-
ticles are subject to; the dimensionless parameter ε > 0 is related to the mean free path,
that is the average distance travelled by the particles without being subject to any inter-
action. As ε→ 0 the unknown fε relaxes to an equilibrium the dependence of which with
respect to v is fixed and the dynamics is described by the evolution of only macroscopic
quantities. As we shall see below, it turns out that under some suitable assumptions on
the collision operator Q, the limit equation reduces to a mere diffusion equation. However,
for applications, one is interested in preserving more information concerning the micro-
scopic setting that motivates the derivation of reduced ε−dependent models. Then, it is
legitimate to address the following two-fold question: Is the reduced model consistent to
the diffusion approximation? How accurate is the obtained approximation and in which
sense is it better than the solution of the limit diffusion equation?

In this paper we investigate numerically these questions, restricting to the simplest
situation. Namely, we only deal with the one-dimensional framework (x ∈ R, v ∈ V ⊂ R)
and the collision operator is a mere relaxation operator

Q(f) =

∫

V

f dµ(v) − f. (2)

Throughout the paper (V, dµ) is required to satisfy





∫

V

dµ(v) = 1,

for any odd integrable function h : V → R,

∫

V

h(v) dµ(v) = 0,
∫

V

v2 dµ(v) = d is positive.

(3)

Typical examples are therefore:

• V = (−1,+1) endowed with the normalized Lebesgue measure,
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• V = {v1, . . . , vM} where the vi’s are well-chosen points in (−1,+1), endowed with
the discrete velocity measure, dµ(v) = 1

M

∑M
i=1 δ(v = vi),

• V = R endowed with the Gaussian measure dµ(v) = (2π)−1/2 e−v2/2 dv.

Under these hypotheses, as we shall recall below, the behavior of fε for small ε’s is given
by the heat equation

∂tρ− d∂2
xxρ = 0. (4)

Looking at such a simple situation makes a direct computation of the solution fε afford-
able, including for small values of ε. Therefore we have data at hand to compare with the
solutions of reduced models. However, evaluating fε when ε is small has a high numerical
cost. Thus, it does not make sense to extend it to several dimensions for our purposes.
Nevertheless, we can take advantage of our understanding of the limit process to design
a numerical method that is well-suited to the asymptotic regime. The scheme we an-
alyze is based on a splitting strategy with a convective-like step involving O(1) speeds
and an explicitly solvable ODE step containing stiff sources. Hence, the scheme, which
is naturally asymptotic preserving, is amenable to a fully explicit treatment, free of any
ε−dependent restriction, and provides accurate results for a quite cheap numerical cost.
Another viewpoint consists in using reduced macroscopic models which are intended to
reproduce the main features of the original equation (1). Usually these models are derived
either by using some truncated Chapman-Enskog expansion or by imposing a closure to
the system that is satisfied by some moments of fε. A crucial requirement that is usually
addressed to the model is to satisfy the so-called limited-flux property. In what follows a
particular attention will be paid to the model the derivation of which relies on the Entropy
Minimization Principle. In itself the numerical simulation of the reduced models is an
issue, due to the presence of stiff terms and large speeds of propagation, that depend on
ε. Nevertheless, we introduce original specific schemes for these models using relaxation
techniques that we treat following the numerical philosophy evoked above, and interpret-
ing the relaxing system as a discrete kinetic equation. This approach allows to compute
efficiently the solutions of the macroscopic models.

The paper is organized as follows, postponing references to the existing literature to the
following Sections. In Section 2, we recall some basic facts on the diffusion asymptotics and
we present the reduced models we are interested in. In Section 3, we detail the derivation
of the asymptotically-induced scheme for (1)-(2). We discuss the splitting strategy as well
as the numerical boundary conditions which are designed to satisfy the mass conservation.
Section 4 is devoted to adapting the method to the macroscopic models. This relies on the
interpretation of the models through a relaxation limit. We end with the discussion of the
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numerical results in Section 5, with in particular simulations of the traditional Su-Olson
benchmark.

2 A Brief Overview on Diffusion Asymptotics and

Moment Closures

2.1 Diffusion Limit

We check readily that Assumption (3) has the following remarkable consequences.

Lemma 1 (Dissipation Properties of the Collision Operator) Assume (3). Then
the operator defined by (2) satisfies

i) Q is a bounded operator on Lp(V ), 1 ≤ p ≤ ∞ spaces;

ii) Q is conservative which means that for any f ∈ L1(V, dµ),

∫

V

Q(f) dµ(v) = 0.

iii) Q satisfies the dissipation property

−

∫

V

Q(f)f dµ(v) =

∫

V

∣∣f − 〈f〉
∣∣2 dµ(v) ≥ 0,

for any f ∈ L2(V, dµ), where the bracket is a shortcut notation for the average over
V ;

iv) The elements of the kernel of Q are independent of the microscopic variable v:
Ker(Q) = Span(11);

v) The following Fredholm alternative holds: for any h ∈ L2(V ) satisfying 〈h〉 = 0,
there exists a unique f ∈ L2(V ) such that Q(f) = h and 〈f〉 = 0.

The Fredholm alternative follows from a direct application of the Lax-Milgram theorem
applied to the variational formula

∫
V
Q(f)g dµ(v) =

∫
V
hg dµ(v) on the closed subspace

{f ∈ L2(V ), 〈f〉 = 0}.
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As ε tends to 0, the number of interactions or “collisions” events per time unit in-
creases. Accordingly, we can expect for small ε’s that fε resembles an element of the
kernel of the operator Q:

fε(t, x, v) ≃ ρ(t, x),

and it remains to describe the evolution of the macroscopic quantity ρ. The asymptotics
can be readily understood by inserting the following Hilbert expansion

fε = F0 + εF1 + ε2F2 + . . .

into (1). Identifying terms arising with the same power of ε, we obtain

• At the leading order Q(F0) = 0 that confirms F0 = ρ(t, x),

• Next, we have Q(F1) = v∂xF0. Then, we appeal to the second condition in (3)
(applied with h(v) = v) which allows to make use of the Fredholm alternative.
Accordingly, for the simple operator (2), we get F1(t, x, v) = −v∂xρ(t, x).

• Then, we obtain a closed equation for ρ by integrating over v the relation: Q(F2) =
∂tF0 + v∂xF1. We obtain

∂tρ+ ∂x

(∫

V

(−v2∂xρ) dµ(v)

)
= 0

that is the diffusion equation (4) for ρ.

Remark 1 (Time Scaling) The time scaling in (1) is motivated by the fact, embodied
into (3), that the equilibrium functions, i.e. the elements of Ker(Q), have a vanishing flux:
considering only the penalization of the collision term, we would be led to the uninspiring
equation ∂tρ = 0.

The convergence of fε, solution of (1), to ρ, solution of (4), has been widely investi-
gated under various and general assumptions, including non linear situations motivated
by physical applications; we refer among others to [2, 3, 15, 26, 22, 40, 27]. Under suitable
regularity assumptions, we can make the Hilbert expansion approach rigorous, estimate
the remainder and justify the convergence with a rate. We refer to [3] for the following
statement, which is part of the folklore in kinetic theory.

