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Abstract. We introduce a mixture model intended to describe the dynamics of the mucus layer
that wraps the gut mucosa. This model takes into account the fluid mechanics of the gut content, the
inhomogeneous rheology that depends on the fluid composition, and the main physiological mechanisms
that ensure the homoeostasis of the mucus layer. Numerical simulations, based on a finite volume
approach, prove the ability of the model to produce a stable steady-state mucus layer. We also perform
a sensitivity analysis by using a meta-model based on polynomial chaos in order to identify the main
parameters impacting the shape of the mucus layer. The effect of the interaction of the mucus with a
population of bacteria is eventually discussed.

Résumé. Nous présentons un modèle de mélange qui décrit l’évolution de la couche de mucus qui
recouvre la muqueuse du gros intestin. Ce modèle prend en compte la mécanique des fluides qui
composent le contenu intestinal, la rhéologie inhomogène dépendant de la composition du fluide et les
principaux mécanismes physiologiques qui assurent l’homéostasie de la couche de mucus. Des résultats
numériques, obtenus par une méthode volumes finis, démontrent la capacité du modèle à reproduire une
couche de mucus stationnaire stable. Nous pratiquons ensuite une analyse de sensibilité en construisant
un métamodèle basé sur des polynômes de chaos afin d’identifier les paramètres impactant le plus la
forme de la couche de mucus. Finalement, nous discutons les effets des interactions entre la couche de
mucus et une population bactérienne chimiotactique.

1. Introduction

The distal human gut, also known as colon, is inhabited by a complex microbial ecosystem, the gut microbiota.
Recent progresses in the knowledge of the microbiota structure and function have demonstrated its direct or
indirect implication in various affections, among which Crohn’s disease, allergic and metabolic disorders, obesity,
cholesterol or possibly autistic disorders. Understanding the gut microbiota ecology is one of the current scientific
hot-spot in microbiology. The gut microbiota provides to his human host several benefits, such as energy
harvesting [20], barrier function against pathogens and immune system maturation [21]. However, even these
beneficial commensal bacteria represent an infection threat for the host. Alongside with complex active immune
mechanisms, a first simple and passive protection is an insulating layer of mucus that physically separates the
microbial populations from the host tissues.
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This mucus barrier is actually composed of two distinct layers with different rheological characteristics. A
first viscous layer wraps the epithelial cells. An external, thicker and more fluid layer covers the first one [13].
These rheological discrepancies are attributed to structural differences in the mucus protein folding and to
hydration/dehydration effects. The active water pumping of the intestinal mucosa dries out the inner layer of
mucus, whereas the liquid luminal content keeps the outer layer hydrated. Mucus turn over results from the
erosion of the external layer by the luminal flux and the continuous renewal of the inner layer by the mucosa [23].
Unlike the inner layer, the outer layer can be penetrated by bacteria, which thereby take advantage of this food
source, resist the luminal flow and increase their residence time in the gut. It represents an ecological niche
that influences the global equilibrium of the gut microbiota. A good model of its dynamics is then a key issue
in the perspective of constructing accurate models of the gut microbiota ecology. This modelling work could
help physiologists and microbiologists to better describe and understand the main parameters in mucus layer
formation or disruption and to study host-microbiota interactions and microbiota ecology in an integrative way.

Since there is no sharp interface between the mucus and the luminal liquid, our approach adopts the mixture
flows framework. Further details about the mixture theory can be found in [19, 24]. It leads to systems
of Partial Differential Equations (PDE) describing a mixture of several components with different physical
properties. For adaptation of mixture theory for describing biological flows, we refer the reader to [14] (poro-
elastic materials), [18] (tumor growth), and [6] (growth of phototrophic biofilms). The formation of layers of
biological mucus can also be described at the molecular scale [11]. A compartmental model, written in terms of a
large set of Ordinary Differential Equations describing fibre degradation by gut microbial populations, has been
proposed in [16]. In this 0D model, the mucus is modelled as a separate compartment but spatial mechanisms
are loosely described and the underlying fluid mechanics is discarded. A model based on the principles of fluid
mechanics for pulmonary mucus appeared in [5]; it describes mucus evacuation by cilla without investigating
the dynamics of the mucus layer formation. To our knowledge, the present work is the first attempt of a fluid
mechanics model specially designed to describe the intestinal fluid flows involved in the constitution of the
ecological environment of the gut microbiota. Together with adapted population dynamics and host response
models, it constitutes a key component of a global ecological model of intestinal microbial communities.

We organize the article as follows. We introduce the mixture model of intestinal fluid flow in Section 2.
Section 3 focuses on the boundary conditions and sketches the derivation of an approximate model. Section 4
details the numerical method used for the simulation of the model and test cases are presented in Section 5.
We analyse the sensitivity of the approximate model in Section 6. Finally, we extend the model by including a
chemotactic bacterial population in the mixture model in Section 7.

2. A mixture model for the fluid dynamics in the human gut

2.1. Mathematical modelling of the gut content

A schematic view of the gut, which makes the length scales precise, is represented on Fig. 1a; the mucus
layer (in green) measures about four millimeters. In what follows, the geometry is drastically simplified and
curvature effects are neglected: we will simply work on a 2D rectangular domain ΩD, delimited by two lateral
boundaries Γl (x = −Lx),Γr (x = Lx), that represent the gut mucosa, the superior boundary Γin(y = 0) and
the inferior boundary Γout(y = −Ly) which stand respectively for the inflow and outflow boundaries.

We assume in this model that the gut content is a mixture of two components: the mucus and the luminal
content. Let M(t,X) and L(t,X) be the volume fractions, at time t > 0 and position X = (x, y) ∈ ΩD, occupied
by the mucus and the liquid luminal phase, respectively. We then have, for all t and X

M(t,X) + L(t,X) = 1. (1)

Both components of the mixture are supposed to be transported by a common velocity field, hereafter denoted
by V (t,X) = (u, v)(t,X). It represents the bulk velocity of the mixture. The mixture model incorporates
interface effects through diffusive terms in the continuity equations for M and L. Let us denote by DM (resp.
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Figure 1. Computation domain and illustration of the MAC discretization — See Section 4.

