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NUMERICAL APPROXIMATION OF KNUDSEN LAYER FOR THE

EULER-POISSON SYSTEM

Fréderique Charles1, Nicolas Vauchelet1, Christophe Besse2, 3, Thierry
Goudon2,3, Ingrid Lacroix–Violet2,3, Jean-Paul Dudon4 and Laurent

Navoret5

Abstract. In this work, we consider the computation of the boundary conditions for the linearized
Euler–Poisson derived from the BGK kinetic model in the small mean free path regime. Boundary
layers are generated from the fact that the incoming kinetic flux might be far from the thermody-
namical equilibrium. In [2], the authors propose a method to compute numerically the boundary
conditions in the hydrodynamic limit relying on an analysis of the boundary layers. In this paper,
we will extend these techniques in the case of the coupled Euler-Poisson system.

Résumé. Dans ce travail, nous nous intéressons à l’évaluation numérique de conditions aux limites
pour le système d’Euler–Poisson linéarisé obtenu à partir du modèle cinétique BGK dans le régime
de petit libre parcours moyen. Des couches limites peuvent apparaître en raison du fait que les
flux cinétiques entrants peuvent différer de l’équilibre thermodynamique. La réference [2] introduit
une méthode de calcul numérique des conditions aux limites dans un tel régime hydrodynamique
basée sur l’analyse des couches limites. Ici, nous étendons ces techniques au cas du système couplé
d’Euler–Poisson.

1. Introduction

At a kinetic level, a statistical description of the dynamics of a plasma subject to an electric field E(t, x)
can be obtained thanks to the Boltzmann equation governing the evolution of the particles distribution
function F (t, x, v). In the one dimensional framework, this equation reads:

∂tF + v∂xF + qE∂vF =
1

τ
Q(F ), (1)

where q ∈ {−1, 1} correspond to the sign of the charge of particles. Here the time variable t ≥ 0, the position
variable x belongs to (−ω, ω) ⊂ R and the velocity v ∈ R. The parameter τ is the Knudsen number; it is
related to the mean free path and is assumed to be small. In this work, we choose for the collision operator
Q the BGK collision operator:

Q(F ) = M(ρ,u,θ) − F,

where the Maxwellian

M(ρ,u,θ)(v) =
ρ√
2πθ

exp

(
−
|v − u|2

2θ

)
, (2)
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and the macroscopic quantities (ρ, u, θ) are defined by

density : ρ(t, x) =

∫

R

F (t, x, v) dv,

velocity : ρu =

∫

R

vF (t, x, v) dv,

temperature : ρu2 + ρθ =

∫

R

|v|2F (t, x, v) dv.

In this paper we restrict to consider a single specie of charged particles, the particles of the opposite charge
being a given background with a fixed and constant density. The electric field E = −∂xV is self-consistently
defined through the Poisson equation satisfied by the potential V :

−∂xxV = q(ρ − 1). (3)

We recall that (1, v, |v|2) are collision invariants:

∫

R




1
v
|v|2



Q(F ) dv = 0. (4)

It is well-known that when τ → 0, the distribution function F converges to a Maxwellian, whose macro-
scopic parameters ρ, u and θ solves the Euler system. The question raised by this work is the determination
of the boundary conditions on this Euler system corresponding to the ones imposed on the kinetic system.
Here system (1)–(3) is completed with the following boundary conditions:

γincF (t,−ω, v) = R(γoutF (t,−ω, ·))(v) + Φdata,L(t, v), for v > 0, (5)

γincF (t, ω, v) = R(γoutF (t, ω, ·))(v) + Φdata,R(t, v), for v < 0, (6)

where Φdata,R and Φdata,L are given functions, and R is a reflection operator. For instance assuming R = 0
and Φdata = 0 corresponds to a fully absorbing boundary. We consider here two types of reflection operator:
the specular reflection operator given by

R(F )(t, x, v) = αF (t, x,−v), (7)

where the parameter α ∈ [0, 1] represents the fraction of reflected particles, and the reflection operator of
the Maxwell diffuse law given by

R(F )(t,−ω, v) = α
Mw(v)

Zw

∫

v′<0
|v′|F (t,−ω, v′) dv′, for v > 0, (8)

where

Mw(v) =
ρw√
2πθw

e−|v|2/(2θw), Zw =

∫

v>0
vMw(v) dv,

with θw the temperature of the wall (see e.g. [15]). Obviously, dealing with the right hand boundary, +ω
replaces −ω and incoming particles have negative velocities v < 0, we change the sign of v′ in (8) accordingly.
The problem is also completed with an initial condition

F (0, x, v) = F init(x, v).

For the Poisson equation, we impose Dirichlet boundary conditions

V (t,−ω) = V L, V (t, ω) = V R.

This framework might appear quite crude in comparison to the complex boundary conditions that are used
in plasma physics, where the boundary potential depends on the particles fluxes, see e. g. [6–8, 17, 20, 23]
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and the references therein. We restrict to this simple situation in order to bring out clearly the ideas and it
already make several difficulties appear; we shall go back to a more ambitious model elsewhere.