Theorem 1 (Asymptotic Convergence Rate) Assume that (3) hold. Let ρ > 0 be a
constant. Let f0 : R × V → R such that f0 − ρ ∈ L2(R × V ).
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i) Then, as ε goes to 0, fε and ρε converge to ρ strongly in L2
loc(R

+ × R), and ρε

converges to ρ in C([0, T ];L2(R)−weak), where ρ is the solution to the heat equation
(4) with initial datum ρ|t=0 =

∫
V
f0(x, v) dµ(v).

ii) If the initial datum is close to a smooth enough macroscopic state, say e.g. ‖f0 −
ρ0‖L2(R×V ) ≤ ε, with (ρ0 − ρ) ∈ H3(R), then, for any 0 < T < ∞, there exists
CT > 0 such that one has

‖fε − ρ‖L2((0,T )×R×V ) ≤ CT ε. (5)

2.2 Approximate Models

We are interested in intermediate models, which are intended to be in between the full
kinetic equation (1) and the heat equation (4). Such models are expected to provide
“better” approximations of fε for moderate values of ε, that are small, but possibly not so
small. We also expect that such a model retains more information from the microscopic
modelling and we address the question of “how close” to the original unknown fε the
approximate solution is. Finally, from a practical viewpoint, one should expect that the
solution of the intermediate model can be computed with a reduced computational cost.
Of course, the solution ρ of (4) already provides an approximation of order O(ε) in L2

norm, but it has the drawback of loosing completely any microscopic feature since it
does not depend on v. It could also be tempting to use as an approximation the Hilbert
expansion truncated at first order, the so-called P1 approximation

fε(t, x, v) ≃ ρ(t, x) − ε v ∂xρ(t, x)

with ρ still the solution of (4). However, such an approximation is not non negative for
any t, x, v. Furthermore, the heat equation propagates information at infinite speed while
in (1) characteristic speeds are of order O(1/ε), at least if the set of velocities is bounded.
Actually, finite speed of propagation and preservation of non-negativeness are related;
indeed, since fε ≥ 0, we have the following relation between the macroscopic current and
density ∣∣∣

∫

V

v

ε
fε dµ(v)

∣∣∣ ≤
∫

V

|v|

ε
fε dµ(v) ≤

‖v‖L∞(V )

ε

∫

V

fε dµ(v).

Therefore, we can address that a suitable approximation fulfills this so called “limited
flux condition”, which is thus guaranteed for free if the approximation is non negative.

To obtain intermediate models, a general strategy consists in writing a system of
equations defined by the evolution of moments of fε. The system is not closed since the
convection term makes the (k+1)-th moment appear in the evolution equation of the kth
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moment. Then, we impose a relation between the higher moment involved in the system
and the previous ones. We expect that this closure provides a suitable approximation of
the evolution of the kinetic density. For (1), it is enough to consider the evolution of the
zeroth and first order moments. Let us set




ρε

Jε

Pε



 =

∫

V




1
v/ε
v2



 fε dµ(v).

We get the mass conservation
∂tρε + ∂xJε = 0, (6)

completed by
ε2∂tJε + ∂xPε = −Jε. (7)

According to [13], we are interested in two possible closure strategies:

(C1) Either we define an approximation, formally close to the P1 formula, but which
preserves non negativity. By using this approximation into the conservation law (6),
we obtain a possibly nonlinear equation, that, in some sense, interpolates between
transport and diffusion.

(C2) Or we close the moment system (6)-(7), so that we obtain a hyperbolic system that
restores the finite speeds of propagation.

We refer to [13] and the references therein for further detail. Let us introduce the following
notation

F(β) =

∫

V

eβv dµ(v), G(β) =
F′

F
(β)

and

ψ(u) =
F”

F

(
G

(−1)(u)
)
.

The zeroth order closure (C1) is based on the modified Hilbert expansion

fε = exp(a0 + εa1 + ε2a2 + . . . )

Truncating at first order, we get the approximation

f̃ε(t, x, v) =
̺(t, x)

Z(t, x)
exp

(
− εv

∂x̺

̺
(t, x)

)
,
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with Z(t, x) to normalize the density to ̺(t, x). Plugging this expression into the moment
equation, ̺ satisfies

∂t̺− ∂x

(̺
ε
G
(
ε
∂x̺

̺

))
= 0. (8)

The first order closure (C2) follows from a Entropy Minimization Principle. This idea
is due to Levermore [33, 34, 37, 35, 36], but it also appears in various physical applications
[12, 19]. It works as follows. For given ̺, J , let

f̃ = argmin
{∫

V

f ln(f) dµ(v),

∫

V

(1, v/ε)f dµ(v) = (̺, J)
}
.

We obtain
f̃(v) = eλ0+λ1v/ε

where the Lagrange multipliers λ0,1 are defined by the constraints

̺ =

∫

V

eλ0+λ1v/ε dµ(v) = eλ0F(λ1/ε), J =

∫

V

v

ε
eλ0+λ1v/ε dµ(v) =

ρ

ε
G(λ1/ε).

Then, we use f̃ to define the second moment that closes the system (6)-(7). Namely, we
set

P =

∫

V

v2f̃(v) dµ(v) = ̺
F”

F
(λ1/ε) = ̺ψ(εJ/̺),

and we are thus led to the system
{
∂t̺+ ∂xJ = 0,

ε2∂tJ + ∂x

(
̺ψ(εJ/̺)

)
= −J.

(9)

The microscopic approximation is defined by

f̃ε(t, x, v) = ̺(t, x)
exp

[
vG

(−1)
(
εJ/̺(t, x)

)]

F ◦ G(−1)
(
εJ/̺(t, x)

) . (10)

Of course, Equations (8) and (9) highly depend on the considered measure dµ through
the functions F, G and ψ:

• For the Lebesgue measure, we have F(β) = sinh(β)/β, G(β) = coth(β) − 1/β.

• For the discrete 2-velocity measure, we have F(β) = cosh(β). The first order closure
(9) is in this case completely equivalent to the original kinetic model and there is
no approximation at all.
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• For the Gaussian measure, we have ψ(u) = 1+u2. The zeroth order closure actually
leads to the heat equation, and the first order closure gives the isothermal Euler
system.

In [13], the well-posedness of (8) and (9) is justified, at least for small and smooth
initial data, but, hopefully, with an ε−free smallness condition. (We also refer to [14] for

preliminary discussions on weak solutions.) Furthermore it is shown that ‖fε − f̃ε‖L2 is of
order O(ε). This estimate is a bit disappointing since it is not better than those evaluating
the distance to the solution of the heat equation. Our aim in this paper is to investigate
numerically (1)-(2) and its approximation (8) or (9)-(10), compared to the heat equation
and the P1 approximation. It is indeed interesting to check numerically whether we can
expect sharper estimates or not. It is also important in view of applications to discuss
how the quality of the approximation is degraded as ε increases and to know if one of the
approximation strategies has some decisive advantages. Let us mention that there exist
a huge variety of possible closure methods, based either on mathematical arguments or
physical grounds, and we mention among others [37, 11].

3 Asymptotic Preserving Explicit Kinetic Scheme

On the numerical viewpoint, the computation of (1)-(2) is also a challenging question due
to the presence of large, say O(1/ε), speeds of propagation and stiff terms. An attempt
to solve (1)-(2) by integrating the equation along the characteristics following a splitting
strategy between collisions and transport through lines x+ tv/ε fails for small ε. Since in
general the characteristics do not end at a point of the discrete mesh, this approach needs
to be completed by a suitable interpolation procedure. It gives rise to semi-lagrangian
numerical methods that have been used successfully for Vlasov’s like equations [17, 18].
Proceeding naively, such a procedure can produce unacceptable numerical diffusion. One
can repair this drawback by using interpolation procedures based on the WENO approach.
We refer to [47, 46] for the basis of the WENO method, and to [10] for a description of
the adaptation to design an accurate interpolation method. Of course, for small ε’s these
computations become unbearably time consuming with large meshes and small time step
due to the large velocities that are involved.