DL) the diffusion coefficient for M (resp. L). The mass conservation equations then read

∂tM +∇X · (MV −DM∇XM) = 0, (2)

∂tL+∇X · (LV −DL∇XL) = 0. (3)

The velocity field (t,X) 7→ V (t,X) is determined using fluid mechanics principles. Since the Reynolds number
is low, we neglect convective effects and we use the Stokes equations. The velocity is solution of

−∇X ·
(
µ (M)

(
∇XV +∇XV T

))
+∇XP = 0 (4)

where µ (M) is the viscosity and P is the hydrostatic pressure. The viscosity is a function of the mucus volume
fraction, bearing in mind that µ is much larger in the mucus than in the fluid. Summing Eq. (2) and (3), and
using Eq. (1), we are led to the following constraint

∇X · V = ∇X · ((DM −DL)∇XM) . (5)

In order to detail the modeling assumption, it is convenient to introduce the velocity fields

uM (t,X) = V −DM∇X ln(M), uL(t,X) = V −DL∇X ln(L). (6)
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Then the continuity equations can be rewritten in the more conventional form

∂tM +∇X · (MuM ) = 0 = ∂tL+∇X · (LuL)

by means of the constituents’ velocities uM and uL. The constraint (5) traduces the fact that the mean volume
velocity MuM +LuL is solenoidal. Eq. (6) is a constitutive law, it has the form of a Fick’s law for the relative
velocities uM − V and uL − V , derived from the principles of mixture theory [19, 24], in order to define the
effective velocity V of the mixture. The role of the diffusion coefficients DM , DL > 0 is precisely to make the
mixture more homogeneous by imposing mass transfer by diffusion. Note that the bulk velocity is divergence
free when the mixture is made of one constituent only (M = 0 or M = 1); otherwise compressibility is driven
by the difference DM −DL.

For the continuous equations, we can work equivalently with (1), (2), (3), (4) or (1), (2), (4), (5). We
complete the system by an initial condition M

∣∣
t=0

= M0 and boundary conditions on ∂Ω, that will be detailed
later on.

Remark 2.1. Since in general ∇X · V 6= 0, it could be relevant to add in the Stokes equation (4) the term
∇X(λ∇X · V )) with a viscosity coefficient λ ≥ 0 that is required to satisfy some compatibility relation with µ.
Here, we simply set λ = 0, which is always admissible.

2.2. Parameter settings

Our model involves several quantities having typical front-like behavior, that we model with sigmoidal func-
tions. We set

Σ+
P (x) = (pmax − pmin)

x2αp

x2αp + χ
2αp
p

+ pmin and Σ−
P (x) = (pmax − pmin)

(
1− x2αp

x2αp + χ
2αp
p

)
+ pmin (7)

which depend on a set of 4 parameters embodied into the shorthand notation P = (pmax, pmin, αp, χp). We see
that Σ+ (resp. Σ−) is an increasing (resp. decreasing) sigmoidal function with limit values pmin < pmax, χp is
the inflexion point and αp modulates the transition slope.

Firstly, let us discuss the form of the viscosity distribution. We suppose that the mucus is more viscous than
the luminal content and that there exists a concentration threshold that completely changes the rheological
properties of the fluid. We then model the function µ with the parameters Pµ = (µmax, µmin, αµ, χµ) and the
sigmoidal function

µ(M)(x, y) = Σ+
Pµ

(M(x, y)).

Secondly, we focus on the diffusion coefficients DM and DL. Those diffusion coefficients may depend on the
local composition of the mixture, but are also strongly determined by spatial features, such as the microscopic
structure of the mucus gel and of the gut wall. In order to avoid additional non linearities and regarding
the lack of precise knowledge of the links between mucus concentration, mucus layer microscopic structure and
effective diffusion, we chose to only consider spatial dependence of the diffusion by introducing specific modelling
assumptions. Some perspectives to improve the model on that issue will be given in the last section We suppose
that the mucus layer is confined near the mucosa. Consequently, the correction tuned by DM should be small
near Γl ∪Γr and high at the center of the domain, and reversely for DL. We also suppose that DM and DL are
uniform with respect to y. Denoting PK = (DK,max, DK,min, αK , χK) with K ∈ {L,M}, we set

DL(x, y) = Σ+
PL

(x) and DM (x, y) = Σ−
PM

(x).

Thirdly, we assume that the mucus is initially essentially located near the mucosa with a sharp transition;
given PM0

= (M0,max,M0,min, αM0
, χM0

), it leads to define

M0(x, y) = Σ+
PM0

(x). (8)
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3. Discussion on the boundary conditions

We face different modelling issues concerning boundary conditions. We remind the reader that the different
boundaries of the domain describe completely different physiological functions. On the one hand, the lateral
boundaries Γl∪Γr represent the intestinal mucosa which produces mucus and pumps luminal liquid, influencing
both mass conservation and flow speeds. On the other hand, the horizontal boundary conditions on Γin and
Γout have to model free inflow and outflow of matter.

3.1. Boundary conditions for Γl ∪ Γr

On the lateral boundaries, the flux is driven by mucus production and liquid pumping according to

(MV −DM∇XM) · ~n = −fM (M) and (LV −DL∇XL) · ~n = −fL(L), (9)

Mucus production and water pumping depend on certain thresholds: we set

fM (M) = θM [M −M∗]−, fL(L) = −θL[L− L∗]+.