As the mean free path goes to 0, the kinetic model can be approached by a system of conservation laws
for which the number of boundary conditions that should be fixed depends on the solution itself (see e.g. [9]).
In fact the boundary conditions for the hyperbolic system depend on the number of incoming characteristics
at the boundary. The aim of this work is to present numerical methods to compute the boundary fluxes for
the hydrodynamic model, and to compare the results with simulations of the kinetic equation (1).

The paper is organized as follows. In the next Section, we study the simplest case where we linearize the
Boltzmann–BGK equation around a Maxwellian steady state. We first introduce some notations and recall
the theoretical results needed. Then we present some numerical simulations. In Section 3, we are concerned
with the coupling with the Poisson equation. We consider both the linearized problem and the non-linear
case.

2. Analysis for the linearized Euler system

In this section, we are interested in the numerical approximation of the boundary layer for the linearized
Euler system in the case E = 0, i.e. there is no coupling with the Poisson equation.

2.1. Analysis of the boundary layer

We briefly recall here the theorical results developped in [9] (see also [13]). Let us assume that ρ∗ > 0,
θ∗ > 0 and u∗ ∈ R are given. We verify easily that M∗ := M(ρ∗,u∗,θ∗) is a stationary solution of (1) with
E = 0. Linearizing around the equilibrium M∗ in the form F = M∗(1 + f), (1) leads to the linearized
equation for f :

∂tf + v∂xf =
1

τ
L∗(f), (9)

where L∗ is the linearized BGK operator. More precisely, for f ∈ L2(M∗ dv) we have L∗(f) = Πf − f , with
Π the orthogonal projection of L2(M∗ dv) to the finite dimensional set spanned by the collisional invariant
{1, v, |v|2} (see [2]):

Πf =
ρ̃

ρ∗
+

v − u∗

θ∗
ũ +

(
|v − u∗|2

θ∗
− 1

)
θ̃

2θ∗
,

where (ρ̃, ũ, θ̃) are such that




ρ̃
ρ̃u∗ + ρ∗ũ

ρ̃(u2
∗ + θ∗) + 2ρ∗u∗ũ + ρ∗θ̃



 =

∫

R




1
v
|v|2



 fM∗ dv.

We can verify that the following properties1 hold:

• L∗ is self-adjoint for the inner product of L2(M∗ dv),
• Ker(L∗) = Span {1, v, |v|2},
• Ran(L∗) = (Ker(L∗))⊥ for the inner product of L2(M∗ dv),
• we have the dissipation property

∫

R

L∗ffM∗ dv ≤ 0.

Equation (9) is completed with the boundary conditions deduced from (5)–(6)

γinc(M∗f)(t,−ω, v) = R(γout(M∗f)(t,−ω, ·))(v) + φdata,L(t, v), for v > 0, (10)

γinc(M∗f)(t, ω, v) = R(γout(M∗f)(t, ω, ·))(v) + φdata,R(t, v), for v < 0, (11)

1These properties obviously hold for the linearized BGK operator because it reduces to a mere projection; but it is important
to bring out the crucial analytical properties required to extend the discussion to more intricate operators
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where for instance in the case v > 0, we have

φdata,L = Φdata,L − M∗ + R(M∗),

and with the initial data
f(0, x, v) = f init(x, v).

Formally, when τ → 0 the function f belongs to Ker(L∗) and can be therefore described by an infinitesimal
Maxwellian:

m(eρ,eu,eθ)(t,x)(v) =
ρ̃

ρ∗
+

v − u∗

θ∗
ũ +

(
|v − u∗|2

θ∗
− 1

)
θ̃

2θ∗
. (12)

From (9) and the definition of Ker(L∗) we deduce the moment system:

∂t

∫

R




1
v
|v|2



 fM∗ dv + ∂x

∫

R

v




1
v
|v|2



 fM∗ dv = 0.

Substituting f by the infinitesimal Maxwellian m(eρ,eu,eθ) leads to the linearized Euler system:

∂t




ρ̃
ũ

θ̃



+




u∗ ρ∗ 0
θ∗

ρ∗

u∗ 1
0 2θ∗ u∗



 ∂x




ρ̃
ũ

θ̃



 = 0. (13)

The system (13) writes in matrix form
∂tŨ + A∂xŨ = 0, (14)

with

A =




u∗ ρ∗ 0
θ∗

ρ∗

u∗ 1
0 2θ∗ u∗



 .