Asymptotic schemes working in the stiffness regime have to be developed. We propose
an alternative approach using a splitting scheme inspired by the Hilbert expansion that
treats the stiffness of (1). The method is well fitted and much less costly than the
previous approach to the diffusion regime while remaining fully explicit. This numerical
method, which improves the scheme already proposed in [21], is a fully explicit variation
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of the methods introduced in [30, 31], and it has successfully been used in other contexts
[21, 9, 28]. The scheme is based on the expansion

fε = ρε + εgε, ρε(t, x) =

∫

V

fε dµ(v),

where the dissipation properties of the operator Q imply that the ”fluctuations” gε are
indeed bounded in L2(R+ × R × V ). We rewrite (1) as

∂tfε + v∂xgε =
1

ε2
(ρε − fε) −

v

ε
∂xρε,

which motivates the following two step splitting scheme:

Given a uniform subdivision of step ∆t of [0,∞) and knowing fn, which is expected to
approximate f ε(n∆t, x, v), n ∈ N

Step 1.- Solve on the time interval [n∆t, (n + 1)∆t) the stiff ODE

∂tf =
1

ε2
(ρ− f) −

1

ε
v∂xρ. (11)

Since the average over V of the right hand side vanishes, the macroscopic density is
not modified during this time step, that is,

ρn+1/2 =

∫

V

fn+1 dµ(v) = ρn.

Moreover, (11) also defines the evolution of the fluctuation

∂tg = −
1

ε2
g −

1

ε2
v∂xρ. (12)

Step 2.- Solve on the time interval [n∆t, (n + 1)∆t):

∂tf + v∂xg = 0 and ∂tg = 0. (13)

This defines, fn+1 and

ρn+1 =

∫

V

fn+1 dµ(v).
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Figure 1: L2
t,x,v-error of the distribution function f with respect to the solution of the

heat equation with a symmetric initial data as in Section 5 with a mesh of 100x100 with
respect to ε.

We emphasize that the index ε has been dropped for notational convenience. Note
that, in the second step, the convective term involves a characteristic speed of order O(1)
only and that we will not force any update on g as gn+1/2 = (fn+1/2 − ρn+1/2)/ε. This
update might make the relation between f and g consistent at the end of the second
step but it leads to undesirable numerical divisions by the small parameter ε; but, for
well-prepared initial data, this consistency can be imposed at the beginning. Similar
arguments were already given in [30, 31] to avoid this update of the fluctuations g.

Before proceeding further with the analysis of this kinetic method, we show in Figure 1
a comparison between the results of the three discussed kinetic methods: a semi-lagrangian
PWENO6,4-interpolation scheme [10] (SL-WENO), the asymptotic preserving method
without update of g proposed above and the asymptotic preserving method with update
of g. In all cases, we show the L2

t,x,v-error between the kinetic results and the solutions
of the heat equation, its ε → 0 asymptotic limit, in a log-plot depending on ε. The
results show that the kinetic scheme proposed in this paper works perfectly in the ε→ 0
regime while both the updated scheme and the SL-WENO scheme do not describe well
the asymptotic limit. It is important to point out that all the schemes are computed
with the parabolic CFL condition corresponding to the limiting heat equation. We also
note that for larger values of ε the difference between the SL-WENO method and the
asymptotic preserving scheme becomes small which shows the ability of the proposed
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scheme to capture the behavior of the kinetic equation, for moderately small value of
the mean free path as well, with a considerable gain of CPU time. It is also worthy to
emphasize that the results are given for a fixed mesh 100x100, so that as ε → 0, the
SL-WENO method cannot work, the velocities being of order O(1/ε). In order to get
accurate results comparable to those obtained with the asymptotic-induced scheme, the
SL-WENO method would require larger and larger meshes in velocity and smaller and
smaller time steps as ε → 0. This leads to an unbearable computational cost for such a
simple equation.

We can simplify the first step by keeping only the leading contribution in ε and, by
explicitly solving Equations (11) and (12) that define fn+1/2, ρn+1/2 and gn+1/2, leading
to

gn+1/2 = e−∆t/ε2

gn − (1 − e−∆t/ε2

)v∂xρ
n (14)

and
fn+1/2 = e−∆t/ε2

fn + (1 − e−∆t/ε2

)ρn, (15)

keeping in mind that ρn+1/2 = ρn =
∫

V
fn dµ(v). The final semi-discrete scheme is

summarized as:

Step 1.- Compute
{
gn+1/2 = e−∆t/ε2

gn − (1 − e−∆t/ε2

)v∂xρ
n,

fn+1/2 = e−∆t/ε2

fn + (1 − e−∆t/ε2

)ρn.
(16)

Remember that ρn+1/2 = ρn.

Step 2.- Solve for time ∆t the convection equation:

∂tf + v∂xg = 0

to compute the values of fn+1 and ρn+1 while gn+1 = gn+1/2.

Remark 2 (Asymptotic Preserving) It is worthwhile mentioning that the scheme is
“asymptotic preserving”: using (15) and (14) for the completely relaxed model, i.e., ε = 0,
yields

fn+1/2 = ρn+1/2, gn+1/2 = −v∂xρ
n = −v∂xρ

n+1/2,

which coincides with the first order term in the Hilbert expansion. Thus, the first step
becomes

∂tf − v2∂2
xxρ = 0

Integrating over the mesh of velocities leads to the expected heat equation, up to a suitable
v-mesh definition in order to guarantee

∫
V
v2 dv = d.
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Remark 3 (Spatial Derivatives Discretization) One has to take care of the treat-
ment of the space derivative: if one uses the same upwind discretization for evaluating
both −v∂xρ in the first step and −v∂xg in the second one, it leads to an unstable scheme
for the heat equation. The usual 3−point scheme is obtained by choosing opposite upwind
discretization in the successive time steps. Accordingly, for ε = 0, the stability of the
scheme is guaranteed by the CFL condition d∆t/(∆x)2 ≤ 1/2.

Remark 4 (Stability) The stability condition for the scheme used with ε > 0 is less
clear, even if a CFL condition close to the parabolic one can be reasonably expected. We
refer to [32] for a discussion on a semi-implicit version of the proposed scheme. This
difficulty has motivated the development of implicit methods, as in [24, 25].

Remark 5 (Current and Distribution Computation) Due precisely to the separa-
tion between fluctuations and relaxation towards the homogeneous density we impose in
the scheme and taking into account the comments above regarding asymptotic preserva-
tion, we need to compute and reconstruct J and f to compare to other methods. In fact,
since currents appear due to fluctuations, it is intuitive to reconstruct it as

Jn+1 =

∫

V

v gn+1 dµ(v).

Due to the Hilbert expansion approach, we will consider the reconstructed distribution
given by ρn+1 + εgn+1.

Let us restrict from now on to the case of the normalized Lebesgue measure dµ(v)
on the velocity space [−1, 1]. The space interval [Xmin, Xmax] is uniformly discretized in
Nx−1 intervals with points xi = i∆x from i = 0, . . . , Nx−1 and the velocity interval [−1, 1]
is discretized analogously in Nv −1 intervals with points vj = j∆v from i = 0, . . . , Nv −1.
For further purposes, it is convenient to introduce the sets

V+ =
{
j ∈ {0, Nv − 2} such that vj > 0

}
,

V− = {j ∈ {0, Nv − 2} such that vj < 0}.

Let us specify our discrete scheme to the case of simple upwind discretization Dj of
the spatial differential operator −vj∂x with D̄j being its alternate direction: for a given
sequence (ϕi)i∈N, we set

[
Djϕ

]
i
=

{
−vj(ϕi − ϕi−1) if vj ∈ V+,
−vj(ϕi+1 − ϕi) if vj ∈ V−,

[
D̄jϕ

]
i
=

{
−vj(ϕi+1 − ϕi) if vj ∈ V+,
−vj(ϕi − ϕi−1) if vj ∈ V−.