The former means that the mucosa produces at rate θM when the mucus concentration is below the threshold
M∗, while the latter tells us that the mucosa pumps liquid at rate θL only when the liquid concentration is above

the threshold L∗. A linear combination of (9), together with (1), yields
(
M + DM

DL
L
)
V · ~n = −fM − DM

DL
fL. It

implies a Dirichlet boundary condition for the transverse velocity u. We can freely define v on Γl ∪ Γr without
influencing the normal flow of M and L. Keeping in mind compatibility conditions at the corners of the domain,
we impose that the tangential velocity vanishes. We arrive at

V · ~n = u = −
fM + DM

DL
fL

M + DM
DL

L
and V · ~τ = v = 0. (10)

3.2. Boundary conditions for Γin and Γout

The definition of relevant boundary conditions on Γin and Γout is more challenging. We assume that diffusion
does not contribute to fluxes at the inflow and outflow boundaries:

DM∇XM · ~n = 0 and DL∇XL · ~n = 0. (11)

The boundary conditions for the velocity have a crucial role on the behaviour of the model: by constraining
the velocity field, they drive the mucus displacement and its equilibrium with the liquid inside the domain.
The boundary conditions should produce a stable mucus layer without over constraining the system in a non
physiological way. Choosing Dirichlet boundary conditions at Γin is relevant since the average fluid intake into
the gut is a known biological parameter. As the intestinal flow is mainly longitudinal, it might be natural,
at first sight, to assume that the transverse velocity is null on this boundary. On the contrary, relaxing the
constraint on Γout is meaningful because we want to investigate the model response to the inflow only. For that
reason, we choose a no-strain boundary condition. We then get

u = 0 and v = vin on Γin and
(
µ(M)

(
∇XV +∇XV T

)
− PId

)
~n = 0 on Γout (12)

Remark 3.1. The numerical simulations in Section 5.1 show that the no-strain condition on Γout could produce
questionable velocity and mucus distribution profiles in the vicinity of Γout, likely due to the use of the symmetric
strain rate tensor in the no-strain boundary condition. We made a few attempts with Dirichlet conditions, taking
into account the corresponding compatibility conditions for the Stokes equation; however they produce irrelevant
velocity profiles next to the boundary. Possible improvements of the condition can also be found in [2–4].
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3.3. Derivation of an approximated profile for vin.

We wish to capture steady–states with mucus layers next to the lateral boundaries. Accordingly, since the
viscosity µ has a sharp profile as a function of M , strong variations of the velocity are expected in this region
too. The boundary conditions on Γin should reflect this behavior in order to avoid too strong correction of the
velocity field near Γin. We will discuss several options to obtain such a relevant profile for (uin, vin), compatible
with the expected steady–states. One of them consists in deriving an approximation of the inflow.

To this end, we find a reduced model based on asymptotic reasoning. We rewrite the equations in dimen-
sionless form and we make the aspect ratio ε = Lx

Ly
appear. It turns out that the regime 0 < ε � 1 is relevant

for our purposes. We seek solutions as an expansion in power series of ε, where for the velocity the leading term
has the form (εu1, v0). A specific regime of the pressure characteristic value leads to an explicit formulation
of v0, which links the velocity with the viscosity distribution and the boundary conditions. As we specifically
focus on the case of a sharp mucus layer located near the mucosa in the vicinity of Γin, we approximate the
corresponding viscosity profile with the step function µ̃ = µmin1(0,Rm) + µmax1(Rm,1) for a certain 0 < Rm < 1
(in dimensionless units). We introduce µ̃ in the explicit formulation of v0, which gives the following formal
approximation for the longitudinal velocity on Γin

vin(x) =
win
γ

(
1− x2

2µmax
1(Rm,1)(x) +

(
1−R2

m

2µmax
+
R2
m − x2

2µmin

)
1(0,Rm)(x)

)
, (13)

where

γ =
1

8

(
1

µmin
R4
m +

1

µmax
(1−R4

m)

)
,

with given win > 0, 0 < Rm < 1. The simplified asymptotic model of the flow (i.e. (εu1, v0)) will be used for
the sensitivity analysis in Section 6 since it permits us to reduce the computational cost.

4. Numerical scheme

We update the mucus volume fraction with (2), the velocity-pressure pair is determined by the system (4)–
(5) while the luminal liquid volume fraction L is simply defined by (1). We choose a semi-implicit scheme so
that the computation of the volume fractions and the velocity–pressure fields are decoupled. We work with
Cartesian grids and we use well-established schemes for both equations. The diffusion term in (2) is treated
by the VF4 method, which is known to converge on meshes satisfying the orthogonality condition, such as
Cartesian grids [9, Sect. 3.1.1]. The transport term is approached according to UpWind principles. The Stokes
system is dealt with by using the MAC scheme, which dates back to [12]. Accordingly, pressure, horizontal,
and vertical velocities are evaluated on staggered grids; the volume fraction M is stored on the same grid as the
pressure, see Fig. 1b. We refer to the grid cells and the corresponding unknowns with the notations Ωi,j (for
P , M grid), Ωi− 1

2 ,j
(for u) and Ωi,j− 1

2
(for v).

The Finite Volume framework mimics the formulae obtained by integrating the equations over the grid cells.
For instance, for the horizontal velocity we get∫

∂Ω
i− 1

2
,j

µ(M)
(
∇XV +∇XV T

)
· ~n dω −

∫
Ω
i− 1

2
,j

∂xP dΩ = 0 (14)

where ~n is a outward normal vector to the boundary of Ωi− 1
2 ,j

. The boundary integral splits as a sum over the

edges. The staggered grids allow us to evaluate the derivatives by mere finite differential quotients. We are led
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to the following discrete equivalent to (14)

−∆x µ̃i− 1
2 ,j−

1
2

(
−ui−1/2,j − ui−1/2,j−1

∆y
− vi,j−1/2 − vi−1,j−1/2

∆x

)
−∆y µ(Mi,j)

(
2
ui+1/2,j − ui−1/2,j

∆x

)
−∆x µ̃i− 1

2 ,j+
1
2

(
ui−1/2,j+1 − ui−1/2,j

∆y
+
vi,j+1/2 − vi−1,j+1/2

∆x

)
+ ∆y µ(Mi−1,j)

(
2
ui−1/2,j − ui−3/2,j

∆x

)
+ ∆x∆y

Pi,j − Pi−1,j

∆x
= 0.