This system is obviously hyperbolic: the spectrum of the matrix A is {u∗−
√

3θ∗, u∗, u∗ +
√

3θ∗}. Therefore,
the number of boundary conditions that should be fixed at the left (resp. right) boundary depends on the
number of positive (resp. negative) eigenvalues. Moreover, we can define the following quadratic form

Q : Ũ = (ρ̃, ũ, θ̃) (→
∫

R

v|m(eρ,eu,eθ)|
2 M∗ dv. (15)

Following [2,9], we can split the set of infinitesimal Maxwellians according to the sign of the quadratic form
Q:

Ker(L∗) = Λ+ ⊕ Λ− ⊕ Λ0,

where Λ± corresponds to the eigenspaces associated to the positive (resp. negative) eigenvalues of A, and
Λ0 is the eigenspace associated to 0 when it belong to the spectrum of A. We shall denote I± = dim(Λ±)
the number of positive (resp. negative) eigenvalues of A.

Then, considering the left hand boundary x = −ω, it is possible to split m(eρ,eu,eθ) into m− ∈ Λ− (which

corresponds to the “outgoing part”) and m+ ∈ Λ+ ⊕ Λ0 (which corresponds to the “incoming part” at the
boundary x = −ω) :

m(eρ,eu,eθ) = m− + m+. (16)

Dealing with the right hand boundary x = +ω, the role of Λ+ and Λ− is inverted. At each boundary the
outgoing part is given by the flow, whereas the incoming part has to be imposed as a boundary condition to
complete the Euler system.

The incoming flux at the boundaries are determined thanks to a boundary layer analysis. Let us consider
the following half space problem

{
v∂zG = L∗G, z > 0, v ∈ R

G(0, v) = Υdata, v > 0
(17)
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where Υdata has to be suitably defined. We recall the following statement (see [9]):

Theorem 1. There exists a linear mapping (that is usually called the generalized Chandrasekhar functional)

C∗ : L2(R, (1 + |v|)M∗(v) dv) → Λ+ ⊕ Λ0

Υdata (→ m∞,

where m∞ is the limit as z → ∞ of the unique solution G of (17). Moreover, G ∈ L∞(0,∞; L2(R, M∗(v) dv)).

Let us assume that f expands as follows

f = m(eρ,eu,eθ) + GL

(
t,

x + ω

τ
, v

)
+ GR

(
t,

ω − x

τ
, v

)
+ o(τ),

where GL and GR stand for boundary layers and are defined as follows :

• GL(t, z, v) = G(t, z, v) with G the solution of (17) with incoming data

Υdata(t, v) = γincf(t,−ω, v) − m(eρ,eu,eθ)(t,−ω, v), (18)

and imposing that
lim

z→+∞
G(z, v) = 0, (19)

• GR(t, z, v) = G(t, z,−v) with G the solution of (17) with incoming data

Υdata(t, v) = γincf(t, ω,−v) − m(eρ,eu,eθ)(t, ω,−v). (20)

and condition (19).

Condition (19) expresses that the boundary layer is expected to vanish far from the boundary. Using the
decomposition on Ker(L∗) in (16), it implies that the unknown m+ satisfies

C∗(γincf(t, ω, ·) − m−(t, ω, ·)) = C∗(m+(t, ω, ·)), C∗(γincf(t,−ω, ·) − m−(t,−ω, ·)) = C∗(m+(t,−ω, ·)).
(21)

The question we address is concerned with the numerical approximation of the outgoing state m+, which
arises in the definition of the boundary fluxes.

2.2. Numerical resolution of the linearized Euler system

2.2.1. Numerical method

The matrix A of the system (13) can be diagonalized under the form

A =




u∗ ρ∗ 0
θ∗

ρ∗

u∗ 1
0 2θ∗ u∗



 = P




u∗ 0 0
0 u∗ +

√
3θ∗ 0

0 0 u∗ −
√

3θ∗



P−1,

with

P =
1

2
√

θ∗




2
√

θ∗ρ∗
√

3ρ∗ −
√

3ρ∗
0 3

√
θ∗ 3

√
θ∗

−2
√

θ∗θ∗ 2θ∗
√

3 −2θ∗
√

3



 , P−1 =
1

3ρ∗
√

3θ∗




2
√

3θ∗ 0 −ρ∗
√

3/
√

θ∗
θ∗ ρ∗

√
3θ∗ ρ∗

−θ∗ ρ∗
√

3θ∗ −ρ∗



 .

We set 


ρ̃diag

ũdiag

θ̃diag



 = P−1




ρ̃
ũ
θ̃




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the variables in the new basis defined by the transition matrix P , and we obtain three independant equations
on ρ̃diag, ũdiag, θ̃diag :






∂tρ̃diag + u∗∂xρ̃diag = 0, (a)

∂tũdiag + (u∗ +
√

3θ∗)∂xũdiag = 0, (b)

∂tθ̃diag + (u∗ −
√

3θ∗)∂xθ̃diag = 0. (c)

(22)

Equations (22) should be completed with boundary conditions, which depend on the sign of u∗, u∗ +
√

3θ∗
and u∗ −

√
3θ∗. More precisely, we denote Ubd,l = (ρbd,l, ubd,l, θbd,l) and Ubd,r = (ρbd,r, ubd,r, θbd,r) the

macroscopic quantities which have to be defined at the boundaries x = −ω and x = ω respectively, and we
set

Ubd,l =




U1

bd,l

U2
bd,l

U3
bd,l



 = P−1Ubd,l, Ubd,r =




U1

bd,r

U2
bd,r

U3
bd,r



 = P−1Ubd,r.