(17)
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More advanced non-centered non linear distinct numerical fluxes for −vj∂x, such as flux
limiting ones, may be chosen. Similarly, we could use a non uniform time mesh. However,
this might complicate boundary conditions below to preserve mass and it will certainly
change the relaxed asymptotic scheme. The fully discrete scheme summarizes as

Step 1.- Compute





g

n+1/2
i,j = e−∆t/ε2

gn
i,j + (1 − e−∆t/ε2

)D̄jρ
n
i

f
n+1/2
i,j = e−∆t/ε2

fn
i,j + (1 − e−∆t/ε2

)ρn
i

, (18)

with

ρ
n+1/2
i = ρn

i =
∆v

2

Nv−2∑

j=0

fn
i,j.

Step 2.- Solve for time ∆t the convection-like equation:

fn+1
i,j = f

n+1/2
i,j + ∆tDjg

n+1/2
i,j (19)

to compute the values of fn+1 and ρn+1 while gn+1 = gn+1/2.

Remark 6 (Maximum Principle) We point out again that the scheme is specifically
designed for the small ε regime, and there is no guarantee about the accuracy of the results
when ε becomes large. In particular difficulties might arise with the maximum principle.
Indeed, in Step 1, given a non negative fn, (18) returns a non negative fn+1/2, but this
property is not naturally preserved in Step 2, see (19).

Finally, we need to impose boundary conditions on the advection step ensuring the
total mass conservation. With this aim, we need

Nx−2∑

i=1

Nv−2∑

j=0

Djg
n+1/2
i,j = 0

which is equivalent, by summing the telescopic series appearing due to the definition of
the upwinding operators, to

∑

vj∈V+

vj(g
n+1/2
Nx−2,j − g

n+1/2
0,j ) +

∑

vj∈V−

vj(g
n+1/2
Nx−1,j − g

n+1/2
1,j ) = 0.
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¿From this, we will impose as boundary conditions for the fluctuations:

g
n+1/2
0,k =

−1

vk #[V+]

∑

vj∈V−

vjg
n+1/2
1,j

for k ∈ V+ and

g
n+1/2
Nx−1,k =

−1

vk #[V−]

∑

vj∈V+

vjg
n+1/2
Nx−2,j

for k ∈ V−, where #[B] is the cardinal of the set B. Let us remark that the previous
boundary condition in the complete relaxed scheme, ε→ 0, coincides with the Neumann
boundary condition for the density, i.e.,

ρn
0 = ρn

1 and ρn
Nx−1 = ρn

Nx−2.

The scheme described above gives a simple way to compute the solution of (1)-(2), and
the associated macroscopic density, that has to be compared, both in terms of accuracy
and computational cost, to the direct evaluation, see Fig. 1, and computation of the
solution of the heat equation (4) and the different approximations by the closure strategies.

The method adapts easily to more complicated models: gas dynamics [30, 31], radia-
tive transfer [21, 28], fluid-particles flows [9]. It can be also incorporated in a domain
decomposition method to deal with space varying mean free path, in the spirit of [23, 49].

4 Numerical Schemes for Closure Approximations

Next, the idea to treat the hyperbolic system (9) or the conservation equation (8) is
two-fold:

1. We introduce additional unknowns and parameters and the equations are seen as the
relaxation limit of an extended system, in the spirit of general methods described
in [41],

2. The relaxation system is interpreted itself as a kinetic equation with a discrete set
of velocities to which we apply the splitting algorithm described above.
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4.1 Relaxation Method for the First-Order Closure

We will at first focus on developing a numerical scheme for the first order closure (9). The
nonlinear system (9) can be seen as the limit, as α tends to 0, of

∂tρ+ ∂xJ = 0, (20)

ε2∂tJ + ∂xz = −J, (21)

∂tz + ε2λ2∂xJ =
1

α

(
ρψ(εJ/ρ) − z

)
. (22)

Let us define u := εJ/ρ. Recall that u should be small of order O(ε), see [13]. This
system involves an additional unknown z(t, x) and the parameters λ (convection speed)
and α (relaxation parameter). Actually we relax on the quantity ε2J so that we consider
the velocity in (22) rescaled by ε (that fits dimensional considerations). The advantage in
considering (20)-(22) is that now we have to deal with simple convection equations, the
convection part being linear, and all nonlinearities only appear in the (zeroth order) source
terms. This idea is reminiscent to the introduction of kinetic schemes in [4, 20, 45, 39, 38],
and relaxation methods for conservation laws [29]. We refer to [1, 44] for further details
and references. This approach can be used also to treat degenerate diffusion equations
[41].

Let us find the constraints on the additional velocities ±λ that should be large enough
to propagate enough information to reconstruct the behavior of (9). It is important to
check whether the condition becomes more constrained as ε tends to 0. To this end, let us
perform the Chapman-Enskog reasoning; we expand (22) with respect to α considering ε
to be small. We have

z = ρψ(u) − α(∂tz + ε2λ2∂xJ) = ρψ(u) − α(∂t(ρψ(u)) + ε2λ2∂xJ) + O(α2), (23)

by (22)-(21). Thus, (21) can be recast as

ε2∂tJ + ∂x

(
ρψ(u)

)
+ J = αε2λ2∂2

xxJ + α∂2
xt

(
ρψ(u)

)
+ O(α2).

Let us compute the leading contribution in the last term; by using (20) and (21), we get

∂t

(
ρψ(u)

)
= −ψ(u)∂xJ + ρψ′(u)∂tu.

But

∂t(ρψ(u)) = (uψ′(u) − ψ(u))∂xJ −
ψ′(u)

ε
(J + ∂xz).
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Now, considering that formally J+∂xz is of order O(ε) at least, that ψ is an even function
and using the approximation ψ(u) = ψ(0) + O(ε2), with ψ(0) > 0, we get

∂t

(
ρψ(u)

)
+ ψ(0)∂xJ = O(ε),

so that
ε2∂tJ + ∂x

(
ρψ(u)

)
+ J = α∂x((ε

2λ2 − ψ(0))∂xJ) + O(α2, ε).

Consequently, as soon as ε|λ| >
√
ψ(0), the parabolicity is ensured. It is certainly natural

to find that the speeds tend to infinity as ε tends to 0 since we want to approximate the
heat equation. Now, we need to diagonalize System (20)-(22). Since the quantity ελ
remains bounded from below, we denote it by µ. We define

f0 = µ2ρ− z, (24)

f± =
1

2
(z ± εµJ). (25)

Of course, we have

z = f+ + f− and J =
f+ − f−
εµ

and ρ =
f0 + f+ + f−

µ2
.

Noting that

J = ±
2f± − z

εµ
,

the new system we are interested in is

∂tf0 = −
1

α
(ρψ(u) − z), (26)

∂tf± ±
µ

ε
∂xf± = −

f±
ε2

+
z

2ε2
+

1

2α
(ρψ(u) − z). (27)

The system shares some structures with the kinetic equation analyzed in the previous
section. This similarity will be used to design a new scheme that will be expressed only
in terms of the macroscopic quantities ρ and J . Since we have two small parameters, we
can use a double splitting method, i.e., by splitting with respect to ε inside the splitting
with respect to α, that is:

Step 1.- Solve

∂tf0 = 0, (28)

∂tf± ±
µ

ε
∂xf± = −

f±
ε2

+
z

2ε2
. (29)
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This system is again stiff as ε tends to 0. Let us solve it with the splitting method
described in Section 3: we introduce the intermediate variables

g± :=
2f± − z

2ε
= ±

µJ

2

and rewrite (29) as

∂tf± ± µ∂xg± = −
g±
ε

∓
µ

2ε
∂xz. (30)

Solve

Step 1.1.- ∂tf± = −
f±
ε2

+
z

2ε2
∓

µ

2ε
∂xz,

∂tg± = −
g±
ε2

∓
µ

2ε2
∂xz,

where the initial condition for the ODEs are the values computed in the previous step
and solve

Step 1.2.- ∂tf± ± µ∂xg± = 0,

∂tg± = 0,

where the initial conditions are, for f±, the ones obtained by Step 1.1. For g±, we update
them in terms of the flux g±(0) = ±µJ/2 = ±(f+ − f−)/2ε. Note that here the update
is necessary since the goal of the scheme is actually to compute the macroscopic flux and
the microscopic quantities f±, f0 and g± are only auxiliary devices.