(15)
The quantities µ̃ are not directly defined since M , and thus µ, is not stored at the interfaces i+ 1

2 , j + 1
2 , where

it needs to be reconstructed. For instance we can use the mean value M̃i+ 1
2 ,j+

1
2

= 1
4 (Mi,j +Mi,j+1 +Mi+1,j +

Mi+1,j+1). When the viscosity has a sharp profile, it can be more efficient to reconstruct µ̃i+ 1
2 ,j+

1
2

by the

harmonic mean [9, Sect. 2.3]. We proceed similarly with the vertical velocity, integrating the second component
of Eq. (4) . Finally integrating (5) over Ωi,j leads to

∆x (vi,j+1/2 − vi,j−1/2) + ∆y (ui+1/2,j − ui−1/2,j) = Di,j (16)

where Di,j is the approximation of the diffusion flux
∫
∂Ωi,j

(DM−DL)∇XM ·~n dω defined by the VF4 formalism

[9]. The same numerical flux is used to update M through the discretization of (2) where the convection term
is obtained with explicit upwind fluxes, while the diffusion term is treated implicitly.

The boundary conditions are discretized differently according to the boundary and the equation under con-
sideration. The convection–diffusion equation for M is complemented either by the Robin condition (9), with
a convection flux given on Γr, Γl by (10), or the Neumann condition (11) on Γin, Γout with a convection flux
given by (12).

On the boundaries Γl, Γr (resp. Γin), the treatment of the equations involving non–interior values for u, v
and M is rather standard. The velocities are determined by using the Dirichlet boundary condition (10), while
for the volume fraction we use the Robin-like (resp. Neumann) condition in (9) (resp. (11)) to define the missing
M ’s.

On Γout the viscous fluxes vanish by virtue of (12) . The diffusion fluxes for M are also set to 0 due to
(11). The only difficulty comes when evaluating the vertical velocity. To this end, we integrate the second
component of Eq. (4) in half a grid cell and we introduce ghost points, as shown in Fig. 1c. We observe
that three contributions on the boundaries of the cell vanish thanks to the boundary condition (12); the forth
boundary on the top gives an equation for v on such boundary cells Ωi,j−1/2.

5. Numerical results

For the numerical experiments, the computational domain is ΩD = [−Lx, Lx]×[−Ly, 0], with Lx = 2, Ly = 12
(in cm) and we work with 100× 300 grid points that define square cells. The parameters of the model are given
in Table 1. We shall comment the role of the conditions on Γin and Γout and discuss numerical experiments
where a stable mucus layer establishes.

5.1. Comments on the boundary conditions

As explained in Remark 3.1, it is likely that the velocity imposed on Γin plays a crucial role in the formation
of the mucus layer, and a certain compatibility should be satisfied between the expected steady state and the
incoming field (uin, vin). If no measurements are available, we can start with the profile (13) (and uin = 0)
which is based on an asymptotic argument. According to the intuition, the velocity field is quite uniform in the
vertical direction, see Fig. 3a for an overview of the horizontal speed over the whole domain. It suggests that
the condition on Γin can be improved with the following iterative procedure: a) Define (u, v) by solving the

system (4)–(5), b) set (uin, vin)(x) = (u, v)(x,−Ly2 ) and go back to step a). This approach can also be justified
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Sigmoidal distribution Other
Name Meaning Unit pmax pmin αp χp value

DL Liquid diffusion cm2 day−1 2.5.10−3 10−4 16 3
4Lx -

DM Mucus diffusion cm2 day−1 10−5 10−6 12 3
4Lx -

µ Viscosity Pa s 1.97 · 10−2 10−3 7 0.4 -
M0 Initial mucus distribution ∅ 0.98 0 15 3

4Lx -
θM Mucus production rate day−1 - 10−3

M∗ Mucus production threshold ∅ - 0.98
θL Water pumping rate day−1 - 5
L∗ Water pumping threshold ∅ - 0.2
win Average input speed (simplified model) cm day−1 - -80

Table 1. Biophysical constants of the model. Sigmoidal distribution is defined with Eq. (7).
The parameters pmax and pmin are the maximal and minimal bounds of the sigmoid, αp its
slope and χp its inflexion point. We emphasize that the diffusion parameters for the liquid
and the mucus are respectively of order 10−12m2 s−1 and 10−14m2 s−1, in order to mimic the
diffusion of large molecules —such as polysaccharides— in highly viscous media — such as the
chyme and the mucus. They remain in documented orders of magnitude for large molecule
diffusions in mucus [15].

by the fact that we are only considering a relatively short portion of the gut. Note that we have two choices
for uin thereafter, namely we can set uin = 0 as before or we can use the function uin given as a result of the
iterative procedure.

Fig. 2 compares the velocity profiles with 0 or 1 iteration of the iterative procedure at y = −Ly2 , far away

from Γin so that the influence of the Dirichlet condition may be moderate, and at y = −∆y
2 where boundary–

layer effects can be sensitive. We pay a specific attention to the role of uin. As far as we consider the vertical
component v of the velocity, the resulting profiles are quite similar between two consecutive iterations of the
iterative procedure, and quite close to the formal approximation given by Eq. (13) (the maximal relative
difference is 5%) including next to Γin, see Fig. 2a. Conversely, if we use an alternative iteration procedure to
define vin only, but keeping uin = 0, very slight discrepancies are observed on u at −Ly/2, but boundary–layer
effects are clearly sensitive next to Γin, see Fig. 2b and 2d : we observe oscillations with high amplitude which
might create instabilities. Those oscillations are two orders of magnitude higher during the iteration 0 than the
iteration 1. This discussion reveals that the choice of (uin, vin) is certainly far from harmless.

As said in Section 3.2, the condition (12) on Γout is questionable. We see the effect of the boundary condition
on Fig. 3: significantly larger horizontal velocities appear in the vicinity of Γout. The spurious velocities are
oriented from the lumen of the gut to the wall. Consequently, a part of the mucus near Γout will be washed-out,
as it can be observed on the mucus profile on Fig. 3c after five days: close to Γout the layer of mucus is smaller
than inside the domain. Nevertheless, the flow is mostly oriented outward and, as confirmed by these results,
the effects of the null strain boundary condition remain confined close to the boundary.