Boundary conditions of equations (22) are :

ρ̃diag(−ω) = U1
bd,l if u∗ > 0 or ρ̃diag(ω) = U1

bd,r if u∗ < 0, (a)

ũdiag(−ω) = U2
bd,l if u∗ +

√
3θ∗ > 0 or ũdiag(ω) = U2

bd,r if u∗ +
√

3θ∗ < 0, (b)

θ̃diag(−ω) = U3
bd,l if u∗ −

√
3θ∗ > 0 or θ̃diag(ω) = U3

bd,r if u∗ −
√

3θ∗ < 0. (c)

(23)

We then introduce a regular subdivision {x0, . . . , xI+1} of the domain [−ω, ω], with xi = −ω + i∆x and
∆x = 2ω/(I + 1), and a time discretisation ∆t. Equations (22) are solved numerically thanks to an upwind
scheme. We obtain for instance, thanks to equation (22)-(a) and boundary condition (23)-(a), the following
approximations ρ̃n

diag,i of ρ̃diag(n∆t, xi):






ρ̃n+1
diag,0 = U1,n+1

bd,l ,

ρ̃n+1
diag,1 = ρ̃n

diag,1 − u∗
∆t

∆x

(
ρ̃n

diag,1 − U1,n
bd,l

)
,

ρ̃n+1
diag,i = ρ̃n

diag,i − u∗
∆t

∆x
(ρ̃n

diag,i − ρ̃n
diag,i−1) for i ∈ {2, I + 1},

if u∗ > 0,

and 




ρ̃n+1
diag,i = ρ̃n

diag,i − u∗
∆t

∆x
(ρ̃n

diag,i+1 − ρ̃n
diag,i) for i ∈ {0, I − 1},

ρ̃n+1
diag,I = ρ̃n

diag,I − u∗
∆t

∆x

(
U1,n

bd,r − ρ̃n
diag,I

)
,

ρ̃n+1
diag,I+1 = U1,n+1

bd,r ,

if u∗ < 0,

where U1,n
bd,l = U1

bd,l(n∆t) and U1,n
bd,r = U1

bd,r(n∆t). These values are computed by solving (21). The method
to solve these equations is explained in the next subsection. We denote in the sequel

Ũn
i =




ρ̃n

i

ũn
i

θ̃n
i



 = P




ρ̃n

diag,i

ũn
diag,i

θ̃n
diag,i



 . (24)

2.2.2. Treatment of the boundary conditions

We explain in this section the method presented in [2] to compute, at each time step, the hydrody-
namic boundary conditions Un

bd,l and Un
bd,r from the knowledge of the hydrodynamic quantity Ũn

i near the

boundaries x = ±ω and the knowledge of φdata,L, φdata,R and R in (10).
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We focus here the discussion on the boundary x = −ω (the treatment of the boundary x = ω is similar).
We introduce, at each time tn = n∆t, the infinitesimal Maxwellian

mn
bd,l(v) =

ρn
bd,l

ρ∗
+ un

bd,l
v − u∗

θ∗
+

θn
bd,l

2θ∗

(
(v − u∗)2

θ∗
− 1

)

and we associate to mn
bd,l its decomposition on Ker(L∗) as in (16) :

mn
bd,l = mn

+ + mn
−. (25)

The outgoing part mn
− ∈ Λ− is given by the projection of Ũn

0 on Λ− :

mn
−(v) =

∑

k∈I−

αn
kχk(v), αn

k =

∫
R

v mŨn
0

χk(v)Mρ∗,u∗,θ∗
(v)dv

∫
R

v |χk(v)|2 Mρ∗,u∗,θ∗
(v)dv

,

where mŨn
0

is defined in (12). We denote (χ0, χ1, χ2) an orthogonal basis of Ker(L∗) which is here defined

by (see [2])

χ0(v) =
1√
6

(
|v − u∗|2

θ∗
− 3

)
,

χ1(v) =
1√
6

(√
3

v − u∗√
θ∗

+
|v − u∗|2

θ∗

)
,

χ2(v) =
1√
6

(√
3

v − u∗√
θ∗

−
|v − u∗|2

θ∗

)
,

and

I+ =
{
k ∈ {0, 1, 2}, χk ∈ Λ+

}
, I− =

{
k ∈ {0, 1, 2}, χk ∈ Λ−

}
, I0 =

{
k ∈ {0, 1, 2}, χk ∈ Λ0

}
.