Note that, during Step 1.1, ∂tz = 0. Let us now specify our fully discrete kinetic
scheme. As in the previous section, let us choose D± an upwind discretization of the
spatial differential operator ∓µ∂x and D̄± its alternate direction version, see (17). The
fully discrete kinetic scheme in this step reads as

Step 1.1.-(Micro)

g
n+1/4
± = e−∆t/ε2

gn
± + (1 − e−∆t/ε2

)
1

2
D̄±(fn

+ + fn
−),

f
n+1/4
± = e−∆t/ε2

fn
± + (1 − e−∆t/ε2

)

(
fn

+ + fn
− + εD̄±(fn

+ + fn
−)

2

)
,

f
n+1/4
0 = fn

0 .
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At the microscopic level, after Step 1.1, g
n+1/4
+ 6= −g

n+1/4
− .

Step 1.2.-(Micro)

g
n+1/2
± = ±

f
n+1/4
+ − f

n+1/4
−

2ε
,

f
n+1/2
± = f

n+1/4
± + ∆tD±(g

n+1/4
± ),

f
n+1/2
0 = f

n+1/4
0 ,

(ρψ)n+1/2 =
1

µ2
(f

n+1/2
+ + f

n+1/2
− + f

n+1/2
0 )

×ψ

(
µ(f

n+1/2
+ − f

n+1/2
− )

f
n+1/2
+ + f

n+1/2
− + f

n+1/2
0

)

Note that, after Step 1.2, we have g
n+1/2
+ = −g

n+1/2
− , as it is the case in the continuous

setting. That is the reason why the macroscopic quantities can only be expressed at the
end of Step 1 as a whole, and not at the end of Step 1.1. The macroscopic scheme
summarizes in this step as:

Step 1.-(Macro)

zn+1/2 = zn +
ε(1 − e−∆t/ε2

)

2

(
D̄+(zn) + D̄−(zn)

)

+∆t

[
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(zn)

2

)

+D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(zn)

2

)]
,

Jn+1/2 = e−∆t/ε2

Jn +
1 − e−∆t/ε2

2µ

(
D̄+(zn) − D̄−(zn)

)

+
∆t

εµ

[
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(zn)

2

)

−D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(zn)

2

)]
,

ρn+1/2 = ρn +
∆t

µ2

(
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(zn)

2

)

+D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(zn)

2

))
.
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Let us remark that the second term in zn+1/2 is of order ε and thus, it will be omitted
in the computations below. Now, we can write the relaxation step with respect to the
parameter α:

Step 2.- Solve the ODE

∂tf0 = −
1

α
(ρψ(u) − z), (31)

∂tf± =
1

2α
(ρψ(u) − z), (32)

that is, since ∂tJ = 0 and z = 2f± ∓ εµJ by virtue of (25),

∂tf0 = −
1

α
(ρψ(u) − z), (33)

∂tf± = −
1

α
f± +

1

2α
(ρψ(u) ± εµJ), (34)

with as initial conditions the values computed from Step 1. In this last step, we also note
that ∂tρ = 0, see (24) and (25), and that, consequently, u is constant. The fully discrete
kinetic scheme summarizes in this step as

Step 2.-(Micro)
fn+1
± = e−∆t/αf

n+1/2
± +

1

2
(1 − e−∆t/α)((ρψ)n+1/2 + 2εg

n+1/2
± ),

fn+1
0 = fn

0 + (1 − e−∆t/α)
(
fn

+ + fn
− − (ρψ)n+1/2

)

In this last step, we do not update g, since ∂tJ = 0. Denoting by ψn+1/2 the quantity
ψ(εJn+1/2/ρn+1/2), we deduce the following macroscopic scheme for the second step:

Step 2.-(Macro)
zn+1 = e−∆t/αzn+1/2 + (1 − e−∆t/α)ρn+1/2ψn+1/2,
Jn+1 = Jn+1/2,
ρn+1 = ρn+1/2.

Remark 7 (Splitting Order) We choose a semi-linear relaxation method to have to
deal only with transport-like equations, that is, move the non-linearities to the right-hand
side, as source terms. So it is natural to take this precise order of splitting, since α must
be the first one to tend to 0, so that we can keep a non-zero ε, even if it is small.

Remark 8 (Initial Conditions) In order to prevent an initial layer from appearing [42]
in the α−splitting, we need to prescribe well-prepared initial conditions taking into account
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both splittings as:

ρ(0, x) = ρ0(x),

J(0, x) = J0(x),

z(0, x) = ρ0(x)ψ(εJ0(x)/ρ0(x)) =: z0(x),

corresponding to the choice of the equilibrium state for the (hyperbolic) α-splitting, as in
the classical relaxation approach.

Remark 9 (Boundary Conditions) We consider, for a computation domain [Xmin, Xmax],
Neumann conditions for ρ and z,

ρn
0 = ρn

1 ρn
Nx−1 = ρn

Nx−2 and zn
0 = zn

1 zn
Nx−1 = zn

Nx−2.

and

Jn
0 = −Jn

1 Jn
Nx−1 = −Jn

Nx−2.

These conditions guarantee the conservation of the total mass.

Let us now have a look at the limits as α tends to 0 :

Jn+1 = e−∆t/ε2

Jn +
1 − e−∆t/ε2

2µ

(
D̄+(ρnψn) − D̄−(ρnψn)

)

+
∆t

εµ

[
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(ρnψn)

2

)

−D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(ρnψn)

2

)]
,

ρn+1 = ρn +
∆t

µ2

(
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(ρnψn)

2

)

+D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(ρnψn)

2

))
.

We thus obtain a pure transport-projection scheme [1]. Note that, since ∆te−∆t/ε2

= O(ε2)
and (

D+

(
D̄+(ρnψ(0))

2

)
− D−

(
D̄−(ρnψ(0))

2

))
= O(ε),

the scheme is still reasonable for small ε. The convergence in α of the schemes has been
checked numerically. In Figure 2, we show the L2

t,x-error in densities of the macroscopic
method for α > 0 with respect to the completely relaxed method above α = 0 for a fixed
valued of ε = 0.01.

21



1e-06

1e-05

0.0001

0.001 0.01 0.1 1

Convergence of rho

Figure 2: L2
t,x-error of the densities ρ for the α > 0 method with respect to the completely

relaxed scheme α = 0 for ε = 0.01.

Remark 10 (Well-Balanced Scheme) Note that the obtained scheme is well-balanced
which means that the stationary states are preserved, if we choose linear discretizations
D: if we take some initial conditions ρ0 and J0 that satisfy

∂xJ
0 = 0,

∂x(ρ
0ψ(εJ0/ρ0)) = −J0,

so that, in particular, ∂2
xx(ρ

0ψ(εJ0/ρ0) = 0, a direct induction implies that the discrete so-
lution (ρn, Jn)n is stationary, since D±(J0) = 0 = . . . = D±(Jn) and D±(D̄±(ρ0ψ(εJ0/ρ0)) =
0 = . . . = D±(D̄±(ρnψ(εJn/ρn)), for all n ∈ N; see (36).