5.2. Stable steady–state mucus layer

In order to evaluate the robustness of the model, we compare the large–time state of the flow when we start
from the sigmoidal state (8), here denoted M0,s, or from a Gaussian distribution

M0,g(x, y) = Mmax

(
exp

(
− (x− Lx)

2

2
(
Lx
6

)2
)

+ exp

(
− (x+ Lx)

2

2
(
Lx
6

)2
))

.
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(b) Horizontal velocity profiles at y = −Ly
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(c) Horizontal velocity profile at y = −∆y
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(d) Horizontal velocity profiles at y = −∆y
2

Figure 2. Speed profiles at y = −Ly2 and y = −∆y
2 for the first iterations of the iterative

procedure defined in Sec. 5.1. The formal speed designates the boundary conditions (13) used
for the initialization of the iterative procedure. The notation uin = 0 stands for the result
of the alternative iterative procedure keeping uin = 0. We had to displayed the horizontal
velocity profiles at y = −∆y

2 for iter.0 and iter.1 on different plots, due to their different order
of magnitude.

For both initial conditions, we perform the same simulations, with the boundary condition (13) for vin. After
60 days the two mucus profiles coincide, see Fig. 4b (in the area where the mucus volume fraction is larger than

1
100 the relative difference on the profiles is about 2%). The mucus layer and its shape are thus not strongly
determined by the initial condition, at least in these configurations. However, if we use the iterative procedure
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(a) u; t = 0 (b) u; t = 5 days (c) M ; t = 5 days

Figure 3. Horizontal speed u and mucus M distributions at t = 0 or t = 5.

to compute vin, the profile vin depends on the initial data for M and some discrepancies on the mucus profile
at larger times appear; see Fig. 5 for a comparison between the sigmoidal and the Gaussian profiles.
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(b) Mucus profiles after 60 days

Figure 4. Mucus profiles at y = −Ly2 for initial data M0,g and M0,s at t = 0 and t = 60 days
with vin given by Eq. (13).

We also investigate the ability of the model to recover its steady states when the mucus layer is strongly
perturbed at t = 0. We start from the sigmoidal shape M0,s, and we compute the condition on Γin with the
iterative procedure. Once the boundary condition is determined, we reset the initial condition by eroding the
mucus layer between y = −4cm and y = −9cm. Namely, in this domain we modify the parameter of the sigmoid,
changing only the inflexion point. Fig. 6 displays several snapshots of the evolution of the volume fraction M .
The mucus layer disruption is neatly visible at t = 0: we note M0,p that initial perturbed distribution. After
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(a) Initial condition M0,g
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(b) Initial condition M0,s

Figure 5. Mucus profiles at y = −Ly2 for initial data M0,g and M0,s at t = 0, 10 and t = 20
days with vin given by the iterative procedure.

one day, a tongue of mucus is transported from uphill and starts to overlay the eroded mucus layer area. The
initial disruption is also transported and its downhill part is abraded by the liquid flow. At t = 2 days, half
of the initial disrupted zone has been already transported outside the domain and the mucus tongue increases
until re-covering a mucosa portion equivalent to the initial disruption. At t = 3 days, the mucus tongue reaches
Γout and at t = 5 days, the recovering is quasi-completed. During the whole simulation, the mucus layer located
upstream is stable. The final mucus layer is visually equivalent to the layer of the unperturbed data.

The first plot of Fig. 7 represents the mucus profile at y = −8cm at the same days than in Fig. 6. At t = 5,
we also plot the mucus profile at y = −3cm for comparison issues. At t = 1, we can see that the mucus layer
is still disrupted. Then, at t = 2 and t = 3, the mucus tongue appears, exhibiting a few mucus peaks. The
peaks grow to fill up the mucus layer until reaching the steady state at t = 5 days. The luminal part of the
mucus tongue is superimposed with the steady state mucus profile at t = 5 and y = −3cm. The second plot of
Fig. 7 displays the time evolution of the L2 norm of the difference between the current volume fraction of mucus
and the volume fraction at the previous day. This quantity rapidly drops down until reaching a steady-state
at about t = 10 days, indicating that the mucus volume fraction is in a stationary regime. This numerical
experiment shows the recovering dynamics of the mucus layer after degradation and proves the ability of the
model to preserve and restore a stable mucus layer.

6. Sensitivity analysis

In order to better interpret the mechanisms involved in the formation of a stable mucus layer, we perform
a sensitivity analysis of the model to identify the parameters that most impact the shape of the mucus layer
at steady-state. The sensitivity analysis starts by choosing uncertain model parameters; they are modelled as
random variables with suitable probability distributions. We then sample these random parameters and run the
deterministic model for each realization. Finally, we quantify with appropriate statistics the induced variability
of relevant descriptors of the mucus layer shape. In order to reduce the computational load, we use the reduced
model presented in Section 3.3.

This model has 21 parameters: for computational reasons, all the parameters cannot be tested all together.
We choose to focus on the threshold effects related to the sigmoidal shape of the coefficients and initial condition:
we select the initial mucus front location χM0, the diffusion coefficient transition location χM , the mucus
production rate θM , the liquid pumping rate θL, the viscosity transition χµ and the input speed win. As we
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t = 0 day t = 1 day t = 2 days t = 3 days t = 5 days

Figure 6. Evolution in time of the disrupted mucus layer. We present the mucus volume
fraction map at different times in order to illustrate the reconstitution of the steady-state
mucus layer. The plot t = 0 displays M0,p, the initial perturbed distribution. The dashed and
continuous lines represent respectively the lines y = −3cm and y = −8cm.
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Figure 7. Left plot: mucus profile at y = −3cm or y = −8cm at different times. Right plot:
evolution in time of log ‖M(t; .)−M(t− 1; .)‖2.

have no prior physiological knowledge on the variability of the parameters, we use uniform random variables.
The mean values are given by Table 1; the standard deviation is chosen as 25 % of the mean value. We ran the
deterministic code until steady-state, with maximal simulation time of 20 days, which is enough to stabilize the
mucus layer. Assuming that the mucus layer is uniform in y, we look for suitable descriptors of its shape. This is

done by computing the parameters of the sigmoidal function fobs(x, y) = (maxobs−minobs)
x2αobs

x2αobs+χ
2αobs
obs

+minobs
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that best fits the steady-state mucus profile in the least-square sense. These parameters are used as observables
in our sensitivity analysis.