Moreover,

Q(χ0) = ρ∗u∗, Q(χ1) = ρ∗(u∗ +
√

3θ∗), Q(χ2) = ρ∗(u∗ −
√

3θ∗),

where Q is the quadratic form defined in (15). Consequently, the sign of the eigenvalues u∗ −
√

3θ∗, u∗,
u∗ +

√
3θ∗ allows us to know I− and therefore to compute mn

−.
Then we need to compute mn

+. We first notice that integrating the half space problem (17) over the
velocity variable gives

d

dz

∫

R

v




1
v
|v|2



GL(z, v)M∗(v)dv = 0,

and then
∫

R

v




1
v
|v|2



GL(0, v)M∗(v)dv =

∫

R

v




1
v
|v|2



GL(∞, v)M∗(v)dv = 0. (26)

Moreover, we make an approximation proposed by Maxwell in [19] (see also [1, 18]) : we assume that the
outgoing distribution at the boundary γoutGL(0, ·) coincides with the distribution at infinity, that is to say

γoutG(0, v) = lim
z→+∞

G(z, v) = 0, v > 0. (27)

Then, using (26), (20) and (27), we obtain

∫

v>0
v




1
v
|v|2



[γinc(f) − mn
bd,l

]
M∗dv = 0. (28)
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Finally, thanks to (10) and (25), we get

∫

v>0
v




1
v
|v|2



[φdata,L(tn, v) + R(M∗m
n
−)(v) − mn

−(v)M∗(v)
]
dv

=

∫

v>0
v




1
v
|v|2



(mn
+(v)M∗(v) −R(M∗m

n
+)(v)

)
dv.

(29)

Relation (29) allows us to compute mn
+. We notice that we have three equations for mn

+ to be satisfied
whereas dim(Λ+ ⊕ Λ0) ∈ {0, 1, 2, 3}. In the case u∗ = 0 i.e. when the signature of the quadratic form Q is
(1, 1), we use the fact that we have the additional conservation law (see [2, 14])

d

dz

∫

R

v2χ0(v)G(z, v)M(ρ∗,0,θ∗)(v) dv = 0.

A method to solve this overdeterminated problem is to pick the number of equations needed in (29) (see [14]).
Here we will follow instead the method in [2] where the determination of mn

+ relies on the resolution of a
least squares problem under constraints. We refer to [2] for further details.

2.3. Numerical comparisons

The equation (9) is solved thanks to a splitting scheme : we solve successively the free transport equa-
tion ∂tf + v∂xf = 0 (with upwind scheme) and the collision part ∂tf = 1

τ L∗(f). We notice that this
last equation can be solved exactly since by conservation properties, a solution f of this equation satisfies
d
dt

∫
R
(1, v, v2)f(v) dv = 0, and therefore Πf is not modified during this step and can be considered as a given

source term. We refer to [2] for further details. In the simulation presented below, we take ∆v = 5 ·10−4 and
τ = 10−3, and for both hydrodynamic and kinetic simulation ω = 0.5 and ∆x = 1/500 (in convenient units).
The final time is tf = 0.1 and the time step ∆t is determined by the CFL condition. We then compare the
numerical solution of the linearized Boltzmann equation (9) with the numerical solution of linearized Euler
system (14).

On Figure 1, we consider the equilibrium state given by

(ρ∗, u∗, θ∗) = (1,−0.1, 1),

with specular reflection at boundaries (operator R is given by (7)), a reflection coefficient of α = 0.1 and
no source term (φdata,L = φdata,R = 0). In particular, the signature of Q is (1, 2). In this case, results are
satisfactory : the density, macroscopic velocity and temperature given by the resolution of the linearized
Euler system are very close from those given by the linearized Boltzmann equation.

In the second example on Figure 2 we consider the equilibrium state given by

(ρ∗, u∗, θ∗) = (1, 0, 1),

with diffuse reflection at boundaries (operator R is given by (7)), a reflection coefficient of α = 0.8 and no
source term (φdata,L = φdata,R = 0). This is a degenerate case : the signature of Q is here (1, 1). Thus as
noticed in the previous section, we have four conservation relations and two components to be find in order
to define mn

+.
Finally in the last example on figure 3 we present the case of no reflection at boundaries with no source

term (φdata,L = φdata,R = 0). We choose the signature (3, 0) for Q. Again in this case the approximation
obtained using the Euler system is really close to the results given by the Boltzmann equation.
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Figure 1. Comparison between the kinetic simulation and the hydrodynamic simulation
at tf = 0.1 s, for (ρ∗, u∗, θ∗) = (1,−0.1, 1), specular reflection at boundaries and α = 0.1.

3. Coupling with the Poisson equation

3.1. Analysis of the linearized Vlasov–Poisson system

In this section, we consider the linearization of the coupled Boltzmann–Poisson system (1)–(3). Let us
assume that ρ∗ > 0 and θ∗ > 0 are given. We set

M∗(x, v) =
ρ∗e

− v
2

2θ∗

√
2πθ∗

e−qV∗(x)/θ∗

∫ ω
−ω e−qV∗(y)/θ∗ dy

= M(ρ∗,0,θ∗)(v)
e−qV∗(x)/θ∗

∫ ω
−ω e−qV∗(y)/θ∗ dy

. (30)

We verify easily that for such a Maxwellian, we have

v∂xM∗ − q∂xV∗∂vM∗ = 0. (31)

We choose for V∗ the solution of the problem





−∂xxV∗ = q

(

ρ∗
e−qV∗(x)/θ∗

∫ ω
−ω e−qV∗(y)/θ∗ dy

− 1

)

,

V∗(−ω) = V L, V∗(ω) = V R.