In turn, the limit ε→ 0 gives

ρn+1 = ρn +
∆t

µ2

(
D+

(
D̄+(ρnψ(0))

2

)
+ D−

(
D̄−(ρnψ(0))

2

))
.
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Let us detail the upwind case: since we have, for any sequence (vj)j∈Z and for j ∈ Z,

D+(D̄+(v))j =
−µ

∆x

((
−µ

∆x
(vk+1 − vk)k

)

j

−

(
−µ

∆x
(vk+1 − vk)k

)

j−1

)
,

=
µ2

(∆x)2
(vj+1 − 2vj + vj−1), (35)

D−(D̄−(v))j = D+(D̄+(v))j, (36)

we get the standard classical 3-point finite difference scheme for the heat equation with
conduction ψ(0):

ρn+1 = ρn + ψ(0)
∆t

(∆x)2
(ρn

j+1 − 2ρn
j + ρn

j−1).

Remark 11 (Comparison to existing literature) We point out that the strategy dif-
fers from the one used in [5, 7] where the adopted method, based on well-balanced schemes
as introduced in [24, 25], is implicit (see also [16]). The main advantage in the latter
is the control on the stability condition. Note however that our method works under the
parabolic CFL condition. This could be seen as too restrictive when the kinetic equation
or the reduced model is coupled to hydrodynamics, like in applications in radiative transfer
[6, 7, 16, 21], but, it is possible in such a context to appeal to a sub-cycling method where
several “parabolic” time steps are performed within a “hyperbolic” time step, see [28].

Besides, the scope of this scheme differs from that of the method described in [41] in
the sense that we are interested in computations for a positive value of the parameter ε,
not only for the fully relaxed situation.

4.2 Relaxation Method for the Zeroth-Order Closure

Here, we use again analogous ideas to propose a relaxation numerical scheme to solve the
zeroth-order closure in (8). The nonlinear equation (8) can be seen as the limit, as α
tends to 0, of

∂tρ+ ∂xJ = 0, (37)

∂tJ +
µ2

ε2
∂xρ = −

1

α

[
J +

ρ

ε
G

(
ε
∂xρ

ρ

)]
. (38)

Defining now

f± =
ρ

2
±
εJ

2µ
, (39)
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we have

ρ = f+ + f− and J =
µ

ε
(f+ − f−).

The new system we are interested in is

∂tf± ±
µ

ε
∂xf± =

1

α

[
ρ

2
− f± ∓

ρ

2µ
G

(
ε
∂xρ

ρ

)]
. (40)

The relaxation scheme follows the same ideas as above. We define the fluctuations as

g± =
1

ε
f± −

1

2ε
ρ

and then, the equation rewrites as

∂tf± ± µ∂xg± =
1

α

[
ρ

2
− f± ∓

ρ

2µ
G

(
ε
∂xρ

ρ

)]
∓

µ

2ε
∂xρ.

The steps of the method are:

Step 1.- Solve the ODE

∂tf± =
1

α

[
ρ

2
− f± ∓

ρ

2µ
G

(
ε
∂xρ

ρ

)]
∓

µ

2ε
∂xρ. (41)

Step 2.- Solve the transport equation

∂tf± ±
µ

ε
∂xf± = 0, (42)

∂tg± = 0. (43)

Here the initial value for the fluctuations for the second step are computed from the
values of the first step by:

g±(0) =
1

ε
f± −

1

2ε
ρ

The first step of the scheme results into the fully discrete scheme

f
n+1/2
± = e−∆t/αfn

± +
ρn

2
(1 − e−∆t/α)

[
1 ∓

1

µ
G

(
∓
ε

µ

D̄±ρ
n

ρn

)]
+ α(1 − e−∆t/α)

1

2ε
D̄±ρ

n.
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The completely relaxed scheme, α → 0 is

f
n+1/2
± =

ρn

2

[
1 +

1

µ
G

(
ε

µ

D̄±ρ
n

ρn

)]

where the odd character of G was used. Taking into account the initialization of the
fluctuations above, we get

g
n+1/2
± =

ρn

2µε
G

(
ε

µ

D̄±ρ
n

ρn

)

where a term of order ∆x2 was neglected. Now, the values of the solutions in the second
step are

fn+1
± = f

n+1/2
± + ∆tD±g

n+1/2
±

respectively. The use of alternate approximations of the spatial derivatives ∓µ∂x is again
needed since for all A ∈ R

lim
ε→0

ρ

ε
G

(
ε
A

ρ

)
=

1

3
A.

The complete relaxed scheme in terms of the macroscopic variable ρ reads as

ρn+1 = ρn + ∆t

{
D+

[
ρn

2εµ
G

(
ε

µ

D̄+ρ
n

ρn

)]
+D−

[
ρn

2εµ
G

(
ε

µ

D̄−ρ
n

ρn

)]}
. (44)

Due to the diffusive character of the approximation, a parabolic CFL condition for small
ε-values, d∆t/(∆x)2 ≤ 1/2, has to be imposed. In this case, following a Chapman-Enskog
approach there is no restriction in principle on the value of µ > 0 but being of order 1
with respect to ε. The boundary conditions are standard discrete Neumann conditions
for ρ.

5 Numerical Results

5.1 Comparisons between Closures

To start with, we compare the solution of the kinetic equation (1)-(2), computed with
the method described in Section 3, and the solutions of the heat equation (4), the zeroth
order closure (8), and the first order closure (9); the two last models are evaluated by
using the method described in Section 4. Figure 3 shows the error in a log-log plot with
respect to ε, for the symmetric initial data

f0(x, v) =

{
2. for − 0.5 ≤ x ≤ 0.5 and − 0.5 ≤ v ≤ 0.5

1. otherwise
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Figure 3: Top left: L2
t,x density error, top right: L2

t,x current, bottom: L2
t,x,v distribu-

tion function error between the kinetic result and the corresponding approximations with
respect to ε for the symmetric initial data.

with mesh Nx = Nv = 100 and up to time 5. We used the completely α−relaxed version
(α = 0) of the schemes in Section 4.

As expected the convergence rates are of order O(ε) for all models, confirming the
results in [13]. Note however that the macroscopic density ρ is better reproduced by the
first order closure and the behavior of the current J is even better captured by this model.
For very small values of ε, the density error becomes constant: it is actually dominated
by the consistency error, with an error of order O((∆x)2) (confirmed by changing the
mesh size). This is not surprising when thinking of the 3−point scheme and is due to the
splitting method.

Next, we consider a data which is not symmetric with respect to velocity. Figure 4
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Figure 4: Top left: L2
t,x density error, top right: L2

t,x current, bottom: L2
t,x,v distribu-

tion function error between the kinetic result and the corresponding approximations with
respect to ε for the asymmetric initial data.

shows the error in a log-log plot with respect to ε, for the initial data

f0(x, v) =

{
2. for − 0.5 ≤ x ≤ 0.5 and − 0.75 ≤ v ≤ 0.25

1. otherwise

with meshNx = Nv = 100 and up to time 5. We still use the completely relaxed framework
α = 0 The previous conclusions are amplified and the advantage of the first order closure
appears more strongly, in agreement with conclusions already given in [16].