As we want to minimize the number of runs of the deterministic code, we choose the non-intrusive pseudo-
spectral method of generalized Polynomial Chaos (gPC), an extension of the method developed in [7]. The
numerical output Υ = (maxobs, αobs, χobs,minobs) is decomposed on a basis of orthogonal Polynomial Chaos
depending on the spatial variable X and on the uncertain input ξ(ω) = (χM0, χM , θM , θL, χµ, win), where ω
is the corresponding vectorial probability density. Namely, we compute the deterministic coefficients (aj) with
orthogonal projections, in order to get

Υ(x, ω) =

M∑
j=1

aj(x)ψj(ξ(ω)), with aj(x) = E [Υ , ψj(ξ(.))] , ∀ j ∈ {1, ...,M} (17)

where {ψj}j are the Polynomial Chaos basis of order at most p. For uniform distributions, a suitable ω-
orthonormal basis is the Legendre polynomials. For our purpose, a degree p = 3 is sufficient for the convergence
of statistical results. The bottle-neck of the method relies in the estimation of the multidimensional integrals
with probability support ω needed to compute the coefficients aj . When the number of uncertain parameters N
is low (N < 4), efficient high-order numerical quadratures of full-tensor products [8] represent an appropriate
alternative to Monte-Carlo type sampling which are computationally expensive. For higher dimensions, full
quadrature grids have also a prohibitive computational load. We then use sparse grid quadrature [10] which
takes advantages of sound partial tensorizations, avoiding the combinatorial explosion of the sample size while
keeping a high level of accuracy. Consequently, the expansion coefficients have been estimated based on a
Clenshaw-Curtis (CC) sparse cubatures of level 5 [17]. With this choice, we made 389 runs of the deterministic
code in total for N = 6. To quantify the sensitivity of the outputs to the input uncertainty, we compute two
statistical indicators. We first determine the output coefficients of variation Υi,CV = Υi,std/Υi,mean. Next, we
compute the Sobol’s indices [22] which estimate the contribution of each parameter, or groups of parameters,
to the total variability of Υ. They are based on a normalization of the values Vi = V ar(E[Υ|ξi]), resp.
Vij = V ar(E[Υ|ξi, ξj ]) − Vi − Vj , which evaluates the magnitude of the variability of the output subject to
variations of the parameter i, resp. of the parameters i and j. The first and second order Sobol’s indices then
read Si = Vi/V ar(Υ) and Sij = Vij/V ar(Υ).

We start by checking the first order Sobol’s indices. The results are presented in Fig. 8a and Table 8b. The
coefficients of variation first indicate that the maximal value of the sigmoidal output has very small variations,
unlike the other parameters. This variability is partially explained by the occurrence of extremal cases such
as filling up of the entire domain by the mucus. The Sobol’s indices show that the parameter χM0 is strongly
predominant on the variability of all the observables except maxobs. It suggests that our model is strongly
determined by its initial value. We then perform another analysis by fixing the parameter χM0 to its mean
value, in order to analyse the influence of the remaining parameters. see Fig. 9a and Table 9b. The coefficients of
variation of the observables are low, except for the slope of the sigmoid, indicating that the parameter variations
modify the magnitude of the mucus gradient rather than radially transporting a sharp mucus front. It also
suggests that the extremal cases are much less frequent when χM0

is fixed. The Sobol’s indices inspection shows
that χM is the most influential parameter on the whole set of observables, followed by the input speed win and
the crossed contribution of win and χM . At the other side of the spectrum, θM is the weakest contributor to
the output variability. These values reflect the diffusion and convection interplays during the determination of
the large time solution. We note that the parameters that drive the boundary conditions or the threshold of
the viscosity function have less impact on the outcomes of that model.

7. Interaction with a population of chemotactic bacteria

We now propose an extension of the model by taking into account the presence of the bacterial community.
Our modelling is definitely rough and questionable, but it already allows us to bring out interesting features.



124 ESAIM: PROCEEDINGS AND SURVEYS

0.0 0.2 0.4 0.6 0.8 1.0

χM

θM

θL

χµ

χM0

win

maxobs
0.0 0.2 0.4 0.6 0.8 1.0

χM

θM

θL

χµ

χM0

win

αobs

0.0 0.2 0.4 0.6 0.8 1.0

χM

θM

θL

χµ

χM0

win

χobs

0.0 0.2 0.4 0.6 0.8 1.0

χM

θM

θL

χµ

χM0

win

minobs

(a) Bar plot of Sobol indices.

maxobs αobs χobs minobs
χM 0.6167 0.0602 0.0001 0.004
θM 0.0001 0.0000 0.0000 0.0000
θL 0.0259 0.0009 0.0004 0.0000
χM0 0.2991 0.9007 0.9991 0.7056
χµ 0.0005 0.0112 0.0003 0.0003
win 0.0577 0.0270 0.0000 0.2899
CV 0.0034 0.8470 0.4931 1.6544

(b) Table of Sobol indices and

coefficient of variations.