(32)

Lemma 1. Assume V L and V R are given in R and ρ∗ > 0, θ∗ > 0. Then there exists a unique solution
V∗ ∈ C2(−ω, ω) of the problem (32).
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Figure 2. Comparison between the kinetic simulation and the hydrodynamic simulation
at tf = 0.1 s, for (ρ∗, u∗, θ∗) = (1, 0, 1), diffuse reflection at boundaries and α = 0.8.

Proof. Let us define Vb ∈ C2([−ω, ω]) an extension of the boundary condition: Vb(−ω) = V L and Vb(ω) =
V R. This results relies on the remark that a weak solution of (32) is a critical point in the affine space
Vb + H1

0 (−ω, ω) of the functional

J(V ) =
1

2

∫ ω

−ω
|∂xV |2 dx − ρ∗θ∗ ln

(∫ ω

−ω
e−qV/θ∗ dx

)
−
∫ ω

−ω
qV dx.

Therefore, it remains to prove that this functional admits a unique minimizer. In fact, J is clearly continuous
and convex on H1(−ω, ω) and we have the inequality

ln

(∫ ω

−ω
e−qV/θ∗ dx

)
≤

‖V ‖∞
θ∗

+ ln(2ω) ≤ C‖V ‖H1 + ln(2ω).

Hence, applying the Poincaré inequality, we get

J(V ) ≥ ‖V ‖2
H1 − C0ρ∗‖V ‖H1 − C1.

Then J is coercive and bounded from below on H1(−ω, ω). It admits a unique minimizer V∗. Applying
standard techniques, we can show that V∗ ∈ C2(−ω, ω). !

Thus, the pair (M∗, V∗) is a stationary solution of the Boltzmann-Poisson problem (1)–(3). We linearize
around this solution by setting F = M∗ + M∗f and V = V∗ + Ṽ where f and Ṽ are assumed to be small
perturbations. Keeping only the first order term, we are led to the following linearized Boltzmann-Poisson

10
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Figure 3. Comparison between the kinetic simulation and the hydrodynamic simulation
at tf = 0.1 s, for (ρ∗, u∗, θ∗) = (1, 1, 0.25), with no reflection and no source term at bound-
aries.

problem:

∂tf + v∂xf − q∂xV∗∂vf + q
v

θ∗
∂xṼ =

1

τ
L∗f. (33)

The linearized collision operator L∗ has been defined in the previous section. Equation (33) is coupled to
the Poisson equation

−∂xxṼ = q

∫

R

fM∗ dv, Ṽ (−ω) = Ṽ (ω) = 0. (34)

Thus, as τ goes to 0 the function f looks like an infinitesimal Maxwellian m(eρ,eu,eθ). The properties of L∗

described above yield
∫

R

L∗f




1
v
|v|2



M(ρ∗,0,θ∗) dv = 0.

Therefore taking the moments of (33), we are led to the following system:

∂t

∫

R




1
v

|v|2



 fM(ρ∗,0,θ∗) dv + ∂x

∫

R

v




1
v
|v|2



 fM(ρ∗,0,θ∗) dv − q∂xV∗

∫

R




1
v
|v|2



 ∂vfM(ρ∗,0,θ∗) dv

+q
∂xṼ

θ∗

∫

R

v




1
v

|v|2



M(ρ∗,0,θ∗) dv = 0.

11



Integrating by parts, we deduce

∫

R




1
v

|v|2



 ∂vfM(ρ∗,0,θ∗) dv =

∫

R

v

θ∗




1
v

|v|2



 fM(ρ∗,0,θ∗) dv −
∫

R




0
1
2v



 fM(ρ∗,0,θ∗) dv

Substituting f by m(eρ,eu,eθ), we use the identities

∫

R

m(eρ,eu,eθ)M(ρ∗,0,θ∗) dv = ρ̃,

∫

R

vm(eρ,eu,eθ)M(ρ∗,0,θ∗) dv = ρ∗ũ;
∫

R

v2m(eρ,eu,eθ)M(ρ∗,0,θ∗) dv = ρ∗θ̃ + ρ̃θ∗,

∫

R

v3m(eρ,eu,eθ)M(ρ∗,0,θ∗) dv = 3ρ∗θ∗ũ.