This is confirmed again by looking at the time evolution of the density and current
computed by the different models. Figure 5 corresponds to the evolution of the macro-
scopic density for the asymmetric initial data with a mesh of Nx = Nv = 100 with ε = 0.1
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and completely relaxed α = 0 and up to time 5. In Figure 6 we show the corresponding
evolution for the first moment J . These results favor on the one hand the kinetic and
the first order simulation which remain very close, even in this situation where ε is not
particularly small, and on the other hand the zeroth order model which behaves like the
heat equation, far from the profiles obtained by the kinetic computations.
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Figure 5: Evolution of the density for the different methods with the asymmetric initial
data: top left: initial data, top right: 1.25 time units, bottom left: 2.5 time units, bottom
right: 3.75 time units.

5.2 The Su-Olson Test

This test is a standard benchmark for radiative transfer problems [43, 48, 6, 7, 5]. Indeed,
in radiative transfer the unknown f is the specific intensity of radiations, which interact
with the matter through energy exchanges, see e.g. [6, 21]. In this test, the coupling
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Figure 6: Evolution of the current for the different methods with the asymmetric initial
data: top left: initial data, top right: 1.25 time units, bottom left: 2.5 time units, bottom
right: 3.75 time units.

with hydrodynamics is replaced by a simple ODE describing the evolution of the material
temperature. More precisely, we have the kinetic equation

∂tfε +
v

ε
∂xfε =

1

ε2
Q(fε) + σa(Θ − ρ) + S (45)

coupled with
∂tΘ = σa(ρ− Θ) (46)

where typically in the models, Θ = T 4 with T > 0 the temperature of matter and
S = S(t, x) a given source. We propose to solve this stiff coupled problem (45)-(46) with
the same approach as in the previous Subsections. We solve the temperature equation at
the steps in which the density ρ is constant to have an explicit formula for its solution.
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We start with the kinetic scheme and we follow the same notation as in Subsection 2.1
skipping some detail. The semi-discrete numerical scheme will summarize as follows:

Step 1.- Compute




gn+1/2 = e−∆t/ε2

gn − (1 − e−∆t/ε2

)v∂xρ
n,

fn+1/2 = e−∆t/ε2

fn + (1 − e−∆t/ε2

)ρn,

Θn+1/2 = e−σa∆tΘn + σa(1 − e−σa∆t)ρn

(47)

Remember that ρn+1/2 = ρn.

Step 2.- Solve on a time interval of length ∆t the convection equation:

∂tf + v∂xg = σa(Θ − ρ) + S

to compute the values of fn+1 and ρn+1 while gn+1 = gn+1/2 and Θn+1 = Θn+1/2.
The right-hand side uses the final value provided by Step 1.

Similar schemes have to be written for the zeroth and first order closures of the Su-
Olson test. We start with the first order closure in Subsection 2.2, keeping the notation
used therein. The system to solve reads





∂t̺+ ∂xJ = σa(Θ − ρ) + S,

ε2∂tJ + ∂x

(
̺ψ(εJ/̺)

)
= −J

∂tΘ = σa(ρ− Θ).

(48)

The nonlinear system (48) can be seen as the limit, as α tends to 0, of




∂tρ+ ∂xJ = σa(Θ − ρ) + S,

ε2∂tJ + ∂xz = −J,

∂tz + ε2λ2∂xJ =
1

α

(
ρψ(εJ/ρ) − z

)

∂tΘ = σa(ρ− Θ).

(49)

The kinetic scheme will be summarized as

Step 1.- Solve

∂tf0 = µ2 (σa(Θ − ρ) + S) ,

∂tf± ±
µ

ε
∂xf± = −

f±
ε2

+
z

2ε2
,

∂tΘ = σa(ρ− Θ),
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that can be computed as

Step 1.1.- ∂tf0 = 0,

∂tf± = −
f±
ε2

+
z

2ε2
∓

µ

2ε
∂xz,

∂tg± = −
g±
ε2

∓
µ

2ε2
∂xz,

∂tΘ = σa(ρ− Θ),

where the initial condition for the ODEs are the values computed in the previous step
and

Step 1.2.- ∂tf0 = µ2 (σa(Θ − ρ) + S)

∂tf± ± µ∂xg± = 0,

∂tg± = 0,

∂tΘ = 0

where the initial conditions are, for f±, the ones obtained in Step 1.1. For g±, we update
them in terms of the flux g±(0) = ±µJ/2 = ±(f+ − f−)/2ε.

Step 2.- Solve the ODE

∂tf0 = −
1

α
(ρψ(u) − z),

∂tf± =
1

2α
(ρψ(u) − z),

∂tΘ = 0.

This kinetic scheme in macroscopic variables is

zn+1/2 = zn +
ε(1 − e−∆t/ε2

)

2

(
D̄+(zn) + D̄−(zn)

)

+∆t

[
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(zn)

2

)

+D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(zn)

2

)]
,
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Jn+1/2 = e−∆t/ε2

Jn +
1 − e−∆t/ε2

2µ

(
D̄+(zn) − D̄−(zn)

)

+
∆t

εµ

[
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(zn)

2

)

−D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(zn)

2

)]
,

Θn+1/2 = e−σa∆tΘn + σa(1 − e−σa∆t)ρn,

ρn+1/2 = ρn +
∆t

µ2

(
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(zn)

2

)

+D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(zn)

2

))

+∆t
(
σa(Θ

n+1/2 − ρn) + Sn
)
.

while the second step will coincide with Step 2 of Subsection 2.2 together with Θn+1 =
Θn+1/2. From here, we can write the completely relaxed scheme

Jn+1 = e−∆t/ε2

Jn +
1 − e−∆t/ε2

2µ

(
D̄+(ρnψn) − D̄−(ρnψn)

)

+
∆t

εµ

[
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(ρnψn)

2

)

−D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(ρnψn)

2

)]
,

Θn+1 = e−σa∆tΘn + σa(1 − e−σa∆t)ρn,

ρn+1 = ρn +
∆t

µ2

(
D+

(
e−∆t/ε2 µJn

2
+ (1 − e−∆t/ε2

)
D̄+(ρnψn)

2

)

+D−

(
e−∆t/ε2 (−µJn)

2
+ (1 − e−∆t/ε2

)
D̄−(ρnψn)

2

))

+∆t
(
σa(Θ

n+1 − ρn) + Sn
)
.

Concerning the zeroth order closure for the Su-Olson test, we have the system




∂t̺− ∂x

(̺
ε
G
(
ε
∂x̺

̺

))
= σa(Θ − ρ) + S,

∂tΘ = σa(ρ− Θ),
(50)
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that can be seen as the relaxation, when α tends to 0, of

∂tρ+ ∂xJ = σa(Θ − ρ) + S,

∂tJ +
µ2

ε2
∂xρ = −

1

α

[
J +

ρ

ε
G

(
ε
∂xρ

ρ

)]
,

∂tΘ = σa(ρ− Θ).

Proceeding similarly to Subsection 2.4 and as above for the first order closure, we conclude
the completely relaxed scheme for the density and temperature is

Θn+1 =e−σa∆tΘn + σa(1 − e−σa∆t)ρn.