Figure 8. Bar plot and table of the Sobol indices for each observable. The notation χM
corresponds to Si where i is the index of χM in ξ.
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(a) Bar plot of Sobol indices.

maxobs αobs χobs minobs
χM 0.5990 0.5454 0.5246 0.0165
θM 0.0355 0.0107 0.0078 0.0427
θL 0.0435 0.0107 0.0314 0.0078
χµ 0.0514 0.0279 0.0469 0.0761
win 0.1269 0.1307 0.0620 0.0565
χM ∗ θM 0.0087 0.0252 0.0089 0.0031
χM ∗ θL 0.0099 0.0275 0.0315 0.0030
χM ∗ χµ 0.0246 0.0274 0.0447 0.2267
χM ∗ win 0.0885 0.1563 0.0414 0.2585
θM ∗ θL 0.0007 0.0000 0.0187 0.0041
θM ∗ χµ 0.0011 0.0008 0.0298 0.0259
θM ∗ win 0.0011 0.0149 0.0070 0.0197
θL ∗ χµ 0.0018 0.0005 0.0086 0.0231
θL ∗ win 0.0008 0.0112 0.0345 0.0102
χµ ∗ win 0.0057 0.0103 0.0774 0.1613
CV 0.0140 1.9338 0.0167 0.0000

(b) Table of Sobol indices and coeffi-

cient of variations.

Figure 9. Bar plot and table of the Sobol indices for each observable. The notation χM and
χM ∗ θM correspond respectively to Si and Sij where i and j are the respective indices of χM
and θM in ξ.

We gather all the bacterial community in a single population considered as an additional phase in the mixture
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model with volume fraction B(t,X). It obeys a convection–diffusion equation with external potential φ

∂tB +∇X · (BV −B∇Xφ) = ∇X · (DB∇XB) (18)

and the volume conservation condition becomes B+L+M = 1. The space-dependent diffusion coefficient DB is
intended to model both the own bacterial diffusion and interphases interactions. Additionally, the displacement
of the bacteria is driven by a chemotactic potential φ. Velocity and pressure are defined by Stokes Eq. (4) with
the appropriate boundary conditions, and the constraint

∇X · V = ∇X · ((DB −DL)∇XB + (DM −DL)∇XM +B∇Xφ) . (19)

Two different biological phenomena are embodied into the potential φ: 1) the bacteria are supposed to be
attracted by the mucus, they are “attached” to this viscous fluid to resist against the luminal liquid wash out
and to take advantage of this nutrient source; 2) conversely, bacteria cannot penetrate too deeply into the
mucus, since they are attacked by the immune system of the host. We phenomenologically account for these
phenomena by introducing an attracting rate f(M) which is optimal when the volume fraction of mucus reaches
the threshold Mref . The chemotactic potential is then defined through the Poisson equation

∆Xφ = f (M)− 1

|Ω|

∫
Ω

f(M) dX, with f(M) = 1− 1

η (M −Mref )
2

+ 1
(η > 0). (20)

This equation is supplemented by homogeneous Neumann boundary conditions and we select the solution
verifying

∫
Ω
φ dX = 0. We close the system with an initial condition B0 and the following boundary conditions

on B

(BV −B∇Xφ−DB∇B) · ~n = 0 on Γl ∪ Γr and ∇B · ~n = 0 on Γin ∪ Γout.

It means that bacteria cannot cross the mucosa and flow through Γin ∪ Γout by transport.

Sigmoid distribution Other
Name Meaning Unit pmax pmin αp χp value

DB Bacteria diffusion cm2 d−1 5.10−4 10−5 12 4
5Lx -

η Stifness of the function f s - 10
Mref Reference volume fraction of mucus for f ∅ - 4

5

Bmax Maximal volume fraction of bacteria initial data for B0 ∅ - 0.1
χB Initial Gaussian function center for B0 cm - 7

10Lx
σB Initial Gaussian function width for B0 cm - 25

Table 2. Biophysical constants of the extended model

We suppose that the volume fraction of bacteria is small compared to the amount of mucus or liquid, which
leads us to assume the interface diffusion to be constant. We also suppose that the diffusion of bacteria grows
with the amount of liquid. We set PDB = (DB,max, DB,min, αB , χB) and take

DB(x, y) = Σ−
PDB

(x).
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Figure 10. Cut view of mucus (green continuous line) and bacteria (red dashed line) volume

fractions at different times at y = −Ly2 for initial mucus profile M0,s.

For the sake of simplicity, we assume that B0 depends only on the horizontal coordinate with a profile defined
by Gaussian functions centered on the interfaces liquid/mucus (see Fig. 10a)

B0(x, y) = Bmax exp

(
− (x+ χB)

2

2 (Lx/σB)
2

)
+Bmax exp

(
− (x− χB)

2

2 (Lx/σB)
2

)
. (21)

The parameters are collected in Table 2. Eq. (18) is treated like the conservation equation for M . The Poisson
equation (20) is discretized with the VF4 scheme on pressure cells. The mean value in the right hand side, as
well as the constraint on

∫
φ dX, are approached by a suitable quadrature rule. We are led to solve an invertible

linear system by introducing a Lagrange multiplier.
As in Section 5, we discuss the influence of the boundary data on Γin, depending whether or not uin vanishes,

and we check the behavior of the system when the mucus layer is perturbed. On Fig. 10b, the initial data for the
mucus is a sigmoidal function M0,s and uin = 0. We observe a neat concentration of the bacteria community
at the abscissa x = ±1.4 where the mucus volume fraction is close to Mref until t = 12 days. Then, the
amount of bacteria starts to decrease and after 50 days, see Fig. 10c the volume fraction of bacteria is almost
zero: the model is not able to conserve a bacterial population in the gut. Surprisingly enough, the behavior is
different when we keep uin = 0 and we change the initial data for the mucus to M0,g, see Fig. 11a. A steady
state, represented in Fig. 11b, is reached after 10 days: the profiles are indeed the same after 100 days, see
Fig. 11c. In this state the bacterial community concentrates at the interface mucus/liquid, where the mucus
volume fraction takes the value Mref = 0.4. The mucus profile is slightly sharper than initially.