We deduce that

∂t




ρ̃
ũ

θ̃



+




0 ρ∗ 0
θ∗

ρ∗

0 1
0 2θ∗ 0



 ∂x




ρ̃
ũ

θ̃



 = q∂xV∗





ρ∗eu
θ∗

eθ
θ∗

0



− q∂xṼ




0
1
0



 (35)

holds. From (34), this system is coupled with the linearized Poisson equation

−∂xxṼ = q ρ̃
e−qV∗(x)/θ∗

∫ ω
−ω e−qV∗(y)/θ∗ dy

, Ṽ (−ω) = Ṽ (ω) = 0. (36)

Like for the free problem, we assume that f admits an expansion of the form

f = m(eρ,eu,eθ) + GL(t,
x + ω

τ
, v) + GR(t,

ω − x

τ
, v) + o(τ).

Then the boundary layers GL and GR satisfies the same half space problem (17). Therefore the determination
of the boundary condition that we have to impose to solve (35) follows the treatment presented in the previous
section. We notice moreover that we are necessary in the degenerate case where the quadratic form associated
to the matrix of the hyperbolic equation has the signature (1, 1), i.e. u∗ = 0. In fact, if we choose non-zero
u∗, the relation (31) is not satisfied and therefore M∗ is not a stationary solution of the Boltzmann equation.

We present some comparisons between the simulation of the linearized Boltzmann-Poisson equation and
the linearized Euler-Poisson system. In the numerical procedures we use, system (32) is solved thanks to a
fixed point iterative procedure. Since ρ∗ and θ∗ are fixed, the potential V∗ is computed only once for all at
the beginning of the simulation. The linearized Boltzmann equation (33) is solved with the same idea than
in the previous section : we split by solving first the transport equation on one time step

∂tf + v∂xf − q∂xV∗∂vf + q
v

θ∗
∂xṼ = 0,

with an upwind scheme, then we solve on one time step

∂tf =
1

τ
L∗(f).

The linearized Euler system (35) is discretized by a splitting method: first we solve (35) with zero at the
right hand side as described in subsection 2.2.1 and then we solve implicitely

∂t




ρ̃
ũ

θ̃



 = q∂xV∗





ρ∗eu
θ∗

eθ
θ∗

0



− q∂xṼ




0
1
0



 .

The Poisson equation is discretized thanks to a finite difference method. Figures 4 and 5 present the results
for a linearization around the equilibrium state given by (ρ∗, u∗, θ∗) = (1, 0, 0.5), with a source term at the
boundaries in Figure 4 and in the case of specular reflection in Figure 5.
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Figure 4. Comparison between the kinetic simulation and the hydrodynamic simulation
for the coupled problem with (ρ∗, u∗, θ∗) = (1, 0, 0.5), no reflection at boundaries (R = 0),
φdata,L = m(2/1.2,0,1.2/2), φdata,R = m(ρ∗,0,θ∗), q = −1, V L = V R = 1 at tf = 0.1.

3.2. The non-linear Euler–Poisson system

Finally, we come back to the non-linear problem (1)–(3) presented in the introduction. As the mean free
path goes to 0, we get the Euler-Poisson system:






∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + ρθ) = −qρ∂xV,

∂t

(ρθ + ρu2

2

)
+ ∂x

(3

2
ρuθ +

1

2
ρu3
)

= −qρu∂xV,

(37)

coupled to
−∂xxV = q(ρ − 1). (38)

We present a first attempt to treat numerically the initial-boundary-value problem, incorporating the compu-
tation of relevant boundary conditions for the hydrodynamics, designed following the approach used for the
neutral problem and the linearized equation. Clearly nonlinearities and coupling give rise to new difficulties
and this work has to be considered as a preliminary step towards the simulation of physically relevant cases.
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Figure 5. Comparison between the kinetic simulation and the hydrodynamic simulation
for the Poisson problem with (ρ∗, u∗, θ∗) = (1, 0, 0.5), specular reflection at boundaries with
α = 0.4, φdata,L = φdata,R = 0, q = 1, V L = 1, V R = 0 at tf = 0.1.

Here the hydrodynamic problem is not linear and we will use a finite volume scheme to discretize (37).
As above, we fix a regular subdivision {x0, . . . , xI+1} of the domain [−ω, ω], with xi = −ω + i∆x and
∆x = 2ω/(I+1), and denote Ci = (−ω+(i−1/2)∆x,−ω+(i+1/2)∆x) the cell centered in xi for i = 1, . . . , I.
Let us denote U the vector (ρ, ρu, 1

2 (ρθ + ρu2)). Then Un
i is an approximation of 1

∆x

∫
Ci

U(n∆t, x) dx; it is
computed thanks to a discretization of (37) (see e.g. [4, 11, 16, 21]):

Un+1
i − Un

i = −
∆t

∆x
(Fn

i+1/2 − Fn
i−1/2),

where Fn
i+1/2 is an approximation of the flux at the interface between Ci and Ci+1. In this work, we use

the Godounov fluxes to approximate this quantity (see e.g. [11, 12]); it is then determined by the computed
quantities in the two neighboring cells : Fn

i+1/2 = F (Un
i ,Un

i+1). Therefore the macroscopic quantities at time

(n+1)∆t are entirely determined, provided we compute the fluxes at the boundary of the domain. The idea
to raise this question is to linearize around a steady state. Then we get the linearized problem presented in
the previous subsection and can compute as previously the boundary conditions. The Poisson equation (38)
is then discretized thanks to the finite difference method.