ρn+1 = ρn + ∆t

{
D+

[
ρn

2εµ
G

(
ε

µ

D̄+ρ
n

ρn

)]
+D−

[
ρn

2εµ
G

(
ε

µ

D̄−ρ
n

ρn

)]}

+ ∆t
(
σa(Θ

n+1 − ρn) + Sn
)
, (51)

For intermediate values of the parameter ε, it is worth comparing the results obtained
with the models described above to the simulations based on the semi-lagrangian SL-
WENO scheme already discussed in Section 3. Indeed, remind that the asymptotic kinetic
scheme was developed for the asymptotic limit ε → 0. Similarly, the range of validity
of the macroscopic models is also restricted to small ε’s; furthermore, the theoretical
results in [13] prove the validity of these models for density values close to constant and
far from vacuum. Hence, it is worthy to compare its results to those of the previous
scheme particularly for moderate values of ε. The SL-WENO scheme for the Su-Olson
test summarizes as follows:

Step 1.- Relax f

∂tf =
1

ε2
Q(f) + σa(Θ − ρ) + S

Step 2.- Compute advection and relax the temperature

∂tf +
v

ε
∂xf=0

∂tΘ = σa(ρ− Θ)

which gives the following numerical method:
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Step 1.- Relax f

fn+1/2 = e−∆t/ε2

fn + (1 − e−∆t/ε2

)
[
ρn + ε2 (σa(Θ

n − ρn) + Sn)
]

Θn+1/2 = Θn

Step 2.- Compute advection by an interpolation method and relax the temperature

fn+1(xi, vj) = fn
ε

(
xi − ∆t

vj

ε

)
,

Θn+1 = e−σa∆tΘn+1 + σa(1 − e−σa∆t)ρn+1.

For the simulations, the source term S(x) has been chosen as the characteristic function
of the interval [0, 1] inside the total interval [0, 30] with ε = 0.01 and ε = 0.26 respectively.
We refer to the results in [43, 48, 5, 7] for comparison. The solutions of the macroscopic
models are computed with the complete relaxed methods α = 0 with mesh Nx = 256 and
Nv = 256. The traditional test considers as initial data the constant equilibrium value
10−10 for f0 = ρ0 = Θ0. The smallness of this value makes the simulation particularly
tough; hence, we also perform the computations with f0 = ρ0 = Θ0 = 1. We make
different runs, with ε varying from 0.026 to 0.26. The numerical results are displayed in
Figures 7 to 12.

A first conclusion is that the SL-WENO code is highly sensitive to the changes of ε,
see Figure 7-(i) and (j), as already seen above, see Figure 1; we believe that the results
become relevant only for the largest values of ε (ε = 0.26, ε = 1), see Figures 10, 11, 12.
The result in the case ε = 0.26 is surprisingly close to the solution of the heat equation.
This is a bit misleading since in this regime there is no reason why the heat equation
can describe the dynamics of the kinetic equation well. Other tests with direct finite-
differences WENO schemes as the ones used in [8] may be interesting to clarify this point,
although not directly linked to the asymptotic discussion in this paper, and thus it will
be treated elsewhere.

We observe that the results given by the heat equation, the two closure models and
the kinetic scheme are almost undistinguishable from each other up to final time 10, for
small ε’s, see Figures 8, 9. Differences appear as ε grows and correspond to the results in
[5, 7]. There are discrepancies between the diffusion model, the other macroscopic models
and the kinetic equation, especially for earlier times. These discrepancies reduce as time
grows. It is also worth pointing out that, as in [5, 7] and contrarily to [43, 48], the results
are oscillation free for the first order closure, both for the density ρ and the reduced flux
εJ/ρ, which remains bounded by 1, as expected.
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The kinetic scheme is also sensitive to the variations of ε, particularly for the almost
vanishing initial data, see Figure 7-(g) and (h). We observe that the results differ from the
ones given by SL-WENO for ε = 0.26 and almost vanishing initial data: the main errors
appear in the regions of large gradient of the density, see Figure 10. Clearly the kinetic
scheme is not well adapted for this regime for such a small initial data. However, the
performances are better considering a larger initial data, since in such a case the slopes
are less steep, see Figures 11 and 12. Note that this test also shows the limitation of
the asymptotic-induced method since when ε grows we are faced with difficulties related
to the maximum principle, see Remark 6. In particular, the scheme for the first order
closure is not positive in the sense of [7], the computed εJ/ρ can violate the limited
flux condition and we are in trouble to evaluate the flux (again, increasing the initial
data makes things easier). Finally, it is remarkable to observe that the first order closure
results are satisfactory in all regimes. This makes this closure model really valuable. More
figures are available on the URL http://diffnum.gforge.inria.fr/SU-OLSON/.

6 Conclusion

We have proposed new numerical schemes based on splitting techniques specifically adapted
to diffusion regimes. The main idea behind this strategy is the separation between the
hydrodynamic quantities and the fluctuations. Hence, the method we design is explicit,
asymptotic preserving, well balanced and mass preserving thanks to a suitable treatment
of the numerical boundary conditions. This approach applies equally well to the original
kinetic equation and to the macroscopic models coming from closure approximations.

The numerical experiments demonstrate the abilities of the scheme to give accurate
quantitative estimates of the errors made by the approximations to the kinetic equation.
The first order closure is shown to be the most accurate approximation, among those we
chose, for the kinetic equation in the diffusive limit. This confirms that the choice of the
closure by entropy minimization principle is certainly appropriate for applications where
the kinetic equation is coupled with more complex systems.

Acknowledgements

The authors acknowledge for the computational resources of the Grid’5000 project which
made the simulations possible. TG and PL thank the Centre de Recerca Matemàtica,
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(d) 1st order model

Figure 7: Su-Olson test: Comparison of the density ρ computed by the different models
as ε varies at time t = 1. From top to bottom: 0th order model, 1st order model, heat
equation, kinetic asymptotic-induced model, SL-WENO scheme. Left column: results in
log-log scale for the initial data f0 = ρ0 = Θ0 = 10−10; Right column: results in semi-log
scale initial data f0 = ρ0 = Θ0 = 1.
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Figure 7: Su-Olson test: Comparison of the density ρ computed by the different models
as ε varies at time t = 1 (continued).
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Figure 8: Su-Olson test: Left column: comparison of densities ρ; middle column: com-
parison of temperatures Θ ; right column : comparison of reduced fluxes εJ/ρ in log-log
scales for the solutions after time 1, 3 and 10 time units respectively (from top to bot-
tom) computed with the kinetic, the heat equation, the first and the zeroth order closure
methods for ε = 0.026. The initial data is f0 = ρ0 = Θ0 = 10−10.
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Figure 9: Su-Olson test: Left column: comparison of densities ρ; middle column: com-
parison of temperatures Θ ; right column : comparison of reduced fluxes εJ/ρ in log-log
scales for the solutions after time 1, 3 and 10 time units respectively (from top to bot-
tom) computed with the kinetic, the heat equation, the first and the zeroth order closure
methods for ε = 0.1. The initial data is f0 = ρ0 = Θ0 = 10−10.
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Figure 10: Su-Olson test: Left column: comparison of densities ρ; middle column: com-
parison of temperatures Θ ; right column : comparison of reduced fluxes εJ/ρ in log-log
scales for the solutions after time 1, 3 and 10 time units respectively (from top to bot-
tom) computed with the kinetic, the heat equation, the first and the zeroth order closure
methods for ε = 0.26.The initial data is f0 = ρ0 = Θ0 = 10−10.
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Figure 11: Su-Olson test: Left column: comparison of densities ρ; middle column: com-
parison of temperatures Θ ; right column : comparison of reduced fluxes εJ/ρ in semi-log
scales for the solutions after time 1, 3 and 10 time units respectively (from top to bottom)
of with the kinetic, the heat equation, the first and the zeroth order closure methods for
ε = 0.26. The initial data is f0 = ρ0 = Θ0 = 1.
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Figure 12: Su-Olson test: Left column: comparison of densities ρ; middle column: com-
parison of temperatures Θ ; right column : comparison of reduced fluxes εJ/ρ in semi-log
scales for the solutions after time 1, 3 and 10 time units respectively (from top to bot-
tom) computed with the kinetic, the heat equation, the first and the zeroth order closure
methods for ε = 1. The initial data is f0 = ρ0 = Θ0 = 1.
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