It is interesting to study the influence of the horizontal velocity at Γin. Instead of imposing uin = 0 as above,
we now set uin 6= 0 as given by the iteration procedure at Sec. 5.1. Mucus and bacteria profiles at t = 50 and
t = 140 days are displayed on Fig. 12 for the sigmoidal initial data M0,s. Changing the boundary condition for
uin has completely changed the large time profiles: instead of a bacteria wash out, we observe an overgrowth of
the bacterial population and a persistence in the domain. During the first 50 days, the total amount of bacteria
is multiplied by eight and the maximal volume fraction of bacteria goes from 0.1 to 0.6, see Fig. 12a and 12b.
Then the amount of bacteria decreases during a few days and stabilises with a maximal volume fraction around
0.5, see Fig. 12c. The mucus profile becomes also very specific: the luminal part is completely deformed around
the bacterial aggregate. Some mucosal matter seems to be pushed laterally towards the lumen by the bacterial
population, which occupies more and more volume. This fact can be related to a physiological observation: the
soft layer of mucus has a greater volume than the hard layer due to the bacteria and the eukaryotic residuals
that it contains. Note that, due to the high bacterial volume fraction at their distribution peak, the bacterial
aggregate cannot be located where M = Mref . The coupling with a bacterial population, which is furthermore
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Figure 11. Cut view of mucus (green continuous line) and bacteria (red dashed line) volume

fractions at different times at y = −Ly2 for initial mucus profile M0,g.
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Figure 12. Cut view of mucus (green continuous line) and bacteria (red dashed line) volume

fractions at different times at y = −Ly2 for M0,s and uin 6= 0 in the iterative procedure of
Sec. 5.1.

driven by chemotactic mechanisms, makes the model more sensitive, in particular with respect to uncertainties
on the horizontal velocities, and its behavior is more intricate. This preliminary attempt provides interesting
and relevant avenues for reflection, that will be further investigated elsewhere.

We finally investigate the recovery of the mucus layer when the initial condition is perturbed and the bacterial
population is present. We take the same protocol as in Section 5. We start with M = M0,p at t = 0 and take
the result of the iterative process as boundary condition on the boundary. The bacteria population initial
distribution is sigmoidal until y = −4 and uniformly zero for −4 ≥ y ≥ −Ly. Several snapshots of the
simulation are displayed in Fig. 13. We can see that the mucus layer reconstruction dynamics is visually
unchanged: a mucus layer is recovered after a few days through the overlapping of the disrupted zone by a
uphill tongue of mucus. We can see the complex interaction of the bacterial population with the mucus layer
near the tongue of mucus. At t = 2 and t = 3 days, we can observe that some bacteria are transported uphill
and get into the interstitial space between the mucus tongue and the mucus layer near the mucosa. At t = 50,
we observe some mucus in the lumen of the gut, reflecting the deformation of the mucus front by the bacterial
population.
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t = 0 day t = 1 day t = 2 days t = 3 days t = 5 days t = 50 days

Figure 13. Evolution in time of the disrupted mucus layer together with the chemotactic
bacterial population. We present the mucus (upper row) and bacteria (lower row) volume
fraction maps at different times in order to illustrate the reconstitution of the steady-state
mucus layer when a chemotactic bacterial population is present.

8. Conclusion

We have proposed a model, inspired from mixture theory, which is able to describe the formation of a stable
layer of mucus in the gut. The modelling relies on a short list of simple biological mechanisms — mucus
production, liquid pumping, viscosity discrepancies between liquid and mucus, relevant inflow. Interaction
with populations of bacteria can be incorporated in the equations, and the model reproduces the mucus layer
flattening due to the penetration of the bacteria into the luminal part of the mucus layer. Such a model can take
into account different biological knowledges to contribute to a better understanding of the microbial population
dynamics and the host-microbiota interactions, especially through the mucus layer. This set of PDE can be used
to investigate several pathological disorders of the mucus. For instance, by modifying the shape of the viscosity
function M 7→ µ(M) we can describe rheological disorders due to mucin composition or conformation. Through
the functions fM and fL, we can account for mucus layer disruptions that arise in several bowel diseases, such
as the inflammatory bowel disease (IBD).

This work remains a first attempt and it is worth pointing a few relevant improvements of the model that will
deserve to be further investigated. Curvature effects should be taken into account by considering a cylindrical
geometry. The boundary conditions, which are crucial for determining the shape of the mucus layer, should
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take into account the fluid/structure interactions that occur during peristaltism: the periodic contraction of
the mucosa produces longitudinal traveling waves that ease the intestinal transit. Such a difficulty is common
in the modeling of biological flows [1]. Accounting for the bacterial gas production is also an issue since it can
influence the intestinal fluids flows. We are using a model based on mixture theory, which involves a closure
relation describing diffusion effects. The definition of the diffusion coefficients is a crucial modeling issue. It
enters both in the equation in the domain and in the boundary conditions for the constituents volume fractions.
It would be natural to work with coefficients that depend on the mucus volume fraction, thus inducing further
non linearities in the equations. Here, we have adopted a quite phenomelogical viewpoint by imposing a specific
space-dependent profile to the coefficients DM , DL. The formula should be understood as a rough way to
describe the complex interaction of the mucus layer with the gut wall. The knowledge of these intercations
is not well–advanced but it is clear from the observation that they are mechanisms able to keep the mucus
attached to the wall. For instance, it would be interesting to take into account more precisely the impact of the
microscopic nature of this interaction on the diffusion distribution through suitable homogeneization methods.

The model for the bulk velocity could also incorporate additional viscosity term, as described in Remark 2.1,
which would equally impact, and possibly improve, the definition of the boundary conditions. In order to
describe more accurately the mucus stratification, the definition of the viscosity function should be improved,
taking into account the different rheological properties of the mucus layers. Another relevant modeling option
would be to set up a model with momentum balance equations for the velocities uM , uL of the constituents.

Finally, we have adopted a quite naive and phenomenological description of the chemotactic mechanisms that
bacteria are subjected to; future developments should try to reflect more closely the biological mechanisms.

The work presented in this paper is the result of a fruitful collaboration that took place during the CEMRACS 2015.
We warmly thank the organizers of the 2015 edition of the CEMRACS: Emmanuel Frénod (UBS Vannes), Emmanuel
Maitre (U. Grenoble), Antoine Rousseau (Inria Montpellier), Stéphanie Salmon (URCA Reims), and Marcela Szopos
(U. Strasbourg). We also thank the referees for useful remarks and comments regarding the manuscript.
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