The first difficulty is to determine a steady state around which we linearize. As already noticed in [2], we
need to update this state at each time step and to linearize locally. More precisely, let us assume that the
state Un at time tn = n∆t is known. Therefore, we know an approximation of ρ and θ in the cells C1 and CI

at time tn. We will use these values to linearize the Boltzmann-Poisson system. Let us detail for instance
the treatment of the left boundary x = −ω. We take ρ∗ and θ∗ to be respectively equal to the computed
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values of ρ and θ in the cells C1 at time tn. Then, solving system (32), we deduce V∗ and linearize then
around the state M∗ defined thanks to ρ∗, θ∗ and V∗. We have therefore F = M∗(1+m(eρ,eu,eθ) +GL + o(τ)).
The fluxes are given by




ρu

ρu2 + ρθ
(ρu2 + 3ρθ)u



 =

∫

R

v




1
v
|v|2



F (v) dv =

∫

R

v




1
v

|v|2



M∗(v)(1 + m(eρ,eu,eθ)) dv,

where we use the conservation identity

∫

R

v




1
v

|v|2



GL(z, v)M∗(v) dv = 0,

for all z ≥ 0. It follows that




ρu

ρu2 + ρθ
(ρu2 + 3ρθ)u



 =
e−qV∗(x)/θ∗

∫ ω
−ω e−qV∗(y)/θ∗ dy




ρ∗ũ

ρ∗θ∗ + ρ̃θ∗ + ρ∗θ̃
3ρ∗θ∗ũ



 .

Thus we deduce the boundary fluxes provided we know the boundary values of the linearized quantities
(ρ̃, ũ, θ̃). These values are computed using the method described in the previous subsection for the linearized
Boltzmann-Poisson system.

Numerical results are presented in Figures 6, 7 and 8 in the case of a population of electrons (i.e. q = −1).
In Figures 6 and 7 we choose an initial value such that (ρ, u, θ) = (0.5, 0, 1) therefore we take F init =
M(0.5,0,0,1) in the kinetic model. In Figure 8 the initial data is chosen such that (ρ, u, θ) = (1, 0, 1). Figure 6
displays the result obtained in the case of specular reflection with α = 0.5. In Figures 7 and 8 we present the
case of a source term at the boundaries. In figure 7 we consider Φdata,L = M(1.2,0,1.2/2), Φdata,R = M(1,0,0.5),
and in figure 8 Φdata,L = M(1.2/1.1,0,1.1/2), Φdata,R = M(1,0,1).

Conclusions and perspectives

In this work, according to [2] we present a numerical method for defining the boundary conditions of the
linearized Euler system accounting from the formation of Knudsen boundary layers. The boundary conditions
are based on the Maxwell approximation of the fluxes of the underlying kinetic half–space problem. This
approach is extended to treat the Euler–Poisson system both in the linearized and non–linear versions. We
detail how we can bypass the difficulties induced by the coupling with the electric field.

However, this work is a preliminary attempt and the schemes can be improved in several ways. First of
all, the splitting scheme we are using for solving the Euler–Poisson system is not very elaborate, especially
for the the non–linear model which would deserve a deeper analysis. Furthermore, with this scheme steady
states solutions are not preserved numerically. Definitely, the design of a specific Well–Balanced scheme looks
appropriate for this problem, see [5]. Second of all, the Maxwell approximation is simple but certainly too
rough. Improving the evaluation of the asymptotic state and outgoing distribution of the half–space problem
is a crucial issue to reduce the discrepancies observed between the hydrodynamic and kinetic simulations.
A possible path for this purpose can be inspired by the approximations designed in [14]. Finally, for most
applications in plasma physics the interactions between electrons and positive charges have a crucial role.
It implies to deal with coupled systems of kinetic or hydrodynamic equations, instead of describing a single
specie. Moreover, boundary conditions for the potential are also driven by intricate charge phenomena,
which involve the fluxes of charged particles. Details on the modeling issues in the context of spacecraft
engineering can be found in [6–8, 17, 20, 23]. Depending on the physical characteristics of the plasma, it
can be relevant to use hydrodynamic systems instead of kinetic models, see [3]. At least, reducing the
variables dimension and getting rid of stiff terms allow a substantial gain in terms of computational cost.
However it left open the question of the boundary conditions to be used for the hydrodynamic fluxes, which
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Figure 6. Comparison between the kinetic simulation and the hydrodynamic simulation
for the Poisson problem with specular reflection at boundaries with α = 0.5 and no source
term, q = −1, V L = V R = 1 at final time tf = 0.1.

motivates the present work. It is likely however, for such applications, that the main difficulty is related
to the treatment of the boundary conditions for the potential. This question is beyond the scope of this
paper and we expect the numerical strategy we have introduced will be a useful contribution towards the
simulation of these phenomena.
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